King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 543 – Mobile and Wireless Networks Term 082 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724

Email: ashraf@kfupm.edu.sa

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

1

Lecture Contents

- 1. Introduction to Mobile and Wireless Networks
 - a. Examples of 1st G
 - b. Examples of 2nd G
 - c. Examples of PCS networks
 - d. Examples of mobile data services and WLANs
 - e. Introduction into 3rd G

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

Wireless Applications

- Voice-Oriented Networks extensions to the PSTN
 - Local networks low power/mobility, excellent voice quality, etc
 - E.g. cordless telephony, PCS, Wireless PBX
 - Wide area networks high power/mobility
 - E.g. cellular telephony
- Data-Oriented Networks
 - Broadband
 - Ad-Hoc
 - E.g. WLANs, WPANs, etc.
 - Wide area mobile networks connectivity for mobile user
 - E.g. GSM/GPRS

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

3

History of Voice-Oriented Wireless Networks

Year	Event		
Early 1970s	Exploration of 1st generation mobile radio at Bell Labs		
Late 1970s	1 st G cordless telephone		
1982	Exploration for 2 nd G digital cordless CT-2		
1982	Deployment of 1st G NMT		
1983	Deployment of U.S. AMPS		
1983	Exploration of 2 nd G GSM		
1985	Exploration of wireless PBX and DECT		
1988	Initiation for GSM development		
1988	Exploration of IS-54 digital cellular		
1988	Exploration of the QUALCOMM CDMA technology		
1991	Deployment of GSM		
1993	Deployment of PHS/PHP and DCS-1800		
1993	Initiation for IS-95 standard for CDMA		
1995	PCS band auction by FCC		
1995	PACS finalized source: chapter one of (1)		
1998	3G standardization started		

History of Data-Oriented Wireless Networks

Year	Event		
1979	Diffused infrared (IBM Rueschlikon Labs – Switzerland)		
1980	Spread spectrum using SAW devices (HP Labs – California)		
Early 1980s	Wireless modem (Data Radio)		
1983	ARDIS (Motorola/IBM)		
1985	SM band for commercial spread spectrum applications		
1986	Mobitex (Swedish Telecom and Ericsson)		
1990	IEEE 802.11 for Wireless LAN standards		
1990	Announcement of wireless LAN products		
1991	RAM mobile (Mobitex)		
1992	Formation of WINForum		
1992	ETSI and HIPERLAN in Europe		
1993	Release of 2.4, 5.2, and 17.1-17.3 GHz bands in EU		
1993	CDPD (IBM and 9 operating companies)		
1994	PCS licensed and unlicensed bands for PCS		
1996	Wireless ATM forum started		
1997	U-NII bands released, IEEE 802.11 completed, GPRS started		
1998	IEEE 802.11b and Bluetooth announcement		
1999	IEEE 802.11a/HIPERLAN-2 started source: chapter one of (1)		
3/2/2009	Dr. Ashraf S. Hasan Mahmoud		

First Generation Wireless Standards

Standard	Forward Band (MHz)	Reverse Band (MHz)	Channel Spacing (KHz)	Region	Comments
AMPS	824-849	869-894	30	USA	Also in Australia, southeast Asia, Africa
TACS	890-915	935-960	25	EU	Later, bands allocated to GSM
E-TACS	872-905	917-950	25	UK	
NMT 450	453-457.5	463-467.5	25	EU	
NMT 900	890-915	935-960	12.5	EU	Frequency overlapping; also in Africa
NTT	925-940	870-885	25/6.25	Japan	Nationwide
NTT	915-918.5	860-863.5	6.25	Japan	regional

source: chapter one of (1)

3/2/2009 Dr. Ashraf S. Hasan Mahmoud

First Generation Wireless Standards

AMPS: Advanced Mobile Phone System

TACS: Total Access Communication System

E-TACS: Enhanced TACS

NTT: Nippon Telephone and Telegraph

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

7

Second Generation Wireless Standards

Standard	GSM	IS-54	IS-95	JDC
Region	Europe/Asia	US	US/Asia	Japan
Access Method	TDMA/FDD	TDMA/FDD	CDMA/FDD	TDMA/FDD
Modulation Scheme	GMSK	π/4-DQPSK	SQPSK/QPSK	π/4-DQPSK
Channel Spacing (KHz)	200	30	1250	25
Bearer channel/carrier	8	3	variable	3
Channel bit rate (kb/s)	270.833	48.6	1228.8	42
Speech rate (kb/s)	13	8	1-8	8
Frame Duration (ms)	4.615	40	20	20

Moe Rahnema, "Overview Of The GSM System and Protocol Architecture," IEEE Communications Magazine, April 1993, pp. 92-100.

