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Reading Assignment #2

> You are required to read the following
Sections:

» 2.7,2.8,2.9 and 2.10 of Gallager’s textbook

» The material is required for subsequent
quizzes and exam
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Channels and Models

Channels
o Digital — accepts/generates bit stream
e Analog — accepts waveforms

Modem: a box that maps digital information
into an analog waveform

Conventionally, o> .

e 5(t) — analog channel input
e r(t) — analog channel output

e Could be distorted, delayed, attenuated version of s(t)
A good modulation/scheme maps the digital
info into into s(t) such that the signal
impairments are minimal!
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Filtering

o The medium works as a filter — it has its own h(t)

e Properties of Linear-Time Invariant Filter:
e If input s(t) yields output s(t), then for any T, input s(t-T) yields s(t-T)
o If s(t) yields r(t), then for any real number a, as(t) yields ar(t), and
o If si(t) yields ri(t) and s2(t) yields r2(t), then s1(t)+s2(t) yields

ri(t)+r2(t)
Transmitted Symbol Received Symbol
()
s(t)

0 T Vtime 0 T 2T time
r'(t) is. the sum of the individual pulses
! r’(t) !

s’(t)+1
0 T 2T 3T 4T 5T 6T 'ﬁme 0 T---2T 3T 4T ST76T 7T time

-1 . Intersymbol-Interference (IST)
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Intersymbol Interference

e One symbol is being received while the tail(s)
of the preceding symbols are not finished
e Alimit on channel bit rate
e Irreducible error floor

e A similar phenomena appears if there are
multiple delayed copies of the same single
transmitted symbol

e Multipath

e A real-problem for high speed transmission over
wireless links — Why?
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Convolution Relation

e BER - a curve that determines the relation between
signal power and bit error rate

e Very important characterization tool for modulation/encoding
techniques

BER 4 BER 4

Higher signal quality
DOES NOT reduce BER

Higher signal quality
leads to reduced BER

D —
Signal Quality Signal Quality
SNR or EBb/ Ny SNR or £/ N,
Typical BER curve with Typical BER curve with
no ISI or multipath ISI or multipath (no equalization)
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Convolution Integral

e For linear Systems:
¢ h(t) is the system’s impulse response —i.e.
r(t)= h(t) when s(t) = 5(t)
e s(t) is system input signal
. O!-(t) is system output signal

r(t) = j s(r)h(t-7)dr (1) r(®)

~ System :
h(t) or H(f)

r(t) = ;zt) +h(t)
R(F)=S(f)H(F)

A good introduction into linear systems is found at
convolution NOT http://www.ece.utexas.edu/~bevans/courses/ee3 13/lectures/04_Convolution/lecture4.pdf

multiplication
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Example 1: Convolution

o If h(t) = aet fort> 0
=0 otherwise
wherea = 2/T
A) Compute analytically and plot r(t) for s(t) = O((t-T/2)/T)

B) Use Matlab to compute the required convolution — Plot the results and list
your code

Hint: N(t/T) is the square pulse function of unit height, width equal to T, and
centered around 0.

Solution:
s(t) h(t) r(t)
* I
t t t
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Revision — Fourier Transform

e A “transformation” between the time
domain and the frequency domain

Time (t) Frequency (f)
s(t) €> S(f)

S( f ) = JS(t)e_jZﬂﬁdt ‘FourierTransform ‘

S(t) = I S( f )e+j2ﬂftdf ‘ Inverse Fourier Transform ‘
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Revision - Fourier Transform (2)

e F.T. can be used to find the BANDWIDTH
of a signal or system
e Bandwidth - system: range of frequencies
passed (perhaps scaled) by system
 Bandwidth — signal: range of (+ve) frequencies
contained in the signal

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 11

Revision - Fourier Transform (3)

e Remember for periodic signals (i.e. s(t) =
s(t+T) where T is the period) = Fourier

Series expansion:
s(t) = % + Z [An cos(2zmf t)+ B, sin(ZﬂnfOt)]
n=1

A, = %}s(t)dt B, = % ! s(t)sin(2znf t)dt

0
T

A = % [ s(t)cos2mf byt

0
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fy is the fundamental frequency
and is equal to 1/T




Remember:
sinc(X) = sin(wx)/(wx)

sin(zfT

st)=11(t/T) S(f)=AT

S(H)=AT forf=0
10/10/2010 =0 forf=n/T;n=+/-12, ... 13

Revision — Fourier Transform (4-b)

 Famous pairs — sinc pulse (A =T = 1)

¢ The plots for the s(t) and the corresponding S(f)
are the blue curves on the next slide

* The sinc pulse is a special case of the raised
cosine pulse!

