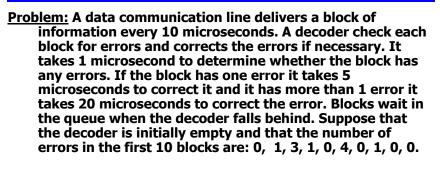


Example 1: Queueing System

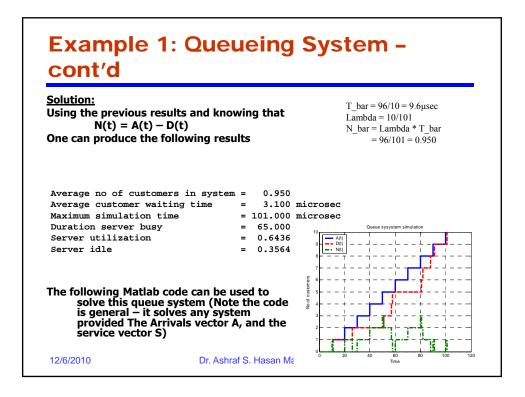


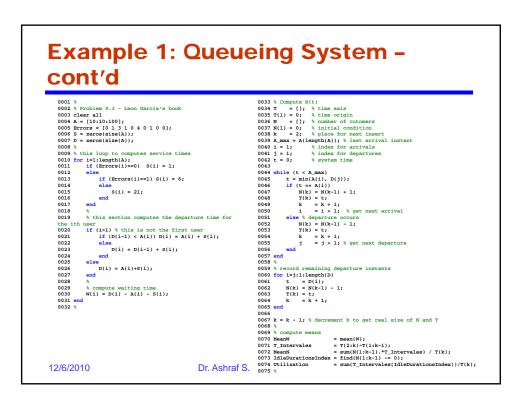
- a) Plot the number of blocks in the decoder as a function of time.
- b) Find the mean number of blocks in the decoder
- c) What percent of the time is the decoder empty?

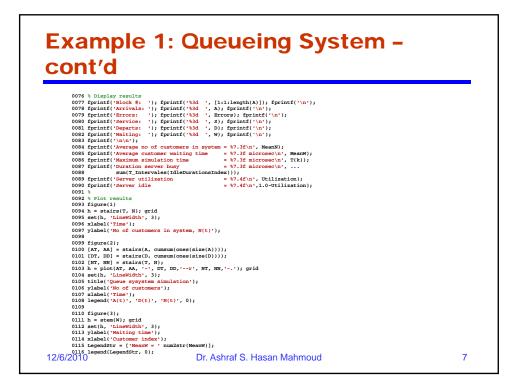
12/6/2010

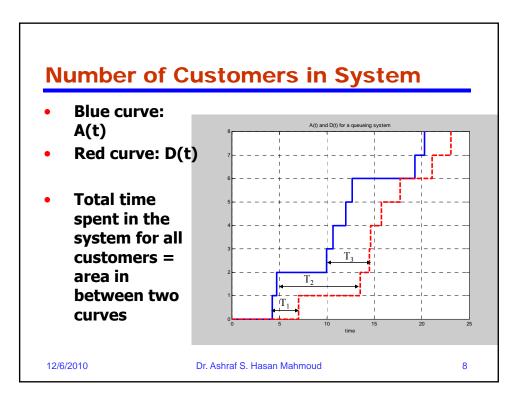
Dr. Ashraf S. Hasan Mahmoud

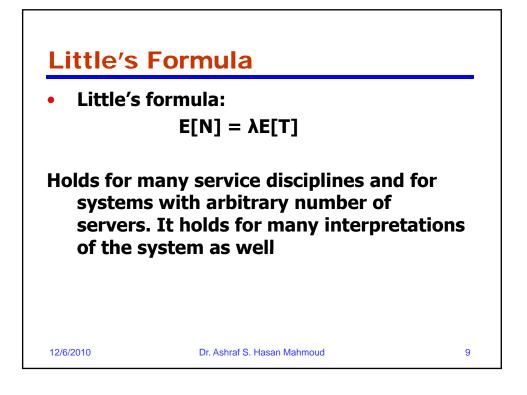
Example 1: Queueing System cont'd Solution: Interarrival time = 10 usec Service time = 1if no errors 1+5 if 1 error 1+20 if more than 1 error The queue parameters (A, D, S, and W) are shown below: Block #: Arrivals: 10 Errors: Service: 26 51 91 101 Departs: Waiting: Total: 12/6/2010 Dr. Ashraf S. Hasan Mahmoud

