King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 341 - Data and Computer Communications

Term 101

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@kfupm.edu.sa

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

- 1. Flow Control
 - a. Stop-and-Wait flow control

Lecture Contents

- b. Sliding-Window flow control
- 2. Error Control
 - a. Stop-and-Wait ARQ
 - b. Go-Back-N ARQ
 - c. Selective-Reject ARQ
- 3. High-Level Data Link (HDLC)
- 4. Other Data Link Control Protocols

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

What is Data Link Control

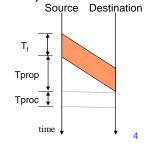
- The logic or procedures used to convert the raw stream of bits provided by the physical layer into a "reliable" connection
- Requirements and Objectives:
 - Frame synchronization
 - Flow control
 - Error control
 - Addressing
 - Multiplexing data and control on connection
 - Link management

1/1/2011

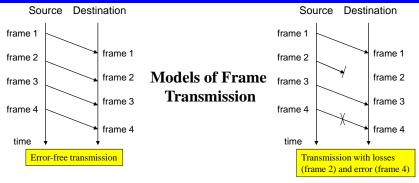
Dr. Ashraf S. Hasan Mahmoud

3

Flow Control


- A scheme to ensure that transmitter does not overwhelm receiver with data
- Transmission of one frame:
 - T_f: time to transmit frame
 - Tprop: time for signal to propagate
 - Tproc: time for destination to process received frame small delay (usually ignored if not specified)
- Tproc may be ignored if not specified

$$T_f = \frac{\text{Frame Size (bits)}}{\text{Transmission Speed (bits/sec)}}$$


 $T_{prop} = \frac{\text{Distance (meters)}}{\text{Propagation Speed (meters/sec)}}$

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Flow Control (2)

- The destination has a limited buffer space. How will the source know that destination is ready to receive the next frame?
- In case of errors or lost frame, the source need to retransmit frames i.e. a copy of transmitted frames must be kept. How will the source know when to discard copies of old frames?
- Etc.

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

5

Stop-and-Wait Protocol

- Protocol:
 - Source transmits a frame
 - After the destination receives frame, it sends ACK
 - Source, upon the receipt of ACK, can now send the next frame
- Destination can stop source by withholding the ACK
- Simple
- Animation for <u>Stop-and-Wait</u>
- NOTE: ONLY one frame can be in transit at any time

1/1/2011

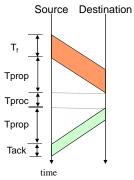
Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency

- After every frame, source must wait till acknowledgment → Hence link propagation time is significant
- Total time to for one frame:

 $T_{total} = Tf + 2Tprop + Tproc + Tack$ if we ignore Tproc and Tack (usually very small)

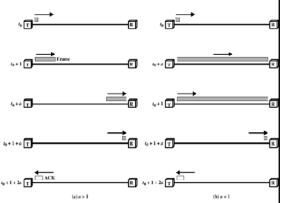
$$T_{total} = Tf + 2Tprop$$


Link utilization, U is equal to

$$U = Tf/(T_total)$$
, or
= 1 / (1+2(Tprop/Tf)) = 1 / (1 + 2 a)
where a = Tprop/Tf = length of link in bits

- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination → U is low
- See figure 7.2

1/1/2011


Dr. Ashraf S. Hasan Mahmoud

7

Stop-and-Wait Protocol: Efficiency (2)

- Remember: a = Tprop/Tf = length of link in bits
- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low
- Stop-and-Wait is efficient for links where a << 1 (long frames compared to propagation time)

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol

- Stop-and-Wait can be very inefficient when a > 1
- Protocol:
 - · Assumes full duplex line
 - Source A and Destination B have buffers each of size W frames
 - For k-bit sequence numbers:
 - Frames are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - ACKs (RRs) are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - A is allowed to transmit up to W frames without waiting for an ACK
 - B can receive up to W consecutive frames
 - ACK J (or RR J), where 0<=J<= 2^k-1, sent by B means B is have received frames up to frame J-1 and is ready to receive frame J
 - B can also send RNR J: B have received all frames up to J-1 and is not ready to receive any more

