# KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COLLEGE OF COMPUTER SCIENCES & ENGINEERING

## COMPUTER ENGINEERING DEPARTMENT

COE-543 – Mobile and Wireless Networks November 17<sup>th</sup>, 2011 – Midterm Exam

Student Name: Student Number: Exam Time: 90 mins

- Do not open the exam book until instructed
- The use of programmable and cell phone calculators is not allowed only basic are permitted
- Answer ALL Questions
- All steps must be shown
- Any assumptions made must be clearly stated

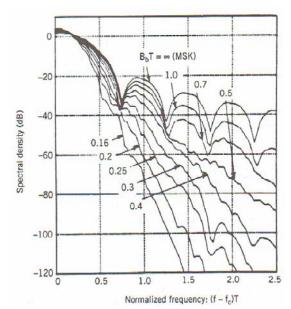
| Question No. | Max Points |  |
|--------------|------------|--|
| 1            | 50         |  |
| 2            | 50         |  |
| 3            | 50         |  |

Total: 150

#### Q.1) On the subject of RF propagation

(50 points) The modulation technique used in the existing AMPS is analog FM. The transmission bandwidth is 30 kHz per channel and the maximum transmitted power from a mobile use is 3 W. The acceptable quality of the input SNR is 18 dB, and the background noise in the bandwidth of the system is -120 dBm (120 dB below the 1mW reference power). In the cellular operation we may assume the strength of the signal drops 30 dB for the first meter of distance from the transmitter antenna and 40 dB per decade of distance for distances beyond 1 meter.

- 1. What is the maximum distance between the mobile station and the base station at which we have an acceptable quality of signal?
- 2. Repeat (a) for digital cellular systems for which the acceptable SNR is 14 dB
- 3. For (2) now assume shadowing is considered. What would be the distance such that 90% of the locations have SNR equal or greater than 14 dB? Assume the shadowing process has a standard deviation of 8 dB.


### Q.2) On the subject of cellular concept and traffic engineering

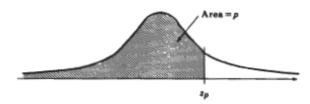
(50 points) Consider a cellular system with 395 total allocated voice channels of 30 kHz each. The total available bandwidth in each direction is 12.5 MHz. The traffic is uniform with average call holding time of 120 seconds, and call blocking during the system busy hour is 2%. Assume a cell reuse factor of 7, 3 antenna sectors per cell site, and a slope for the pathloss of 40 dB/decade. Furthermore, assume the there are 10 mobiles/km2 with each mobile generating traffic of 0.02 Erlangs.

- a) (5 points) Calculate the calls per cell site per hour the network can support
- b) (5 points) Calculate the maximum cell radius the network can support
- c) (10 points) Calculate the mean SIR provided by setup
- d) (20 points) Calculate the spectral efficiency in Erlangs/km2/MHz
- e) (10 points) How would an engineer utilize antenna sectorization to increase the capacity for the above system.

### Q.3) (50 points) On the subject of physical layer for wireless networks

- a) Frequency shift keying modulation (FSK)
- a.1) (10 points) Explain the basic operation FSK modulation Use drawing if possible.
- a.2) (5 points) What is relation between Minimum shift keying (MSK) and FSK?
- a.3) (10 points) How is MSK improved upon in Gaussian minimum shift keying? Draw the block diagram of the GMSK modulator.
- b) Consider the spectral density functions of the MSK and GMSK shown in figure.
- b.1) (10 points) What is referred to by  $B_bT$ ? Define the term and it implication.
- b.2) (10 points) In terms of adjacent channel interference, which modulation scheme (MSK or GMSK) is better? And why?
- b.3) (5 points) What is the disadvantage of a GMSK scheme of small  $B_bT$  value (i.e. less than 0.25)?




### Appendix A:

STATISTICAL TABLES

629

### A.2 QUANTITIES OF THE UNIT NORMAL DISTRIBUTION

Table A.2 lists  $z_p$  for a given p. For example, for a two-sided confidence interval at 95%,  $\alpha = 0.05$  and  $p = 1 - \alpha/2 = 0.975$ . The entry in the row labeled 0.97 and column labeled 0.005 gives  $z_p = 1.960$ .