¢ NoteT=1/W
sin (7ZWt) A
s(t)y=A——~ _
(W) S(f) VVII(fAN)

S(f) = AIW for [f] <= W/2
10/10/2010 =0 forl|f|>W/2 pud 14




Revision - Fourier Transform (5)

e Famous pairs — Raised Cosine pulse (A =T =1),asa
function of o s of symmetry
raised cosine pulse - A= T= 1, alpha = 0.5 _ Nea sil

- —

2T
A
S(t):@COS(Z”MZ) sin(274/T) S(f)= Acosz(l(\f\—l+aj) l—0:<\f\<7+oz
T 1-(dat) 2a/T 4l T T
0 \f\>i+a
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Revision - Fourier Transform (6)

e Raised Cosine Pulse: 0<a<1/T

e Notethats(t) =0fort=nT/2wheren=+/-1,2,
¢ Very good for forming pulses
e ZERO ISI for ideal situation
e BWfors(t)=1/T+ «
e Maximum=2X1/T (fora=1/T)
e  Minimum = 1/T (for a = 0)
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Revision - Fourier Transform (7)

e Matlab code: Raised Cosine Pulse

clear all % clear all variables
A=1;
T=1;

alphas = [0 0.5 1];

for k = 1:length(alphas)
alpha = alphas(k);

t = -2:0.01:2; % define the time axis
s_t(k,:) = ((2*A)/T) * (cos(2*pi*alpha*t)./ ..

(1-(4*alpha*t)."2)) .*(sin(*pi*t/T)./ ..

@*pi*t/T)); % define s(t)

f = -2.5:0.05:2.5; % define the freq axis

S_f(k,:) = zeros(size(f));

i = find(abs(f) <= (1/T-alpha));

S_f(k,i) = A;

i = find((abs(f) <= (1/T+alpha)) & ..
(abs(f) > (1/T-alpha)));

S_f(k,i) = A*(cos(pi/(4*alpha)* ..
(abs(F(i))-1/T+alpha))).”2;% define S(F)

figure(1);

plot(t, s_t); % plot s(t)

title("raised cosine pulse - A =T = 1%);
xlabel("time - t7);

ylabel ("s(t)");

legend("alpha = 0", "alpha = 0.5", "alpha = 1.0%);
axis([-2 2 -0.5 2.2]);

grid

figure(2);

plot(f, S_f); % plot S(F)

title("Raised Cosine function - A =T = 17);
xlabel (" frequency - f7);

ylabel ("S()");

legend("alpha = 0", "alpha = 0.5", "alpha = 1.0%);
axis([-2.5 2.5 0 1.2]);

grid
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Frequency Response

e H(f) is known as the frequency response
of the channel or system

e h(t) is known as the impulse response of

the channel or system

h(t) = T o(r)h(t—7r)dr

h(t) = 5(t) *h(t)
H(f)=A(f)H(f)

This means A(f) =1 Vf

o(t) Svst
. ystem -

h(t)
h(t) or H(f)
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Example 2: Frequency Response

A) For s(t) = N(t/T), compute S(f) — Use Matlab to plot | S(f) |

B) For h(t) = ae®t for t > 0 and equal to 0 otherwise, compute H(f) —
Use Matlab to plot |H(f)|

Hint: (A) is solved on slide 13 — Part (B)’s answer is in the textbook
equation (2.3). For these two parts you have to be able to
derive the results.

Solution:
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Sampling Theorem

e Theorem: if a waveform s(t) is low-pass
limited to frequencies at most W (i.e.
S(f) = 0 for |f] > W], then s(t) is
completely determined by its values
each 1/(2W) seconds

e One can write

() — i S(z\iN j sin[ZﬂW (t—i/(ZW))]

272W (t—i/(2w))

i=—o0
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More on Sinc and Raised Cosine
Pulses

e Consider the sinc pulse and the raised cosine
pulse shown on slides 14 and 15

e Both of these s(t)s (the ideal sinc function and
the raised cosine function) satisfies Nyquist
criterion —i.e. zero ISI

o i.e.s(i/(2W)) =0V i#0

* However, raised cosine is a more “practical

pulse” — can be easily generated in the lab!

e Figure 2.6 (Gallager) — shows that s(t) is equal
to weighted shifted copies of the sinc function —
graphical representation of the sampling
theorem
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More on Sinc and Raised Cosine
Pulses - cont’d

Figure 2.6 Sampling thcorem, showing a function s(t) that is low-pass limited to
frequencies at most W, The function is represented as a superposition of (sinz)/z
functions. For each sample, there is-one such function, centered at the sample and with
a scale factor equal to the sample value,

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 22
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Bandpass Channels

e Definition: ?

