

- <u>Problem</u>: Consider the network of queue depicted in figure. If the arrival rates are given by λ = [2.0, 1.0, 0.5, 3.0], and the service rates are μ = [4.0, 6.0, 11.0, 9.9],
 - a) compute the total flow into each node
 - b) Find the joint pmf for number of customers in queues

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Example: Convolution Algorithm –				
· Solution: cont/d				
The following code implements the recursive alogorithm:				
0001 %	D			
0002 % Example 4.8	<u>Program output:</u>			
0003				
0004 K = 7;	>> RFlows			
0005 N = 4;	DEL			
0006 M = 2.5*ones(1,N);	RFIOWS =			
	1 0000	1 5844	0 9195	1 7273
$0008 Q = [0 0.75 0.25 0] \dots$	1.0000	1.5011	0.9199	1.7275
0010 0.25 0.25 0 0.5;	>> RR			
0011 0.4 0.35 0.25 01:				
0012	RR =			
0013 [Vectors, Values] = eig(Q');				
0014 RFlows = Vectors(:,1)'./Vectors(1,1); % relative flows	0.4000	0.6338	0.3678	0.6909
0015 RR = RFlows./M; % compute relative loads				
0016	>> G_K_N			
0017 ks = 0:K;				
0018 ns = 1:N;	G_K_N =			
0019 $G_K_N = zeros(K+1,N);$				
0020 %	1.0000	1.0000	1.0000	1.0000
0021 % fill initial values	0.4000	0.9152	1 3306	2.0929
$0022 \text{ G_K_N(1,:)} = \text{Ones(1,N)};$	0.1000	0.5806	1 0700	2 9882
0023 5_A_M(.)1) = MA(1). KB ,	0.0256	0.3936	0.7871	2.8517
0025 % fill the remaining of the matrix	0.0102	0.2597	0.5492	2.5195
0026 for n=2:N	0.0041	0.1687	0.3707	2.1114
0027 for k=1:K	0.0016	0.1085	0.2449	1.7036
0028 G_K_N(k+1, n) = G_K_N(k+1, n-1) + RR(n)*G_K_N(k, n);				
0029 end	>>			
0030 end				