9

Window size, W can be less or equal to 2^k-1

1/1/2011 Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol (2) Example of Sliding-Window-Protocol: k = 3 bits, W = 7 **Observations:** A may tx W = 7 frames (F0, F1, ..., F6) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 After F0, F1, & F2 are txed, window is shrunk (i.e. can not transmit except 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 F3, F4, ..., F6) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 When B sends RR3, A - w **→** knows F0, F1 & F2 have 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 been received and B is ready to receive F3 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Window is advanced to cover 7 frames (starting — w → with F3 up to F1) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 A sends F3, F4, F5, & F6 B responds with RR4 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 when F3 is received - A 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 advances the window by - w → one position to include F2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 W = distance between first unacknowledged frame and last frame that can be sent Dr. Ashray S. Hasan Mahmoud 1/1/2011

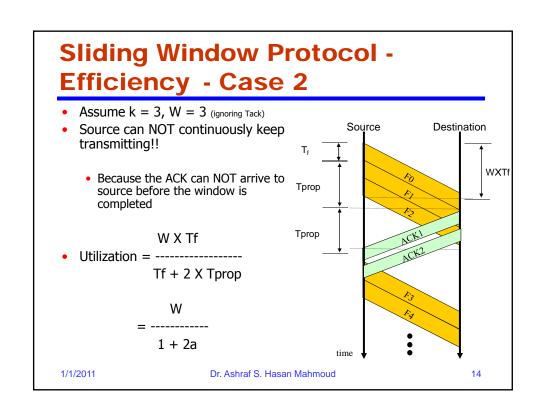
Sliding Window Protocol - Piggybacking

- When using sliding window protocol in full duplex connections:
 - Node A maintains its own transmit window
 - Node B maintains its own transmit window
 - A frame contains: data field + ACK field
 - There is a sequence number for the data field, and a sequence number for the ACK field

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

11


Sliding Window Protocol - Efficiency

- Again we can distinguish two cases:
- Case 1: $W \ge 2a + 1$
- Case 2: W < 2a + 1

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol -Efficiency - Case 1 Assume k=3, W = 7 Destination Source (ignoring Tack) Source can continuously keep Tprop transmitting!! WXTf Because the ACK can Tprop arrive to source before the window is completed Utilization = 100% Sending ACK0 as soon as F0 is received is the maximum help the destination can do to increase utilization 1/1/2011 Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol - Efficiency

- Refer to Appendix A
- When window size is W (for error free), link utilization, U, is given by

$$U = \begin{cases} 1 & W \ge (2a+1) \\ \frac{W}{2a+1} & W < (2a+1) \end{cases}$$

where a = Tprop/Tf or length of link in bits

 Sliding window protocol can achieve 100% utilization if W >= (2a + 1)

1/1/2011

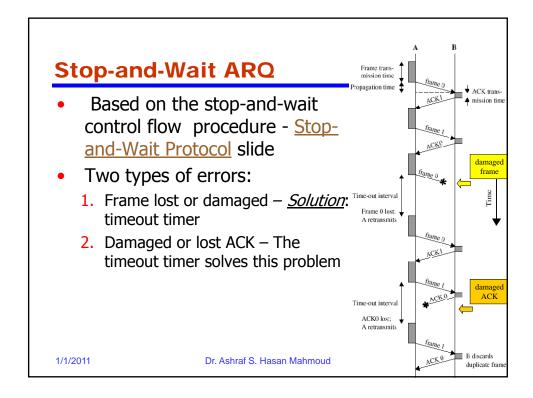
Dr. Ashraf S. Hasan Mahmoud

15

Sliding Window Protocol

- Animation for <u>Sliding Window</u> protocol
- <u>Sliding Window Protocol Simulation</u>
 (http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html)

1/1/2011


Dr. Ashraf S. Hasan Mahmoud

Error Control

- Types of Errors:
 - Lost frame
 - Damaged frame
- Error control Techniques (Automatic Repeat Request -ARQ):
 - Error detection discussed previously
 - +ve ACK
 - · Retransmission after timeout
 - -ve ACK and retransmission
- ARQ Procedures: convert an unreliable data link into a reliable one.
 - Stop-and-wait
 - Go-back-N
 - Selective-reject

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Go-Back-N ARQ

- Based on the sliding-window flow control procedure <u>Sliding</u> <u>Window Protocol</u> slide
- Three types of errors:
 - 1. ith frame damaged:
 - If A send subsequent frames (i+1, i+2, ...), B responds with REJ i →
 A must retransmit ith frame and <u>all subsequent frames</u>