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

Second Generation Wireless Standards (2)

- GSM: pan-European digital cellular
 - Channel bit rate of 270 kb/s higher than the rest
 - GPRS based on GSM technology
- IS-54: North American interim standard
 - Later became IS-136
 - Uses the same band and carrier spacing as AMPS (gradual deployment)
- JDC: Japanese Digital Cellular
- IS-95: Based on CDMA technology
- Voice coding ~ 10 kb/s for all systems

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

9

Personal Communication Services (PCS)

- Intended for residential applications
- Support smaller cell sizes → lower power levels
- Zonal coverage
- Low (~ 10 m) height antennas
- Higher quality of voice service better grade of service (99% availability)
- Mostly use TDD
- Less efficient modulation techniques
- Non-coherent (simple) transmit/receive systems

Donald Cox, "Wireless Personal Communications: What Is It?," IEEE Personal Communications Magazine, April 1995, pp. 20-35

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

2nd Generation PCS

System Aspect	PCS	Cellular
Cell Size	5-500 m	0.5-30 km
Coverage	Zonal	Comprehensive
Antenna Height	< 15 m	> 15 m
Vehicle Speed	< 5 km/h	< 200 km/h
Handset Complexity	Low	Moderate
Basestation Complexity	Low	High
Spectrum Access	Shared	Exclusive
Average Handset Power	5-10 mW	100-600 mW
Speech Coding	32 kb/s ADPCM	7-13 kb/s vocoder
Duplexing	TDD	FDD
Detection	Non-coherent	Coherent
3/2/2009	Dr. Ashraf S. Hasan Mahmoud	11

2nd Generation PCS Standards

System	CT-2 and CT-2+	DECT	PHS	PACS
Region	Europe/Can ada	Europe	Japan	US
Access Method	TDMA/TDD	TDMA/TDD	TDMA/TDD	TDMA/FDD
Carrier Spacing (kHz)	100	1728	300	300
Bearer Channel/carrier	1	12	4	8 per pair
Channel bit rate (kb/s)	72	1152	384	384
Modulation	GFSK	GFSK	π /4-DQPSK	π/4-DQPSK
Speech coding (kb/s)	32	32	32	32
Frame Duration (ms)	2	10	5	2.5

Dr. Ashraf S. Hasan Mahmoud

12

3/2/2009

Mobile Data Services

- Provide moderate data rates (10s of kb/s) and wide coverage area access to packet-switched data networks
- CDPD utilizes the AMPS bands –
- ARDIS, CDPD, and Mobitex designed (before the internet proliferation) optimized for coverage and availability and not bit rate
- GPRS and Metricom (relatively newer) support higher bit rates
- Employ data sense multiple access (DSMA) and ALOHAlike protocols

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

13

Mobile Data Services (2)

System	ARDIS	Mobitex	CDPD	GPRS
Frequency Band (MHz)	800 bands 45 kHz separation	935-940 896-961	869-894 824-849	890-915 935-960
Channel bit rate (kb/s)	19.2	8.0	19.2	200
RF Channel spacing (kHz)	25	12.5	30	200
Channel Access/Multiuser Access	FDMA/DSMA	FDMA/Dyna mic S- ALOHA	FDMA/DSMA	FDMA/TDMA
Modulation	4-FSK	GMSK	GMSK	GMSK
	,		,	

Older technologies – lower bit rates

Fairly new technology

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

Mobile Data Services (3) - References

- R.R. Quick and K. Balachandran, "Overview of the Cellular Digital Packet Data (CDPD) System," Proceedings of the PIMRC'93, Yokohama, Janapan (1993), pp. 338-343.
- A. DeSimone, S. Nanda, "Wireless Data: Systems, Standards, Services," ACM Wireless Networks, V. 1, N. 3, (October 1995), pp. 241-253.
- Vijay Garg and Joseph Wilkes, Wireless sand Personal Communications Systems, Chapter 14.
- M. Khan, J. Kilpatrick, "MOBITEX and Mobile Data Standards," *IEEE Communications Magazine*, (March 1995), pp. 96-101.