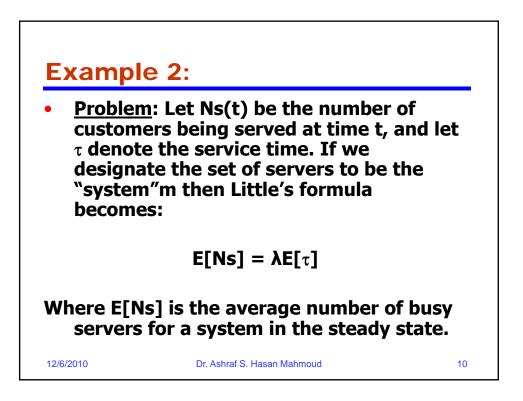


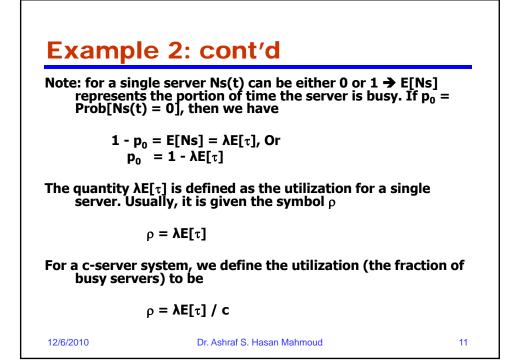


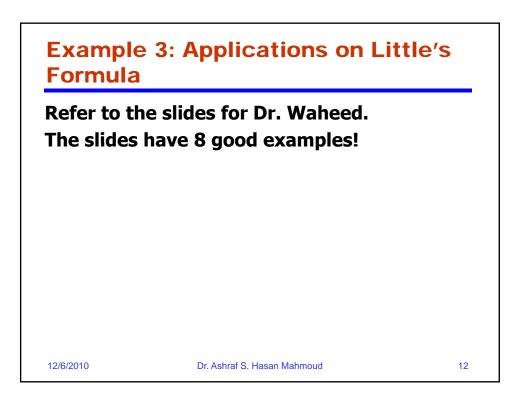


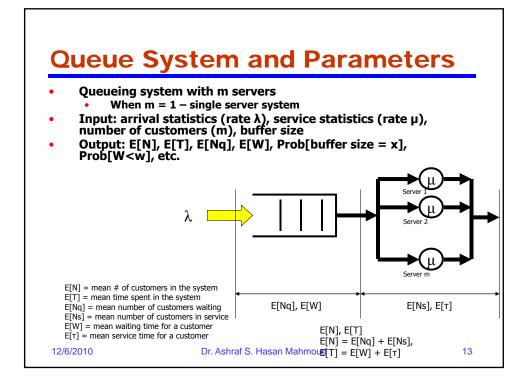


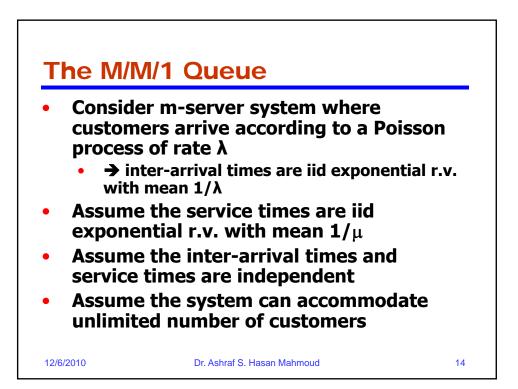


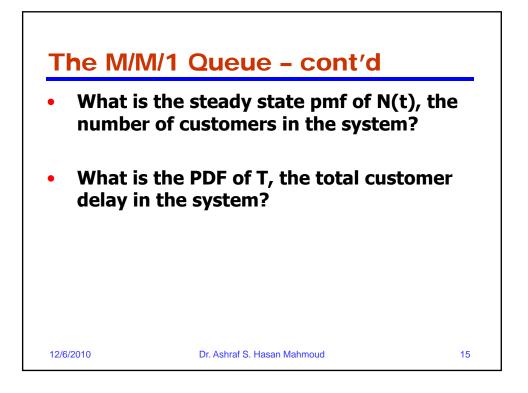


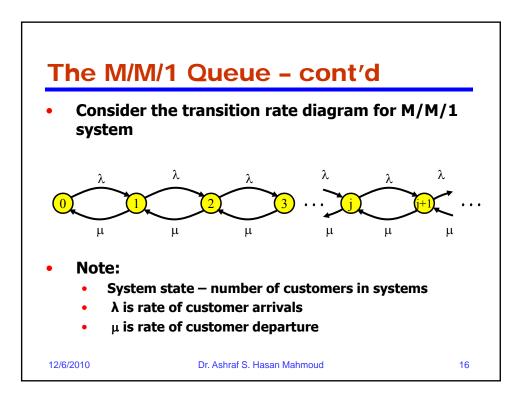


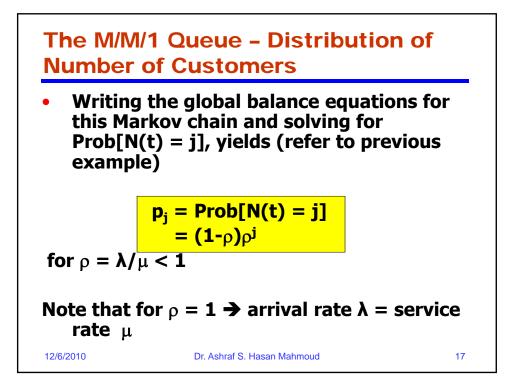