. Thismeans H(f)= j h(t)dt =0

e The impulse response for these channels
fluctuates around 0 —i.e. +ve area = -ve area

e This phenomenon is called “ringing’

TR
Figure 2.8 Tmpulse response h(#) for which H(f) = 0 for f = 0. Note that the area
over which h{t) is posiiive is equal to that over which it is negaiive.
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Bandpass Channels - cont’d

* NRZ is not appropriate for bandpass channels

e Manchester encoding is a better option

e Another way of looking at this: NRZ has a DC
component which DOES NOT pass through the
bandpass channel

0 I o II Figure 2.9 Manchester coding. A binary
| i 1 15 mapped info a positive pulse followed

!

i

! X

| by a negative pulse, and a binary 0 is

i = mapped into a negative pulse followed by a
! positive pulse. Note the ransition in the

. middle of each signal interval.

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 24
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Signals and Systems

e System bandwidth is determined by examining
the Fourier transfer of the system function h(t),
H(f)

e Example (transmission) systems:

[HO)| [HO)| [HO)I
| |
W f W f A W, f
Low Pass High Pass Bandpass
Filter Filter Filter
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Baseband vs. Bandband

e Baseband Signal:
e Spectrum not centered around non zero frequency
¢ May have a DC component
e Bandpass Signal:
¢ Does not have a DC component
¢ Finite bandwidth around or at f,

e f, is the carrier frequency!

‘ Bandpass Signal ‘ f—ﬂ
S{)

‘ Baseband Signal ‘ %5,,,,,01/__'_1 l J__..._.\;S(f_m

—fy 0 fo f

Figure 2.10  Amplitude modulation, The frequency characteristic of the waveform s(t)
is shifted up and down by fp in frequency.
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Modulation

o Is used to shift the frequency content of a
baseband signal
e Basis for AM modulation

e Basis for Frequency Division Multiplexing
(FDM)
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Analog Communications

Amplitude Modulation (AM)

e Consider the signal s(t),
S(t) = s(t) X cos(2xf,t)
e The spectrum for s_,(t) is given by

S(F) = 2 X {S(f-f,) + S(f+f,)}

S(f) b A 2 Sm(f)
- e
multiplied with carrier f
B/2 0 B/2 f B2 f, WBI2g feB/2 f, fB/2 f
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Analog Communications

Modulation — Txer/Rxer

e At the receiver side:
Sq(t) = s,,,(t) X cos(2rf,t)

H_J

desired term

s() xS

s(t) X cos(2xnf,t) X cos(2nf,t)
12 s(t) + /2 s(t) X cos(2n2Xf,t)

~

undesired term — signal centered around 2f,
filtered out using the LPF

ol 5y |

‘What happens if you
multiply by sin(2xf;t)?
101012010 €08(2nfyt) Dr. Ashraf S. Hasan Mahmoud €0S(27tft) 29
(2afq00
Quadrature o
Ampl itUde 5 | Puke i)
B _ shape Modulated
Modulation (QAM) b, Bt wavefom
T its twi — ':::: ,_(t.)_ s,(H)cos(2nfyt) + sy(t)sin(2nfyt)
* Transmits twice as 2 s
many bits as AM ?
o At receiver — sinl2nfy )
respective
multiplication with (a} Modulstor

the carriers is
performed — LPF is
used to obtain the

original signals s (t)cos(2nfyt) +
(scaled by V2) s(Dsin(2rt,b)

+ Adaptive equalizer —
compensate for
variation in the
channel

¢ What is the role of
the pulse shape filter
(in the modulator)?

10/10/2010

5,72
cos| 2nfyt] ]

| Carrier rec. ] | Timirlnrm | Adaptive Samples |

10 bits
sinf{2migt} I .
| s,(1)/2
- -

{b) Demodulator

Figure 211  Quad iplitud: Julati (o) Eoch sample period, & bits enter
the modulator, are converted into ¢ plitudes, are then fulated by sine and
cosine functions, respectively, and are then added. (b) The reverse vperations wke pluce
at the demodulator.