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

15

Wireless LAN Standards

- WLANs provide high bit rates (> 1 Mb/s)
- Local area coverage (< 100 m)
- Operate mostly in the unlicensed bands (e.g. ISM)
- IEEE 802.11 and HIPERLAN-1 → 2G
- Rest OFDM-based → next generation

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

Wireless LAN Standards (2)

Parameters	IEEE 802.11	IEEE 802.11b	IEEE 802.11a	HIPER- LAN/2	HIPER- LAN/1
Frequency Band (MHz)	2.4 GHz	2.4 GHz	5 GHz	5 GHz	5 GHz
Data rate	1, 2 Mb/s	1, 2, 5.5, 11 Mb/s	6, 9, 12, 1 54 N		23.5 Mb/s
Access Method	Distributed o	control, CSM or RTS/CTS	A/CA, PCF,	Central control; reservatio n based	Active contentio n resolution – priority signaling
Modulation	DSSS:FHSS	DSSS:CCK	OFDM	OFDM	GMSK

3/2/2009

Products available n Mahmoud

17

Wireless LAN Standards (3)

Standard	Modulation Method	Frequencies	Data Rates Supported (Mbit/s)
802.11 legacy	FHSS, DSSS, infrared	2.4 GHz, IR	1, 2
802.11b	DSSS, HR-DSSS	2.4 GHz	1, 2, 5.5, 11
"802.11b+" non-standard	DSSS, HR-DSSS (PBCC)	2.4 GHz	1, 2, 5.5, 11, 22, 33, 44
802.11a	OFDM	5.2, 5.8 GHz	6, 9, 12, 18, 24, 36, 48, 54
802.11g	DSSS, HR-DSSS, OFDM	2.4 GHz	1, 2, 5.5, 11; 6, 9, 12, 18, 24, 36, 48, 54
802.11n*	advanced techniques: e.g. MIMO, etc.	2.4, 5 GHz	~ 248
3/2/2009	*Drafts exist – to be co Source: http://en.wiking Very nice summary of	oedia.org/wiki/IEE	EE_802.11

IMT-2000

- The primary standard for 3G networks is referred to as International Mobile Telecommunication beyond the year 2000 (IMT-2000)
- Goals:
 - Higher data rates multimedia applications
 - Higher spectral efficiency
- ITU-R received many candidate proposals for radio transmission technologies (RRT)

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

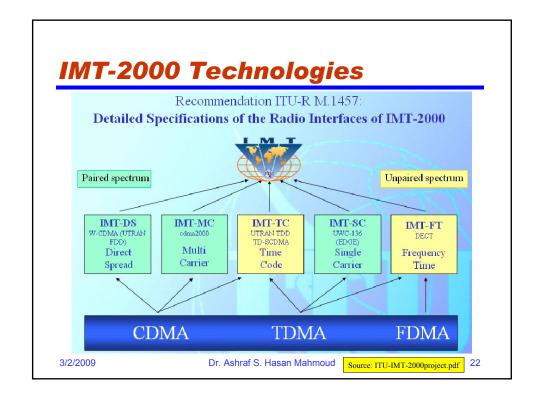
19

IMT-2000 Requirements

- Improve voice services
- Provide packet data services IP-based traffic and real-time video
- Provide seamless incorporation into 2G and satellite networks
- Support 144 kb/s for outdoor applications
- Support 2 Mb/s for indoor applications
- Symmetrical and asymmetrical data transmission
- Simultaneous services for multimedia applications
- Global roaming between different operational environments
- Etc.