| TABLE A | TABLE A.2 Quantiles of the Unit Normal Distribution |        |        |        |        |        |        |        |        |        |
|---------|-----------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| P       | 0.00                                                | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
| 0.5     | 0.000                                               | 0.025  | 0.050  | 0.075  | 0.100  | 0.126  | 0.151  | 0.176  | 0.202  | 0.228  |
| 0.6     | 0.253                                               | 0.279  | 0.305  | 0.332  | 0.358  | 0.385  | 0.412  | 0.440  | 0.468  | 0.496  |
| 0.7     | 0.524                                               | 0.553  | 0.583  | 0.613  | 0.643  | 0.674  | 0.706  | 0.739  | 0.772  | 0.806  |
| 0.8     | 0.842                                               | 0.878  | 0.915  | 0.954  | 0.994  | 1.036  | 1.080  | 1.126  | 1.175  | 1.227  |
|         |                                                     |        |        |        |        |        |        |        |        |        |
| P       | 0.000                                               | 0.001  | 0.002  | 0.003  | 0.004  | 0.005  | 0.006  | 0.007  | 0.008  | 0.009  |
| 0.90    | 1.282                                               | 1.287  | 1.293  | 1.299  | 1.305  | 1.311  | 1.317  | 1.323  | 1.329  | 1.335  |
| 0.91    | 1.341                                               | 1.347  | 1.353  | 1.359  | 1.366  | 1.372  | 1.379  | 1.385  | 1.392  | 1.398  |
| 0.92    | 1.405                                               | 1.412  | 1.419  | 1.426  | 1.433  | 1.440  | 1.447  | 1.454  | 1.461  | 1.468  |
| 0.93    | 1.476                                               | 1.483  | 1.491  | 1.499  | 1.506  | 1.514  | 1.522  | 1.530  | 1.538  | 1.546  |
| 0.94    | 1.555                                               | 1.563  | 1.572  | 1.580  | 1.589  | 1.598  | 1.607  | 1.616  | 1.626  | 1.635  |
| 0.95    | 1.645                                               | 1.655  | 1.665  | 1.675  | 1.685  | 1.695  | 1.706  | 1.717  | 1.728  | 1.739  |
| 0.96    | 1.751                                               | 1.762  | 1.774  | 1.787  | 1.799  | 1.812  | 1.825  | 1.838  | 1.852  | 1.866  |
| 0.97    | 1.881                                               | 1.896  | 1.911  | 1.927  | 1.943  | 1.960  | 1.977  | 1.995  | 2.014  | 2.034  |
| 0.98    | 2.054                                               | 2.075  | 2.097  | 2.120  | 2.144  | 2.170  | 2.197  | 2.226  | 2.257  | 2.290  |
|         |                                                     |        |        |        |        |        |        |        |        |        |
| P       | 0.0000                                              | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0009 |
| 0.990   | 2.326                                               | 2.330  | 2.334  | 2.338  | 2.342  | 2.346  | 2.349  | 2.353  | 2.357  | 2.362  |
| 0.991   | 2.366                                               | 2.370  | 2.374  | 2.378  | 2.382  | 2.387  | 2.391  | 2.395  | 2.400  | 2.404  |
| 0.992   | 2.409                                               | 2.414  | 2.418  | 2.423  | 2.428  | 2.432  | 2.437  | 2.442  | 2.447  | 2.452  |
| 0.993   | 2.457                                               | 2.462  | 2.468  | 2.473  | 2.478  | 2.484  | 2.489  | 2.495  | 2.501  | 2.506  |
| 0.994   | 2.512                                               | 2.518  | 2.524  | 2.530  | 2.536  | 2.543  | 2.549  | 2.556  | 2.562  | 2.569  |
| 0.995   | 2.576                                               | 2.583  | 2.590  | 2.597  | 2.605  | 2.612  | 2.620  | 2.628  | 2.636  | 2.644  |
| 0.996   | 2.652                                               | 2.661  | 2.669  | 2.678  | 2.687  | 2.697  | 2.706  | 2.716  | 2.727  | 2.737  |
| 0.997   | 2.748                                               | 2.759  | 2.770  | 2.782  | 2.794  | 2.807  | 2.820  | 2.834  | 2.848  | 2.863  |
| 0.998   | 2.878                                               | 2.894  | 2.911  | 2.929  | 2.948  | 2.968  | 2.989  | 3.011  | 3.036  | 3.062  |
| 0.999   | 3.090                                               | 3.121  | 3.156  | 3.195  | 3.239  | 3.291  | 3.353  | 3.432  | 3.540  | 3.719  |