Dr. Ashraf S. Hasan Mahmoud 30
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Quadrature Amplitude Modulation
(QAM) - cont’d

* How to map the k bits into samples s1 and s2?

e k = 1, i.e. one branch of modulator is working

« bit 1 is mapped to +1 and bit 0 is mapped to -
1 - Binary ASK

e

cos{2afyt)

< > 51 | Pulse
l "] shape Modulated
k=2 & bits Bits to waveform
w31 samples
| Pulse
s shape
sin{2#fg )
10/10/2010 Dr. Ashraf S. Hasan Mahmoudyg) modulator 31

Signal Constellation

ek = 2, bits b1b2 = sl is either +1 or -1
depending on b1, also s2 is either +1 or -1
depending on b2 & QAM

* k bits = 2k %
combinations ¢ | R P p——
- ne amplitude:
- map_ped """ . T a)PSK — 25=4
into different & | % L b) PSK — 2= 8
a mpl itude Two amplitudes:
= = a b} c) ASK/PSK —2k=8
paII‘S - Slg_nal d) QAM72k=16
constellation J L. .
. . . . * * Figare 2.12  Signal consteliations
: —— T — 1 QM Pt (4 s . ey i o
Why (C) is a better modulation . . . . * . & quadraere amplitode sample. Pans (b)
and {c) cach map thee binary digits. and
scheme compared to (b)? . . . . part (:lj)'}nitlps“r:purl bitr;lryu:i‘i‘zls.u!::i:l:al
10/10/2010 LI,‘CK Ashraf S. Hasan Mahm(‘,;L‘Jd &m (b} als can b reganded as3Rasc-shill
§ ying,
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Bandwidth and Capacity

* For voice circuits (telephone lines)
o W = 2400 Hz

e Capacity:
e k=29 R =2x2400 = 4800 b/s
e k=4 R =4x2400 = 9600 b/s

e Very interesting — why not use k as large
as possible (i.e. higher order of
(modulation) levels)?

e The answer: BER

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 33

Digital Communications

e Capacity of a channel of bandwidth W, in
the presence of noise is given by

Shannon Capacity

C = Blog,(1 + SNR)

where SNR = S / (NO W) is the ratio of signal
power to noise power — a measure of the
signal quality

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 34
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Digital Communications

Example 3: Shannon Capacity

e Consider a GSM system with W = 200 kHz. If SNR
is equal to 15 dB, find the channel capacity?

e Solution:
SNR = 15 dB = 10~(15/10) = 31,6
C = 200X103 X log,(1+31.6)
= 1005.6 kb/s

Note GSM operates at 273 kb/s which is ~27% of
maximum capacity at SNR = 30 dB.
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Digital Communications

Shannon Limit

e Shannon asserts that with the use of error-
correction coding, ANY rate less than C CAN BE
ACHIEVED with ARBITRARY small error
probability

e Very powerful statement

e Shannon does not specify how to achieve this
capacity reliably — communications research!!

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 36
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Frequency Division Multiplexing
(FDM)

X(t) = s4(t) X cos(2nf ,t) + S,(t) X cos(2nf,t) +

50 s4(t) X cos(2nfqt)
- - X(t) is transmitted on the media
Shift with -The three spectra are not overlapping if f_,,
BJ2 0 ByJ2f carrier fey fcz_, a_md f.gare chose_n appropriately
t t -Original composite signals s,(t), s,(t), and s(t)
S:NT can be recovered using bandpass filters with
- appropriate bandwidths centered at f_,,
feo, and f g, respectively.
> ShifF wifth
-B,/2 0 B,/2 f carrier T,
;/(f) 2/ X( f)‘
3
— | /-|\ | A ,
B2 0 By2 f oot 0 fa fo fs f
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Frequency-Division Multiplexing
- Transmitter

° m|(t) ana|09 or myf) 3 Subearrier modulator i)

digital fi
information
« Modulated with ~ ——» e S
subcarrier f; & - i f
si(t) o f
Ly composte
modulating signal -
e my(t) modulated (a) Transmitter
by f. 2The M|
overall FDM

signal s(t) m m m fr

* Think of the bandwidth B divided
amongst the n users — each gets B/n Hz | | |
« All users can be active at the same B

time!

o i " -
IRegifies ) e s Dr. Ashraf S. Hasan Mahmoud Spectrum fu“c“"“ of composite

baseband modulating signal my(t)
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Frequency-Division Multiplexing
- Receiver