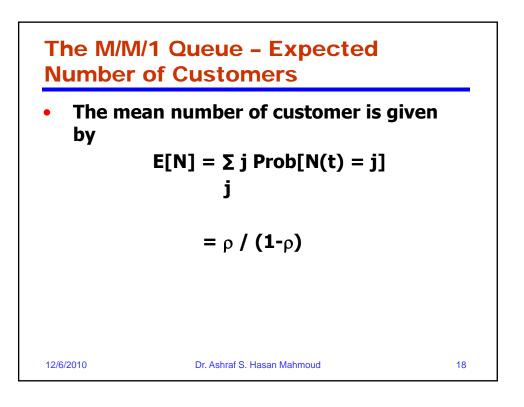


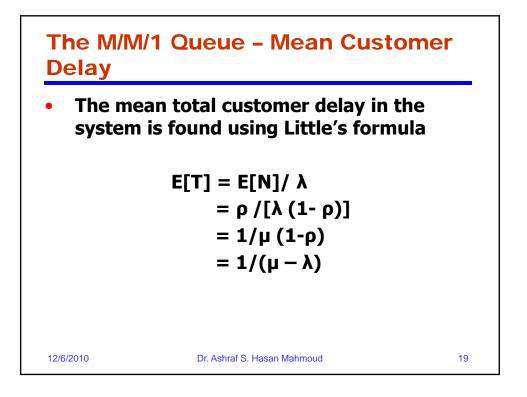


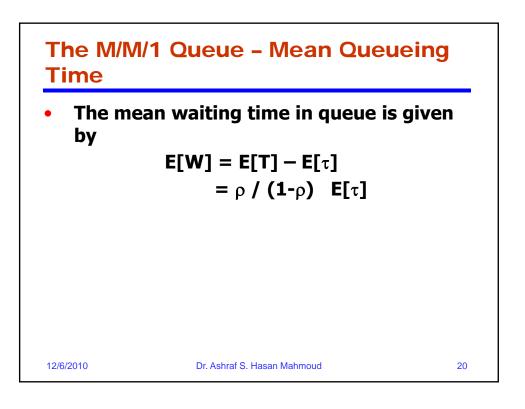


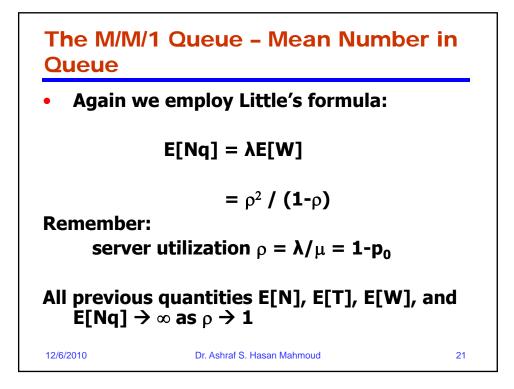


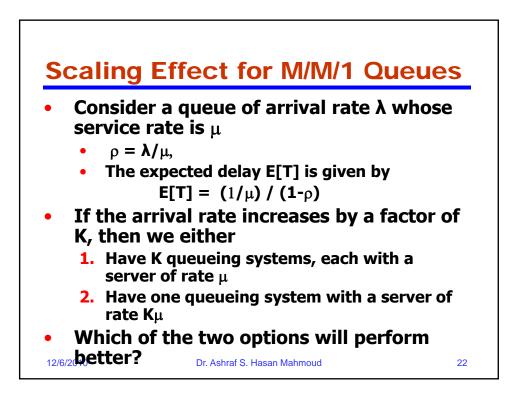


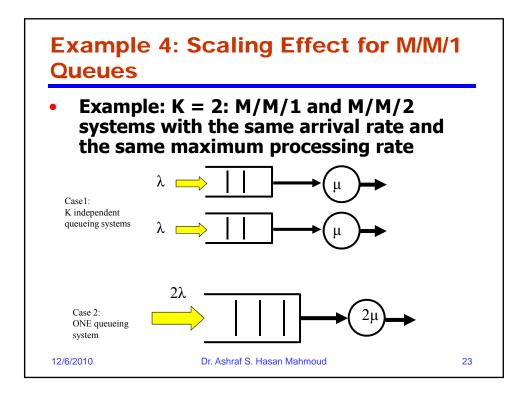


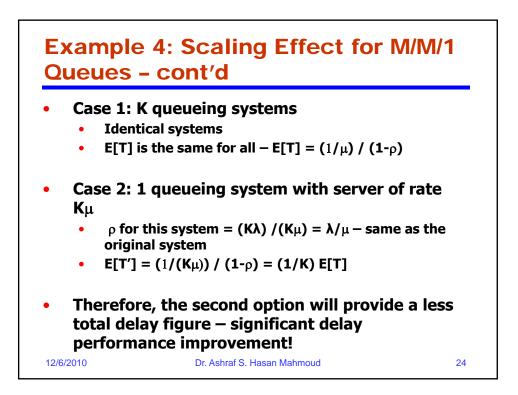


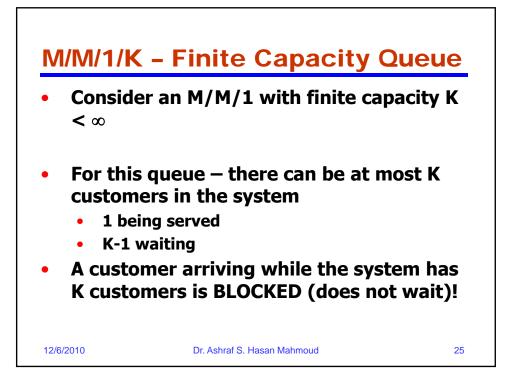