Check for status of B before resending the frame

- b. If A does not send subsequent frames and B does not respond with RR or REJ (since frame was damaged) → timeout timer at A expires

 send a POLL signal to B; B sends an RR i, i.e. it expect the ith frame – A sends the ith frame again
- Damaged RR (B receives ith frame and sends RR i+1 which is lost or damaged):
 - a. Since ACKs are cumulative A may receive a subsequent RR j (j >i+1) before A times out
 - If A times out, it sends a POLL signal to B if B fails to respond (i.e. down) or its response is damaged subsequent POLLs are sent; procedure repeated certain number of time before link reset
- 3. Damaged REJ same as 1.b

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

19

Selective-Reject ARQ

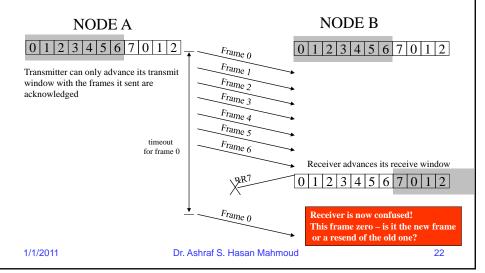
- In contrast to Go-Back-N, the only frames retransmitted are those that receive –ve ACK (called SREJ) or those that time out
- More efficient:
 - Rx-er must have large enough buffer to save post-SREJ frames
 - Buffer manipulation re-insertion of out-of-order frames

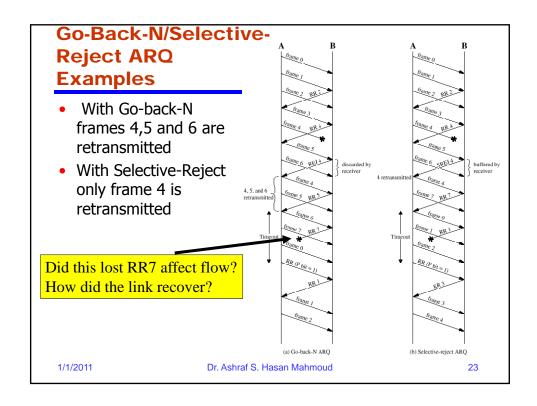
1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Window Size for Selective-Reject ARQ - Why?

- Window size: should less or equal to half range of sequence numbers
 - For n-bit sequence numbers, Window size is $\leq 2^{n-1}$ (remember sequence numbers range from 0,1, ..., $2^{n}-1$)
- Why? See next example

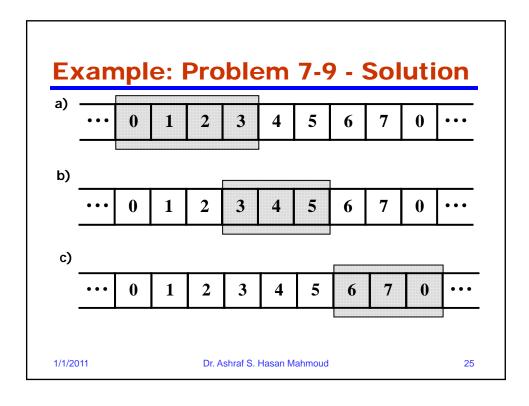

1/1/2011


Dr. Ashraf S. Hasan Mahmoud

21

Window Size for Selective-Reject ARQ - Why? (2)

• Example: Consider 3-bit sequence number and window size of 7



Example: Problem 7-9

- 7-9: Two neighboring nodes A and B use a slidingwindow protocol with a 3-bit sequence numbers. As the ARQ mechanism, go-back-N is used with a window size of 4. Assuming A is transmitting and B is receiving, show the window positions for the following succession of events:
- a) Before A sends any frames
- b) After A sends frame 0, 1, 2 and B acknowledges 0, 1 and the ACKs are received by A
- c) After A sends frames 3, 4, and 5 and B acknowledges 4 and the ACK is received by A

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

High-Level Data Link Control Protocol (HDLC)

- One of the most important data link control protocols
- Basic Characteristics:
 - Primary Station: issues commands
 - Secondary Station: issues *responses* operates under the control of a primary station
 - Combined Station: issues commands and responses
- Two link configurations are defined:
 - Unbalanced: one primary plus one or more secondary
 - Balanced: two combined (functions as primary and/or secondary) stations