* my(t) is retrieved by demodulating the FDM signal s(t)
using carrier f,

* my(t) is passed through a parallel bank of bandpass filters
— centered around f;

* The output of the it filter is the ith signal s(t)
* my(t) is retrieved by demodulating s,(t) using subcarrier f;

(1)

[ 1 sl 1
—}IBandpas& filter, f; I—)'I Demodulator, f; I_*

s4ii iy}
—)l Bandpass filter, f, I—)l Demodulator, f, I—)
siry Main mylr)
[ Receiver # .
[ % | ;
FDM signal Composite baseband 5 (0) m, ()
ot n n
signal —Plllandpass filter, f;, |—)| Demodulator, f,, |—)
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Frequency-Division Multiplexing
— Example 5: Cable TV - cont’d

e Cable has BW ~ 500 MHz = 10s of TV channels can be carried simultaneously
using FDM

e Table: Cable Television Channel Frequency Allocation (partial): 61 channels
occupying bandwidth up to 450 MHz

Channel No Band (MHz) Channel No Band (MHz) Channel No Band (MHz)
2 54-60 22 168-174 42 330-336

3 60-66 23 216222 43 336-342
4 66-72 24 222-234 44 342-348
5 76-82
6 82-88
7 174-180
8 180-186
9 186-192

Other examples of FDM: 0 102-108

¢ AM/FM Radio Stations 11 198-204

e TV broadcasting 12 204-210
13 210-216
FM 88-108
14 120-126
15 126-132
16

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 40

20



Other Examples of FDM

e AM/FM Radio Stations
e TV broadcasting

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 41

Synchronous Time-Division
Multiplexing - Transmitter

« Digital sources my(t) —
usually buffered

e A scanner samples
sources in a cyclic
manner to form a
frame

e mJ(t) is the TDM
stream or frame =
frame structure is (@) Transmitter
fixed . .

o s e [1] - [ - [
modem =» resulting [
analog signal is s(t)

Time slot: may be
empty or occupied

(b) TDM Frames
Requires ONE modem that uses the entire

bandwidth B Hz!!

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 42
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Synchronous Time-Division
Multiplexing - Receiver

* TDM signal s(t) is demodulated = result is TDM digital
frame m(t)

e m(t) is then scanned into n parallel buffers;
* The it buffer correspond to the original m,(t) digital

information
ml(t)
> Buffer
m,(t)
s > Buffer
/‘ Modem [
modultated TDM stream .
TDM siream
i, (t)
e Buffer
10/10/2010 Dr. Ashraf S. Hasan Mahmoud 43

TDM - Example: Digital Carrier
Systems

¢ Voice call is PCM 125

coded = 8 ) ) . )

b/sample - ,4_ 518 psec _p §4—l‘hanmll I
d \?;;:%Cpacﬁwlqklg;t%id — Channel 1 » Channel 2 PP

Kb/s 1[2]3]4]s]e[7][8]02]3]4]5]6]7]8] + « » [1]2]3]4]s]e]7]8
e Group 24 digitized )

voice calls into one * 193 bits >

frame as shown in
figure »DS-1: 24
DS_OS Notes:
¢ Note channel 1 has 1. The first bit is a framing bit, used for synchronization.
a digltlzed Sample 2, Voice channels:

. #8=bit PCM used on five of six frames,
from 1st call; it POM used on every sixth frame: bit 8 of cach chamnel is a slgnaling bi
+7-bit PCM used on every sixth frame; bit ¥ of each channel is a signaling bit.
channel 2 has a 3. Data channels:
dlgltlzed Samp|e +Channel 24 is used for signaling only in some schemes.

from 2nd Ca”s; etc. 'E.E‘.r. 1-7 used !j::r 6k ce .
*Bits 2-7 used for Y.6, 4.8, and 2.4 kbps service.

Figure 8,9 DS-1 Transmission Format
10/10/2010 Dr. Ashraf S. Hasan Mahmoud 44
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TDM - Example 8: Digital
Carrier Systems (2)

- TDM
24 DS-
6.2

DS-0
—n
312 Mb&:s
— DS-1 96 DS-
24 . g
44.376 Mbps

—p{T DS-2 672 DS-

— D
—pM
—>

10/10/2010 Dr. Ashraf S. Hasan Mahmoud
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Other Channel Impairments

e Main impairment — Thermal noise aka additive white
Gaussian noise (AWGN)

e Other impairments
e Phase jitter and frequency offsets
¢ Nonlinear amplification (delay distortion)