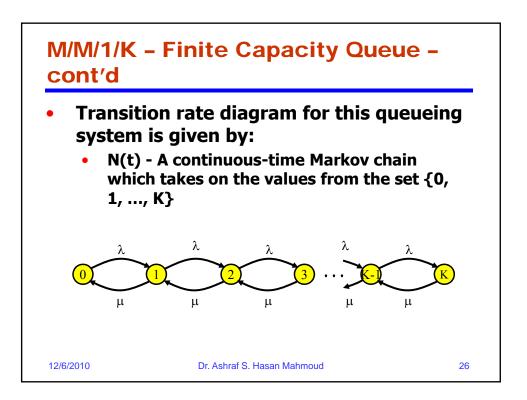


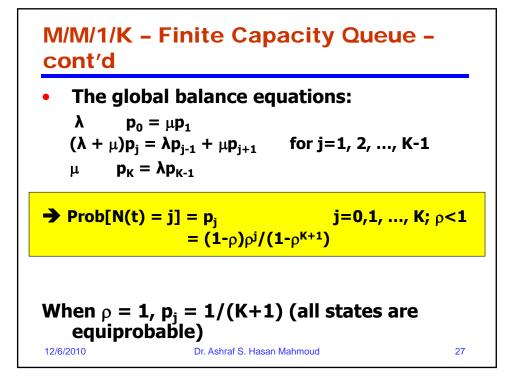


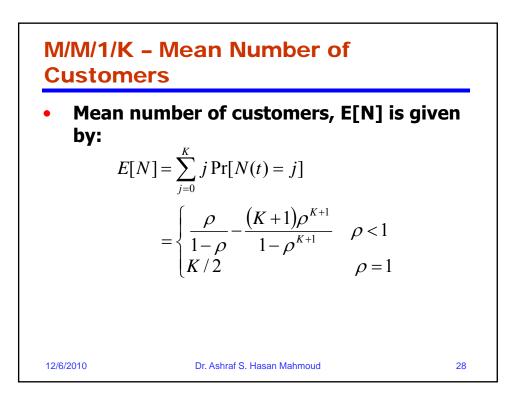


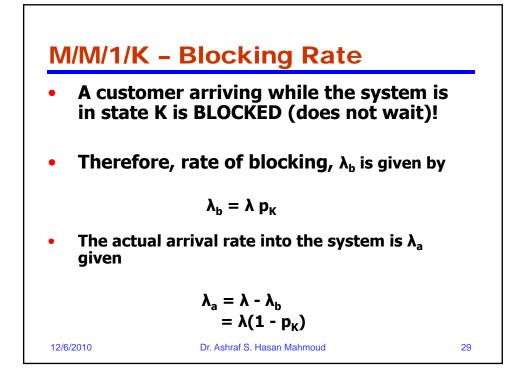


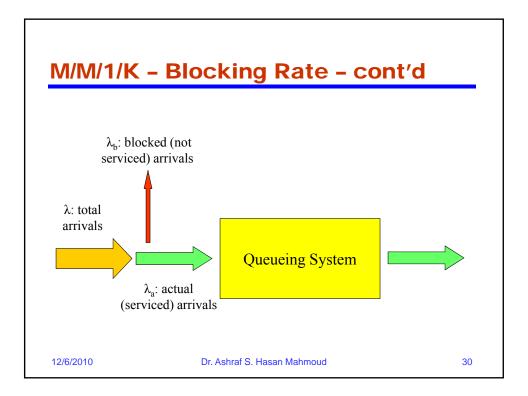


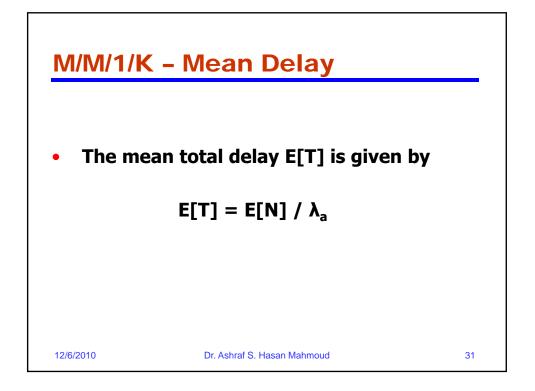


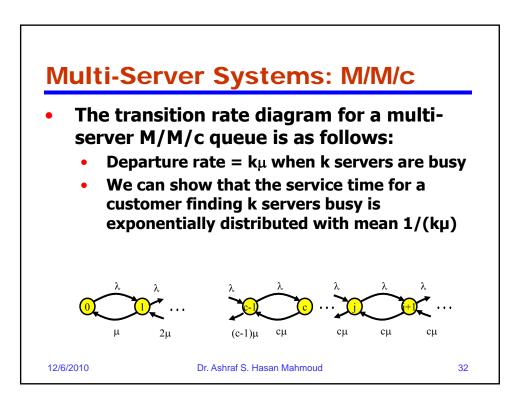