 $\underline{\textbf{Appendix B}}$ : Offered Loads (in Erlangs) for various Blocking Objectives – According to the Erlang-B model

| P(B) = Trunks | 0.01   | 0.015  | 0.02   | 0.03   | 0.05   | 0.07   | 0.1    |
|---------------|--------|--------|--------|--------|--------|--------|--------|
| I             | 0.010  | 0.015  | 0.020  | 0.031  | 0.053  | 0.075  | 0.111  |
| 2             | 0.153  | 0.190  | 0.223  | 0.282  | 0.381  | 0.471  | 0.595  |
| 3             | 0.455  | 0.536  | 0.603  | 0.715  | 0.899  | 1.057  | 1.271  |
| 4             | 0.870  | 0.992  | 1.092  | 1.259  | 1.526  | 1.748  | 2.045  |
| 5             | 1.361  | 1.524  | 1.657  | 1.877  | 2.219  | 2.504  | 2.881  |
| 6             | 1.913  | 2.114  | 2.277  | 2.544  | 2.961  | 3.305  | 3.758  |
| 7             | 2.503  | 2.743  | 2.936  | 3.250  | 3.738  | 4.139  | 4.666  |
| 8             | 3.129  | 3.405  | 3.627  | 3.987  | 4.543  | 4.999  | 5.597  |
| 9             | 3.783  | 4.095  | 4.345  | 4.748  | 5.370  | 5.879  | 6.546  |
| 10            | 4.462  | 4.808  | 5.084  | 5.529  | 6.216  | 6.776  | 7.511  |
| 11            | 5.160  | 5.539  | 5.842  | 6.328  | 7.076  | 7.687  | 8.487  |
| 12            | 5.876  | 6.287  | 6.615  | 7.141  | 7.950  | 8.610  | 9.477  |
| 13            | 6.607  | 7.049  | 7.402  | 7.967  | 8.835  | 9.543  | 10.472 |
| 14            | 7.352  | 7.824  | 8.200  | 8.803  | 9.730  | 10.485 | 11.475 |
| 15            | 8.108  | 8.610  | 9.010  | 9.650  | 10.633 | 11.437 | 12.485 |
| 16            | 8.875  | 9.406  | 9.828  | 10.505 | 11.544 | 12.393 | 13.501 |
| 17            | 9.652  | 10.211 | 10.656 | 11.368 | 12.465 | 13.355 | 14.523 |
| 18            | 10.450 | 11.024 | 11.491 | 12.245 | 13.389 | 14.323 | 15.549 |
| 19            | 11.241 | 11.854 | 12.341 | 13.120 | 14.318 | 15.296 | 16.580 |
| 20            | 12.041 | 12.680 | 13.188 | 14.002 | 15.252 | 16.273 | 17.614 |
| 21            | 12.848 | 13.514 | 14.042 | 14.890 | 16.191 | 17.255 | 18.652 |
| 22            | 13.660 | 14.352 | 14.902 | 15.782 | 17.134 | 18.240 | 19.693 |
| 23            | 14.479 | 15.196 | 15.766 | 16.679 | 18.082 | 19.229 | 20.737 |
| 24            | 15.303 | 16.046 | 16.636 | 17.581 | 19.033 | 20.221 | 21.784 |
| 25            | 16.132 | 16.900 | 17.509 | 18.486 | 19.987 | 21.216 | 22.834 |
| 26            | 16.966 | 17.758 | 18.387 | 19.395 | 20.945 | 22.214 | 23.885 |
| 27            | 17.804 | 18.621 | 19.269 | 20.308 | 21.905 | 23.214 | 24.939 |
| 28            | 18.646 | 19.487 | 20.154 | 21.224 | 22.869 | 24.217 | 25.995 |
| 29            | 19.493 | 20.357 | 21.043 | 22.143 | 23.835 | 25.222 | 27.053 |
| 30            | 20.343 | 21.230 | 21.935 | 23.065 | 24.803 | 26.229 | 28.113 |
| 31            | 21.196 | 22.107 | 22.830 | 23.989 | 25.774 | 27.239 | 29.174 |
| 32            | 22.053 | 22.987 | 23.728 | 24.917 | 26.747 | 28.250 | 30.237 |
| 33            | 22.913 | 23.869 | 24.629 | 25.846 | 27.722 | 29.263 | 31.302 |
| 34            | 23.776 | 24.755 | 25.532 | 26.778 | 28.699 | 30.277 | 32.367 |
| 35            | 24.642 | 25.643 | 26.438 | 27.712 | 29.678 | 31.294 | 33.435 |
| 36            | 25.511 | 26.534 | 27.346 | 28.649 | 30.658 | 32.312 | 34.503 |
| 37            | 26.382 | 27.427 | 28.256 | 29.587 | 31.641 | 33.331 | 35.572 |
| 38            | 27.256 | 28.322 | 29.168 | 30.527 | 32.624 | 34.351 | 36.643 |
| 39            | 28.132 | 29.219 | 30.083 | 31.469 | 33.610 | 35.373 | 37.715 |