Impulse noise (e.g. lightening)

Crosstalk/interference

e Errors causes by AWGN tend to be random and
disbursed

e Errors caused by the other types of noises tend
to occur in BURSTS of arbitrary length

e Error detection and retransmission is performed by
the data link layer)

10/10/2010 Dr. Ashraf S. Hasan Mahmoud
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Digital Channels

e T1/SONET hierarchy

e ISND and Broadband ISDN

10/10/2010 Dr. Ashraf S. Hasan Mahmoud a7

Propagation Media

Wired Media:

e Twisted pair

e Cable

e Optical fiber
Wireless Media — microwave links, satellite, etc.
Signal attenuation — loss of power due to media
resistance

e Attenuation (dB) inversely proportional to distance

e Trade-off: repeater (to extend distance) and Bit rate
Refer to textbook for characteristics of TP, coaxial,
optical, radio frequency communications

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 48
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Error Detection

e Error control over links involves:
e Error detection
e Error correction
e ARQ
e FEC
e Remember — DLC responsibility is to provide an
error-free reliable packet stream to the next
layer up.
e Error detection depends on PARITY CHECK

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 49

Single Parity Checks

One bit added to the “data” string - c bit
e 1 if the number of 1's in the data string is odd
e 0 if the number of 1's in the data string is even

c is the sum, modulo 2, of the data string bits

Example:
e ASCII characters: 7 bits (code) + 1 parity bit

Sy S, S3 S4 Ss Sg S; c
[t JofJifJsJofoJo]]
Why type of errors does this scheme detect?

e All odd number of errors — Does that depend on the length of
the “data” string?

e All even number of errors are not detected

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 50
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How Appropriate Single Parity
Checks?

e What “type” of errors are expected in
communication generally?

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 51

VRC/LRC Parity Check

e Extension of simple parity: Vertical Redundancy
Check (VRC) and Longitudinal Redundancy
Check (LRC)

Char 1 1 X 0 0 1 1 0 0 1 /
Char 2 0 1 1 1 0 1 0 0
Char 3 1 1 0 0 1 1 0 0
Char 4 1 0 0 0 1 0 0 0
Char 5 0 1 0 0 1 1 1 0
Checing 4y 1 0 0o 1 1 1
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VRC/LRC Parity Check (2)

Can detect all odd errors — same as the simple
parity check

Can detect any combination of even error in
characters that DO NOT result in even number
of errors in a column

Excess Redundancy: 13/(35+13) = 27%

There could be undetected errors — How?
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Linear Codes

e Code: the mathematical transformation to generate the
code word (data + parity check)
e K data bits + L parity bits = Frame

e 2K possible data strings = 2K possible code words
(each of length K + L bit)

_—m s == |
SO - -

Figure 2.15 Example of a parity check code. Code words are listed on the left, and
the rule for generating the parity checks is given on the nght.
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Linear Codes (2)

o Effectiveness of the code:

e Minimum distance of the code — def = smallest number of
errors that can convert one code word to another
e E.g. for single bit parity checks — min distance = 2, for horizontal and
vertical parity checks - min distance = 4
e The burst detecting capability — def = smallest integer B such
that a code can detect all burst of length B or less

e E.g. for single bit parity checks — burst length = 1, for horizontal and
vertical parity checks — burst length = 1 + length of row (assuming rows
are transmitted one after the other)

¢ Probability of an undetected error ~ 2+ (How? See textbook
page 61)

¢ Typically, longer parity checks = lower undetected error probability
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Linear Codes - Error Correction

e If a code a minimum distance of d - then the code can
be used to correct any combination of fewer than d/2
error (textbook problem 2.10).
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Error Detection

1 2 3 4 K-2K-1K
101010001010...001
i

Prob [1% bit in crror] = BER @
Prob [1% bit correct] = 1-BER )

y :

Prob [2" bit in error] = BER
Prob [2" bit correct] = 1-BER

Prob [K™ bit in error] = BER
Prob [K™ bit correct] = 1-BER

Prob [ n bits in error in frame] = (
n

K](BER)" (1-BER)“™"
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Error Detection - cont’'d

e Hence, for a frame of K bits,

Prob [frame is correct] = Prob [ 0 bits in error ]
= (1-BER)X

Prob [frame is erroneous] = Prob[ 1 OR MORE bits in error]
= 1 - Prob[ 0 bits in error]
=1-(1-BER)X

