KING FAHD UNIVERSITY OF PETROLEUM \& MINER ALS COLLEGE OF COMPUTER SCIENCES \& ENGINEERING

 COMPUTER ENGINEERING DEPARTMENT

 COMPUTER ENGINEERING DEPARTMENT}

COE 540 - Computer Networks

Assignment 3 - Due Date May 7th, 2011

Problem 1 (40 points): On the Discrete Time Markov Chains

Data in the form of fixed-length packets arrive in slots on the $\mathbf{t w} \mathbf{0}$ input lines of a multiplexer. A slot contains a packet with probability p, independent of the arrivals during other slots or on the other line. The multiplexer transmits one packet per time slot and has the capacity to store two packets only. If no room for a packet is found, the packet is dropped. Assume \boldsymbol{p} is equal to 0.4 .
Hint: Define $p(n)=\left[p_{0}(n) \quad p_{1}(n) \quad p_{2}(n)\right]$ where $p_{i}(n)$ for $i \in\{0,1,2\}$ is the probability that the mux has i packets at the beginning of slot n. Note that $p_{0}(n)+p_{1}(n)+p_{2}(n)$ is always equal to 1 for any $n=0,1,2, \ldots$. Let the steady-state probability mass function (PMF) be denoted by $\underline{\pi}(n)=\left[\begin{array}{lll}\pi_{0} & \pi_{1} & \pi_{2}\end{array}\right]$. Clearly, $\pi_{i}=$ $\lim _{n \rightarrow \infty} p_{i}(n)$ for $i \in\{0,1,2\}$.
a) ($\mathbf{5}$ points) Let N be the number of packets arriving to the multiplexer in a given time slot. Specify the probability distribution for N and its name. Compute the mean for N.
b) (5 points) Draw the state transition diagram and specify the probability transition matrix \mathbf{P} (in terms of p and also after the using the value of p) - The state is taken to be the number of packets in the multiplexer.
c) (5 points) Assume the MUX starts with 2 packets in buffer at time slot 0 . Plot the components of $p(n)$ for the next 10 time slots (i.e. $n=0,1,2, \ldots, 10$).
d) (5 points) Compute the steady state pmf for the system.
e) (5 points) Compute the mean number of packets in the MUX at any time slot.
f) (5 points) Compute the mean MUX throughput in packets per time slot.
g) (5 points) Compute the probability of a drop event from the MUX buffer.
h) (5 points) Compute the mean number of dropped packets at any time slot.
i) ($\mathbf{2 0}$ points - bonus) Plot the MUX throughput in packets per time slot as a function of load offered to the MUX.

Problem 2 (40 points): Queueing Models

Consider the M/M/1 queue discussed in class.
a. (5 points) Draw the state transition diagram depicting states and the corresponding transition rates.
b. (5 points) Write and solve the global balance equations to compute the steady state probability of the queueing system having j customers, p_{j}, for $j=0,1,2, \ldots$.
c. ($\mathbf{1 0}$ points) Compute the mean number of customers in the waiting buffer.
d. (10 points) Repeat parts (a) and (b) for $M / M / c / c$ queue.