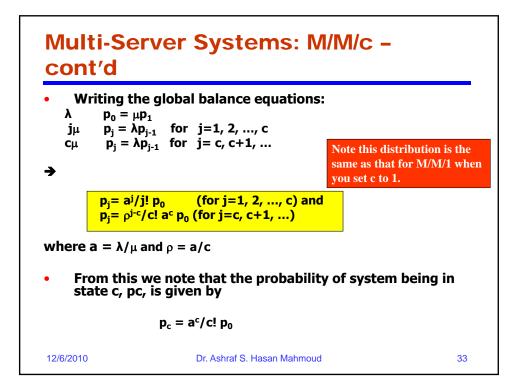


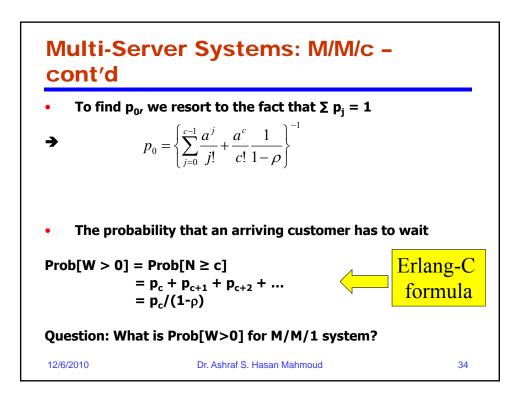












• The mean number of customers in queue (waiting):

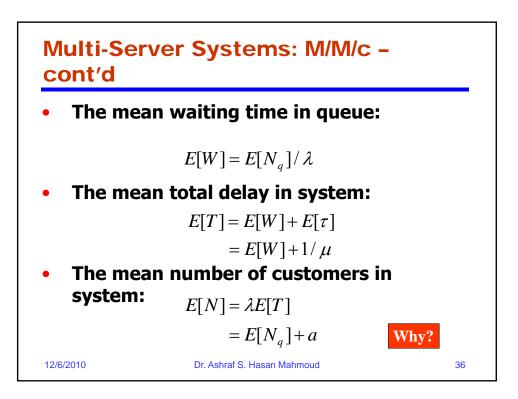
$$E[N_q] = \sum_{j=c}^{\infty} (j-c) \Pr[N(t) = j]$$

$$= \sum_{j=c}^{\infty} (j-c) \rho^{j-c} p_c$$

$$= \frac{\rho}{(1-\rho)^2} p_c$$

$$= \frac{\rho}{1-\rho} \Pr[W > 0]$$

12/6/2010 Dr. Ashraf S. Hasan Mahmoud 35



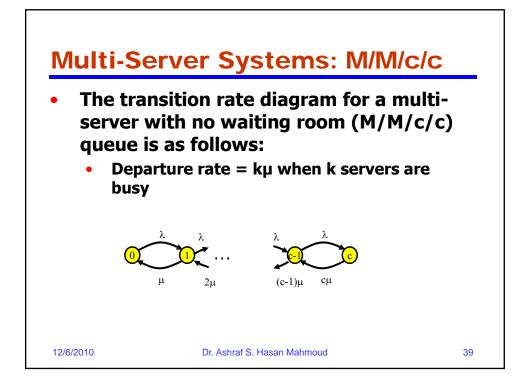
- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system delays (i.e. queues) call requests until a line becomes available.
- Find the probability of having to wait for a line.
- What is the average waiting time for an incoming call?