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

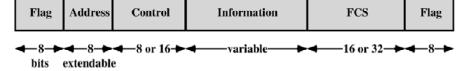
High-Level Data Link Control Protocol (HDLC) (2)

- Three transfer modes are defined:
 - Normal Response Mode (NRM) used in unbalanced conf.; secondary may only tx data in response to a command from primary
 - Asynchronous Balanced Mode (ABM) used in balanced conf.; either combined station may tx data without receiving permission from other station
 - Asynchronous Response Mode (ARM) used in unbalanced conf.; Secondary may initiate data tx without explicit permission; primary still retains line control (initialization, error recovery, ...)
- Animation for <u>HDLC</u>

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

27

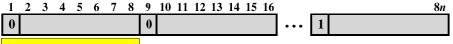

HDLC - Applications

- NRM:
 - Point-multi-point (multi-drop line): one computer (primary) polls multiple terminals (secondary stations)
 - Point-to-point: computer and a peripheral
- ABM: most widely used (no polling involved)
 - Full duplex point-to-point
- ARM: rarely used

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

HDLC - Frame Structure - Flag Field

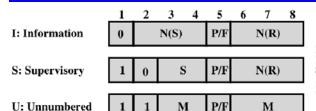

- Flag Field: unique pattern 011111110
 - Used for synchronization
 - To prevent this pattern form occurring in data → bit stuffing
 - Tx-er inserts a 0 after each 5 1s
 - Rx-er, after detecting flag, monitors incoming bits when a pattern of 5 1s appears; the 6th/7th bit are checked:
 - If 0, it is deleted
 - If 10, this is a flag
 - If 11, this is an ABORT
- Pitfalls of bit stuffing: one bit errors can split one frame into two or merge two frames into one

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

29

HDLC - Frame Structure - Address Field

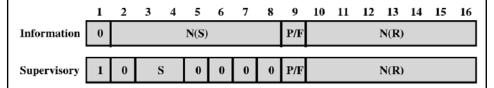

Extended Address Field

- Address field identifies the secondary station that transmitted or is to receive frame
- Not used (but included for uniformity) for point-to-point links
- Extendable by prior arrangement
- Address = 11111111 (single octet) used for broadcasting; i.e. received by all secondary stations

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

HDLC - Frame Structure - Control Field



$$\begin{split} N(S) &= Send\ sequence\ number\\ N(R) &= Receive\ sequence\ number\\ S &= Supervisory\ function\ bits\\ M &= Unnumbered\ function\ bits\\ P/F &= Poll/final\ bit \end{split}$$

- First 2 bits of field determine the type of frame
 - <u>Information frame (I)</u>: carry user data (upper layers) flow and error control info is piggybacked on these frames as well
 - <u>Supervisory frame (S)</u>: carry flow and error control info when there is no user data to tx
 - <u>Unnumbered frame (U)</u>: provide supplementary link control
- Poll/Final (P/F) bit:
 - In command frames (P): used to solicit response from peer entity
 - In response frames (F): indicate response is the result of soliciting command

1/1/2011 Dr. Ashraf S. Hasan Mahmoud 31

HDLC - Frame Structure - Control Field (2)

- "Set-mode" command → extends control field to 16 bit for S and I frames
- Extension: 7-bit sequence numbers rather than 3-bit ones
- Unnumbered frames always use 3-bit sequence numbers

1/1/2011 Dr. Ashraf S. Hasan Mahmoud 32

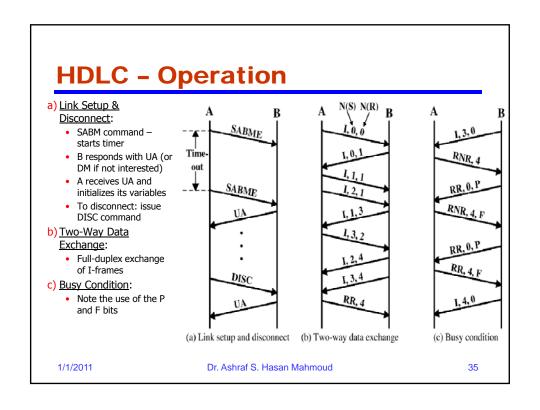
HDLC - Frame Structure - Information/FCS Fields