Or

Prob [frame is erroneous] = Prob [1 bit in error] +
Prob[2 bits in error] + ... +
Prob[K bits in error]
= 1 - Prob[ 0 bits in error]
=1-(1-BER)X
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Error Detection (2)

E,
f

peepupapuapapnpups
Receiver

E' = error detecting codes
= error detecting code function

A
' = f(Data) ompare
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Cyclic Redundancy Check (CRC)

K-bit block of data (S) |::> L-bit file check sequence (C))

Processing: compute FCS (for some
given an L+1 bit polynomial g)

K-bit block of data L-bit file check sequence

K+L bit frame to be transmitted = x
Modulo 2 arithmetic (like XOR) is used to
generate the FCS:
e 0£0=0;1+£0=1;0x1=1;1+£1=0
e 1X0=0;0X1=0;1x1=1

10/10/2010 Dr. Ashraf S. Hasan Mahmoud 60

30



CRC - Mapping Binary Bits into
Polynomials

e Consider the following K-bit word or frame and
its polynomial equivalent:

Sk-1 Sk2 - S2 S1 Sg P Sk DXL+ 5 ,DX2 + .. +5,D1 + 5
where s; (K-1< i <0) is either 1 or 0

e Examplel: an 8 bit word s = 11011001 is
represented as s(D) = D’+D%+D4+D3+1
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CRC - Mapping Binary Bits into
Polynomials - cont’'d

e Example2: What is D*M(D) equal to?

D*M(D) = DYD’+D%+D*+D3+1) = D!1+D0+D8+D’+D?,
the equivalent bit pattern is 110110010000 (i.e. four
zeros added to the left of the original M pattern)

e Example3: What is D*M(D) + (D3+D+1)?

D*M(D) + (D3+D+1) = D!1+D1°+D8+D’+D*+ D3+D+1,
the equivalent bit pattern is 110110011011 (i.e. pattern
1011 = D3+D+1 added to the left of the original M
pattern)
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CRC Calculation

e X = (K+L)-bit frame to be tx-ed, L < K

e s = K-bit message, the first K bits of frame T

e ¢ = L-bit FCS, the last L bits of frame T

e g = pattern of L+1 bits (a predetermined divisor)
g(D)=D-+g, Dt + ... +g,D+1

T = (K+L)-bit frame I s = K-bit message ¢ = L-bit FCS

-x(D) is the polynomial (of K+L-1% degree or less) representation of frame x
-s(D) is the polynomial (of K-1%t degree or less) representation of message s
- ¢(D) is the polynomial (of L-15t degree or less) representation of FCS

- g(D) is the polynomial (of Lt degree) representation of the divisor P

-x(D) = D' s(D) + ¢(D) — refer to previous example
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CRC Calculation (2)

¢ Design: frame x such that it divides the pattern g with no
remainder?

e Solution: Since the first component of X, s, is the data part, it is
required to find c (or the FCS) such that x divides g with no
remainder

Using the polynomial equivalent:
x(D) = Dts(D) + c(D)
One can show that ¢(x) = remainder of [D's(D) 1/ g(D)

i.e if D's(D) / g(x) is equal to z(D) + r(D)/g(D), then ¢(D) is set to
be equal to r(X).

Note that:

Polynomial of degree K+L

= polynomial of degree K + remainder polynomial of degree L-1
Polynomial of degree L
10/10/2010 Dr. Ashraf S. Hasan Mahmoud
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CRC Calculation - Procedure

1. Shift pattern s by L bits to the lift

2. Divide the new pattern Dls(D) by the
pattern g

3. The remainder of the division R (L bits) is
set to be the FCS or ¢(D)

4. The desired frame x is Dts(D) plus the
c(D)
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CRC Calculation Example

Message s = 1010001101 (10 bits) 2 k = 10
s(D) = D° + D7 + D3 + D2 + 1 9 D5s(D) = D4 + D12 + D8 + D7 + DS
Pattern P = 110101 (6 bits_roteoranaivbitsaress) PL+1=6DL =5
g(D)=D5+D*+D2+1
Find the frame T to be transmitted?

Solution:
D? +D8 +DS +D* +D2  +D
D5 +D* +D? +1 |D" +D12 +D8  +D7 +D5
D¥  +D13 +DU +D°
D3 +D22 4D +D? +D8 +D7 +D5
DB +D12 +D10 +D8
Dt +D10 +X? +D7 +D5
D!t +D10 +X8 +DS

« FCS = R(D) = D3 + D2+ D

g +D8 +DS +D*
(or 0D*+D3+D2+D) —
= cis equal to 01110 <7 4D +D* 2
* Frame x = 101000110101110 E: E . 0 .