3/2/2009

Dr. Ashraf S. Hasan Mahmoud


IMT-2000 Technologies

- IMT-2000 Technologies:
 - IMT-DS (direct spread): W-CDMA
 - 2. IMT-MC (multicarrier): cdma2000 aka IS-2000:
 - Deployed in phases (cdma2000 1x, 1x EV-DO, 1x EV-DV, 3x, etc.)
 - Packet core network (PCN) key component
 - IMT-TC (time-code): UTRA (TDD) and TD-SCDMA (FDD)
 - 4. IMT-FT (frequency-time): DECT
 - system for cordless business communication
 - 5. IMT-SC (single carrier): TDMA UTRA: UMTS Terrestrial Radio Access
 - UWC-136 (D-AMPS) or EDGE)

UTRA: UMTS Terrestrial Radio Access
TD-SCDMA: Time-Division Synchronous CDMA
UWC-136: Universal Wireless Communication
EDGE: Enhanced Data rates for GSM Evolution
GSM MAP: GSM Mobile Application Part

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

The Air-interface Specification for 3GPP's Proposals

Parameters	3GPP2 (cdma2000)	3GPP (W-CDMA)	
Multiple access technique and duplexing scheme	Multiple access: DS-CDMA (UL); MC-CDMA(DL) Duplexing: FDD	Multiple access: DS-CDMA Duplexing: FDD	
Chip rate	N x 1.2288 Mchip/s (N = 1, 3, 6, 9, 12)	3.84 Mchips/s	
Pilot structure	Code-divided continuous dedicated pilot (UL) Code-divided continuous common pilot (DL) Code-divided continuous common or dedicated auxiliary pilot (DL)	Dedicated pilots (UL) Common and/or dedicated pilots (DL)	
Frame length	5, 10, 20, 40, 80 ms	10 ms with 15 slots	
Modulation and detection	Data modulation: UL-BPSK, DL-QPSK Spreading modulation: UL-HPSK, DL-QPSK Detection: pilot-aided coherent detection	Data modulation: UL-dual channel QPSK; DL-QPS Spreading modulation: QPSK Detection: pilot-aided coherent detection	
Channelization code	Walsh codes (UL) Walsh codes or quasi-orthogonal codes (DL)	Orthogonal variable spreading factor codes	
Scrambling code	Long code (with a period of $2^{42} - 1$ chips for $N = 1$) Short PN code (with a period of 2^{15} chips for $N = 1$). ($N = 1$).	UL-short code (256 chips from the family of S(2) codes or long code (38,400 chips, Gold-code-based) DL: Gold-code-based	
Access Scheme	RsMa — flexible random access scheme allowing three modes of access: —Basic access —Power controlled access —Reserved access Designated access scheme — access scheme initiated by the base station message	Acquisition-indication-based random access mechanism with power ramping on preamble followed by message	
Inter-base-station operation	Synchronous	Asynchronous Synchronous (optional)	
3/2/2009	Dr. Ashraf S. Hasan Mahmoud		

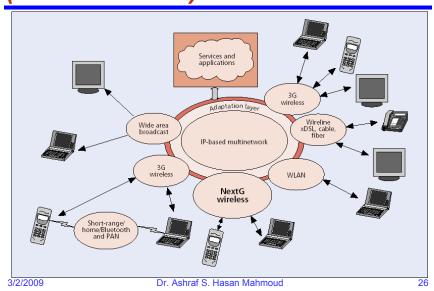
References:

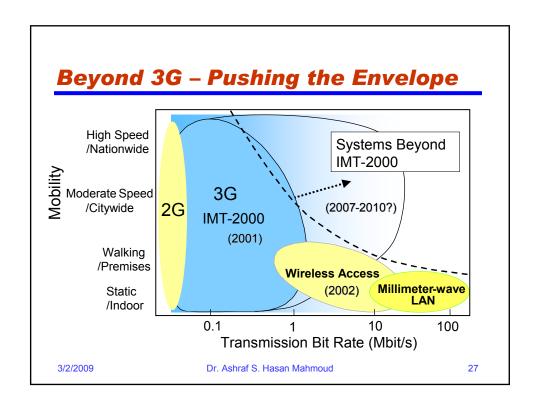
- T. Ojanpera, R. Prasad, "An Overview of Third-Generation Wireless Personal Communications: A European Perspective," IEEE Personal Communications, December 1998, pp. 56-65
- M. Zeng, A. Annamalai, Vijay K. Bhargava, "Harmonization of Global Third-Generation Mobile Systems," IEEE Communication Magazine, December 2000, pp. 95-104
- http://www.itu.int/osg/spu/imt-2000/technology.html
- http://www.ericsson.com/technology/IMT-2000.shtml