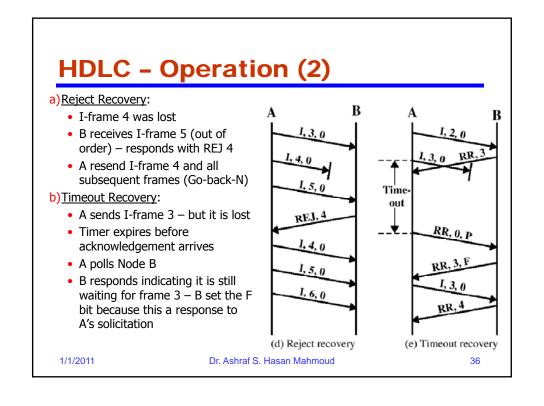
- Information field:
- Flag Address Control Information FCS Flag

 8-8-8-8-8 or 16-8 variable 16 or 32-8-8-18 textendable
- Present ONLY in I-frames and some U-frames
- Contains integer number of octets
- Length is variable up to some system defined maximum
- FCS field:
 - Error detecting code
 - Calculated from ALL remaining bits in frame
 - Normally 16 bits (CRC-CCITT polynomial = X¹⁶+X¹²+X⁵+1)
 - 32-bit optional FCS

1/1/2011

Dr. Ashraf S. Hasan Mahmoud


33


HDLC Operation

- Initialization
 - One side signals to the other the need for initialization
 - · Specifies which of the three modes to use: NRM, ABM, or ARM
 - Specifies 3- or 7-bit sequence numbers
 - The other side can accept by sending unnumbered acknowledgment (UA)
 - The other side can reject by sending A disconnected mode (DM) frame is sent
- Data Transfer
 - Exchange of I-frames: data and can perform flow/error control
 - S-frames can be used as well: RR, RNR, REJ, or SREJ
- Disconnect
 - DISC frame → UA

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Other Data Link Control Protocols

- Link Access Procedure Balanced (LAPB):
 - Part of X.25 packet-switching interface standard
 - Subset of HDLC only ABM is provided
 - Designed for point-to-point
 - Frame format is same as HDLC
- Link Access Procedure D-Channel (LAPD):
 - Part of ISDN functions on the D-channel
 - 7-bit sequence numbers only
 - FCS field is always 16-bit
 - 16-bit address fields (two sub-addresses)

1/1/2011

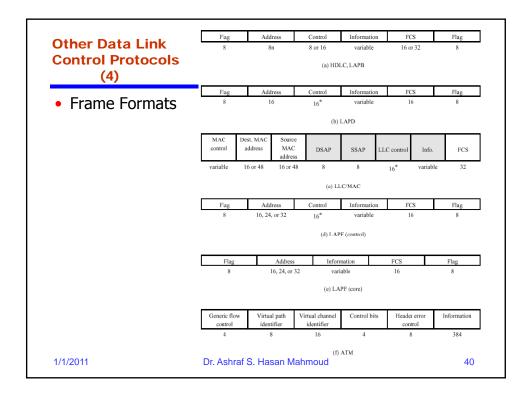
Dr. Ashraf S. Hasan Mahmoud

37

Other Data Link Control Protocols (2)

- Logical Link Control (LLC):
 - Part of IEEE802 family for LANs
 - Different frame format than HDLC
- Link Access Control Protocol for Frame-Mode Bearer Service (LAPF):
 - Designed for Frame Relay Protocol
 - · Provides only ABM mode
 - Only 7-bit sequence numbers
 - · Only 16-bit CRC field
 - Address field is 16, 24, or 32 bits long containing a 10-bit, 16-bit, or 23-bit data link connection identifier (DLCI)
 - No control field I.e. CANNOT do flow or error control (remember that frame relay was designed for fast and reliable connections!)

1/1/2011


Dr. Ashraf S. Hasan Mahmoud

Other Data Link Control Protocols (3)

- Asynchronous Transfer Mode (ATM):
 - Like frame relay designed for fast and reliable links
 - NOT based on HDLC
 - New frame format called CELL (53 bytes: 48 Bytes for payload or user data and 5 Bytes for overhead)
 - Cell has minimal overhead
 - NO error control for payload

1/1/2011

Dr. Ashraf S. Hasan Mahmoud

Textbook Problems of INTEREST

• Textbook:

1/1/2011

Dr. Ashraf S. Hasan Mahmoud