¢ As an exercise, verify that x(D)
divided by g(D) has no remainder

+D3 +D? +D
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CRC Calculation - cont’d

e Messages = 1010001101 (10 bits)
= s(D) =D°+D7+D3+D2+1
= = D5s(D) = D14 + D12 + D8 + D7 + D5
e Patterng =110101
>g(D)=D5+D*+D2+1
e ¢(D)=D3*+D2+D
e z(D) = D°+D8+D%+D*+D2+D
e x(X) = D5s(D) + c(D)
= D14 + D12 + D8 + D7 + D5 + D3 + D2+ D,
or
T=101000110101110

« Exercise: Verify that z(D) g(D) + c(D) = D> s(D)
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For g(D), g, must be 1 and g, must be 1

CRC Calculation - Shift Register Circuit

¢ The long division can be implemented in
hardware by the feedback shift register circuit.

e Operations:

e Putswitch on
position (1)

. Initially first L bits
of s(D) are loaded
(sK-1 the MSB is G)
at the right)

e Kshifts — all data
is pushed in

*  Move switch to ' E
position (2)

° Read the CRC - Figure 2.16  Shifi register circuit for dividing polynomials and finding the remainder.

- = Each rectangle indicates a storage ccll for a single bit and the preceding circles denote
requires L shifts modulo 2 adders. The large circles at the wp indicaie multiplication by the value of g,.

Initially, the register is loaded with the first L bits of s(D) with s _y at the right, On

cach clock pulse, a new bit of s(f2) comes in at the left and the register reads in the

corresponding modulo 2 sum of feedback plus the coments of the previous stage. Alier

K shifts, the switch at the right moves 10 the horizontal position and the CRC is read out.
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CRC - Recelver Procedure

Tx-er transmits frame x
Channel introduces error pattern E
Rx-er receives frame y = X@®E (note that if E =

000..000, then y is equal to x, i.e. error free transmission)

y is divided by g, Remainder of division is
R

if R is ZERO, Rx-er assumes no errors in
frame; else Rx-er assumes erroneous
frame

If an error occurs and vy is still divisible
by P = UNDETECTABLE error (this means the E is

also divisible by g)
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Some Properties

X is a code word iff divisible by g(D)

e E.g. x(D) = g(D)z(D) — where z(D) = s(D)DY/g(D)

Assume the received frame is y(D), then y(D) =

x(D) + e(D)

e e(D) —is the error sequence or each error in the frame
corresponds to a nonzero coefficient in e(D)

Remainder [y(D)/g(D)] = Remainder [e(D)/g(D)]
e Prove this?

If e(D) = 0 =» frame is error free, Remainder
[e(D)/g(D)] = O

If (D) = 0 =» There is error(s)

o If Remainder [e(D)/g(D)] = 0 = UNDETABLE ERROR
o If Remainder [e(D)/g(D)] # 0 = DETABLE ERROR
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Some Properties (2)

» |e(D) # 0 is UNDETECTABLE iff e(D) = g(D)z(D)
for some nonzero polynomial z(D)

Key Result

e All single-bit errors are detected
* Proof in textbook page 63 (problem 2.3)
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Some Properties (3)

e All double-bit errors are detected, if g(D) is
chosen to be primitive polynomial and the string
s is of length less or equal to 2t-1

e Proof in the textbook page 63/64

e Any odd number of errors, as long as P(x)
contains a factor (D+1)

e See problem 2.14
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Design of Generator Polynomial

e g(D) is chosen as the product of a primitive
polynomial of degree L-1 times the polynomial
D+1
e All odd errors are detected

All double bit errors are detected (for block lengths
less than 2L1)

= minimum distance = 4
=> burst length = (at least L)

=>» probability of failing to detect errors in completely
random strings = 2t
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Some Popular CRC Polynomials

e CRC-12: D12+D11+D3+D2+D+1
e CRC-16: D16+D15+D2+1

e CRC-CCITT: D16+D12+D5+1

e CRC-32:

D32+D26+D23+D22+D16+D12+D11+D10+D8+D7+D
5+D4+D2+D+1

e CRC-12 — used for transmission of streams of 6-bit
characters and generates a 12-bit FCS

e CEC-16 and CRC-CCITT — used for transmission of 8-bit
characters in USA and Europe — result in 16-bit FCS

e CRC-32 — used in IEEE802 LAN standards
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