3/2/2009 Dr. Ashraf S. Hasan Mahmoud

Beyond 3G – Enabling Concepts/Technologies

- Ubiquitous services and paradigm change
 - Últraconnectivity
 - Flexible networks
- Smart spectrum and dynamic spectrum assignment
- Smart resources
 - Adaptive resource management
 - Dynamic layers and fast adaptation
 - Software radios and smart radios
 - Advanced adaptive waveforms (modulation and coding) and physical layer
 - Quality of service (QoS), adaptive networks, and universal access nodes
- Advances in DSP hardware Software Radio
- Intelligent Antennas (v.s. Smart Antennas):
 - Narrow beam technologies: switched vs. steered
 - Adaptive processing combining
 - Space-time coding (BLAST)
- MIMO
- TTLNA: superconductor power amplifier with low noise figure
- Multi-user Detection: non-linear detection method


3/2/2009


Dr. Ashraf S. Hasan Mahmoud

Technologies

25

Beyond 3G – Ultraconnectivity (Multi-networks)

References:

- M. Frodish, S. Parkvall, C. Roobol, P. Johansson, and P. Larsson, "Future-Generation Wireless Networks," IEEE Personal Communications, October 2001, pp. 10-17
- T. Otsu, I. Okajima, N. Umeda, and Y. Yamao, "Network Architecture for Mobile Communications Systems Beyond IMT-2000," IEEE Personal Communications, IEEE Personal Communications, October 2001, pp. 31-37
- Robert Berezdivin, Robert Breinig, and Randy Topp, Raytheon, "Next-Generation Wireless Communications Concepts and Technologies," IEEE Communications Magazine, March 2002, pp. 108-116
- Q. Bi, G. I. Zysman, and H. Menkes, "Wireless Mobile Communications at the Start of the 21st Century," *IEEE Commun. Mag.*, Jan. 2001, pp. 110–16

3/2/2009

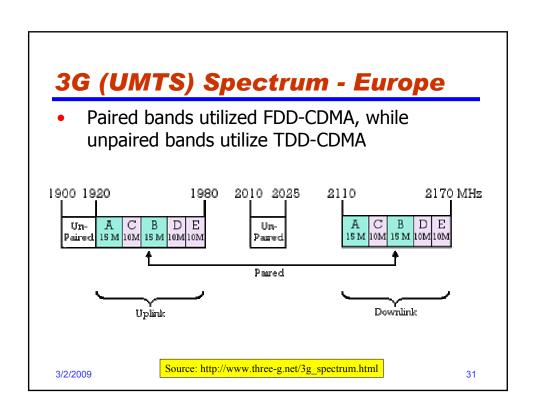
Dr. Ashraf S. Hasan Mahmoud

Metrics

- Capacity:
 - Number of users (voice data)
 - Data could be circuit switched or packet switched
- Efficiency
 - Bits/sec/Hz
 - Erlang/m2/Hz → voice only at a give GOS
 - Internet traffic ?

3/2/2009

Dr. Ashraf S. Hasan Mahmoud


29

References

1) Kaveh Pahlavan, Prashant Krishnamurthy, Principles of Wireless Networks – A unified Approach, Prentice Hall, 2002 – Chapter 1

3/2/2009

Dr. Ashraf S. Hasan Mahmoud

License Name	Frequencies	Winner	Final Amount Bid
License A (reserved for a new entrant to the industry)	2x15 MHz paired spectrum plus 5 MHz unpaired spectrum	Hutchison 3G	£4,384,700,000
License B	2x15 MHz paired spectrum	Vodafone	£5,964,000,000
License C	2x10 MHz paired spectrum plus 5 MHz unpaired spectrum	ВТ	£4,030,100,000
License D	2x10 MHz paired spectrum plus 5 MHz unpaired spectrum	One2One	£4,003,600,000
License E	2x10 MHz paired spectrum plus 5 MHz unpaired spectrum	Orange	£4,095,000,000