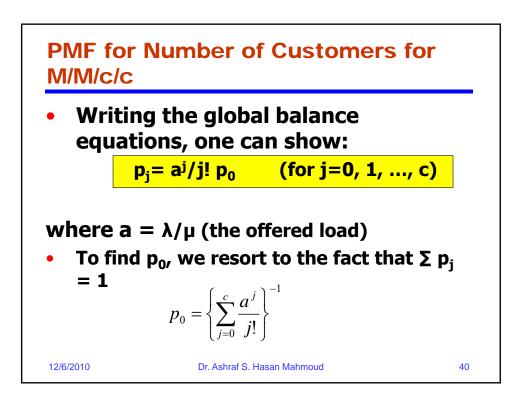
12/6/2010

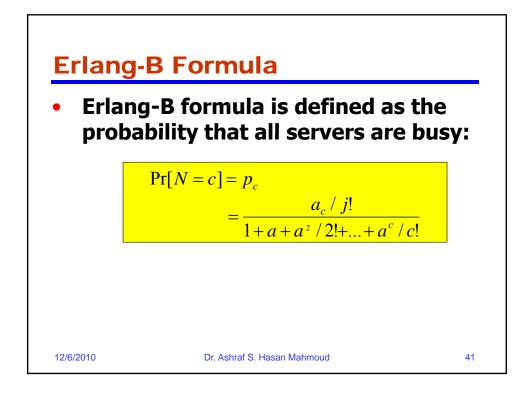
Dr. Ashraf S. Hasan Mahmoud

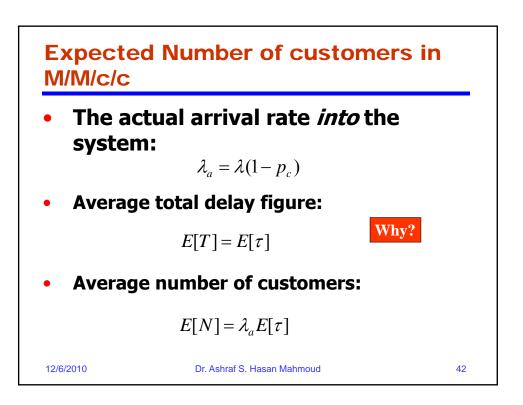
37

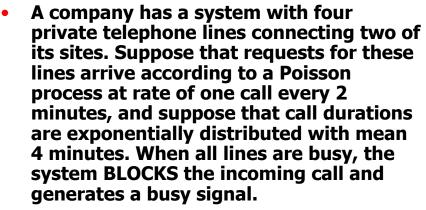
Example 5: cont'd Solution: $\lambda = \frac{1}{2}, 1/\mu = 4, c = 4 \Rightarrow a = \lambda/\mu = 2$ $\rightarrow \rho = a/c = \frac{1}{2}$ $\mathbf{p}_0 = \{\mathbf{1} + \mathbf{2} + \mathbf{2}^2/2! + \mathbf{2}^3/3! + \mathbf{2}^4/4! \ (\mathbf{1}/(\mathbf{1} - \rho))\}^{-1}$ = 3/23 $p_c = a^c/c! p0$ $= 2^4/4! \times 3/23$ (1) $Prob[W > 0] = p_c/(1-\rho)$ $= 2^{4}/4! \times 3/23 \times 1/(1-1/2)$ = 4/23 **≈ 0.17** (2) To find E[W], find E[Nq] ... $E[Nq] = \rho/(1-\rho) * Prob[W>0] = 0.1739$ $E[W] = E[Nq]/\lambda = 0.35 min$ 12/6/2010 Dr. Ashraf S. Hasan Mahmoud 38











• Find the probability of being blocked.

```
12/6/2010
```

Dr. Ashraf S. Hasan Mahmoud

43

