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Computationally Efficient Optimal Power Allocation Algorithms
for Multicarrier Communication Systems
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Abstract—In this paper, we present an optimal, computationally
efficient, integer-bit power allocation algorithm for discrete mul-
titone modulation. Using efficient lookup table searches and a La-
grange-multiplier bisection search, our algorithm converges faster
to the optimal solution than existing techniques and can replace the
use of suboptimal methods because of its low computational com-
plexity. Fast algorithms are developed for the data rate and perfor-
mance margin maximization problems.

Index Terms—Discrete multitone modulation, loading algo-
rithm, multicarrier communication systems, power allocation.

I. INTRODUCTION

RESEARCH in multicarrier modulation has grown tremen-
dously in recent years due to the demand for high-speed

data transmission over twisted-pair copper wiring, an environ-
ment where severe intersymbol interference (ISI) can occur [1],
[2]. Instead of employing single-carrier modulation with a very
complex adaptive equalizer, the channel is divided intosub-
channels that are essentially ISI-free independent additive white
Gaussian noise (AWGN) channels, providedis sufficiently
large.

Although multicarrier modulation eliminates the need for
an expensive equalizer, it creates a new problem: given some
power budget, how should power and bits be allocated to
each subchannel in order to maximize performance? Many
algorithms for allocating power among subchannels exist;
however, these methods are either suboptimal and computa-
tionally efficient [3]–[6] or optimal but slow to obtain the power
allocation [7]. In this paper, we present practical and efficient
discrete multitone modulation (DMT) loading algorithms that
are guaranteed to converge to the optimal power allocation
solution. The algorithms use efficient lookup tables and a
fast Lagrange bisection search that is popular in the image
compression community [8].
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II. OPTIMAL POWER ALLOCATION PROBLEM

Maximizing channel capacity in a spectrally-shaped
Gaussian channel is achieved by the well-known waterpouring
distribution [9]. However, this distribution is not well suited for
practical data transmission because it assumes noninteger-bit
constellations, does not obey a given probability of error, and is
difficult to compute. Instead, the data throughput optimization
problem [3] is of more practical importance

subject to

and (2.1)

where , , and are the rate (in bits/symbol), allocated
power, and error probability, respectively, of theth subchannel,

is a fixed error-probability constraint, and is a
total power constraint. An additional constraint (of significant
practical importance) is restricting to be an integer number
of bits/symbol. We will enforce this condition later and assume
for now that can be any nonnegative real number.

A. Lagrange Solution

The optimization problem in (2.1) can by reformulated as
an unconstrainted optimization problem1 by merging rate and
power through the Lagrange multiplier

(2.2)

where is the Lagrange cost and . Each minimum
Lagrange cost for a fixed corresponds to the optimal power
allocation for some total power budget.

For a fixed , the Lagrange cost is minimized when
, for all , or more precisely

for (2.3)

where is a function of that satisfies the error-probability
constraint with equality.2 Thus, the cost is minimized when the
rates and powers for each subchannel are chosen to correspond
to the point on the rate-versus-power curve with slope. The
total power allocated for a fixed is obtained by simply sum-
ming the power allocated to the subchannels. The goal is to find

1This reformulation is equivalent provided that rate is a convex function of
power, which is the case in virtually every standard class of signal constellations,
including quadrature amplitude modulation (QAM). When this is not true, the
solution is only optimal to within a convex-hull approximation.

2It can be shown that meeting the error-probability constraint with equality
is optimal.
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the optimal such that the total power allocated equals the
given value of in the problem.

An additional formulation can be derived by defining the
signal-to-noise ratio (SNR) of theth subchannel to be

and the channel-to-noise ratio (CNR) to be
, where is the symbol period,

is the subchannel power gain, and is the one-dimensional
subchannel noise power. Applying the chain rule to (2.3), the
following cost minimization criterion is obtained, which will be
used to develop efficient loading algorithms proposed later

(2.4)

B. Integer-Bit Restriction

Enforcing the restriction of integer-bit constellations, we
obtain a sampled version of the continuous rate-power curves
at operating points, which constitute the only admissible
rate-power combinations. The optimal operating point for the
th subchannel for a given can be shown to be the point

which is first “impinged upon” by a “plane-wave” of slope,
as shown in Fig. 1(a) [8]. Rather than a unique value of, the
discrete nature of the problem results in each operating point
having a continuous range of optimalvalues associated with
it as shown in Fig. 1(b).

The combination of all possible subchannel rate-power
combinations summed together gives the composite rate-power
function, and an example of this is shown in Fig. 2. The
upper-leftmost operating points are the set of all possible
optimal operating points, and the lines connecting them form
the convex hull of the composite function. For a given ,
the optimal operating point is the one on the convex hull
with power closest to, without exceeding, the power budget.
Furthermore, the Lagrange solution will always obtain the
convex hull solution and, hence, the optimal operating point.

III. FAST ALGORITHM FORPOWER ALLOCATION

We now develop the fast integer-bit loading algorithm for
data-rate maximization. Because computing all the composite
rate-power operating points is much too expensive, a more effi-
cient approach is to iteratively search for a. This can be done
by evaluating a chosenfor its corresponding total power, fol-
lowed by an update to get closer to an optimal solution.

A. Fast Power Allocation via Table Lookup

Each encountered during the search must be evaluated to
determine the total power associated with it and requires com-
puting the optimal operating point for each subchannel on the
rate-power function using (2.3), summing the power allocated
to the subchannels and comparing the result to .

Direct computation of the optimal operating point for each
subchannel can be avoided by using the slope nonuniqueness
property, shown in Fig. 1(b), and precomputing lookup tables of
operating point slope bounds. Evaluating a givencan easily be
done for each subchannel by finding which slope rangefalls
in and assigning the corresponding rate and power. The lookup

(a)

(b)

Fig. 1. (a) Depiction of a plane wave of slope� impinging upon the rate-power
convex hull.(b) Illustration of nonunique slopes for rate-power operating points.

Fig. 2. Composite rate-power curve for three subchannels with up to 5
bits/symbol. It can be seen that more than one point can operate at the
maximum rate with a total power less thanP . However, only one point
with the maximum rate can be on the convex hull, and it is always the most
power-efficient solution.

tables can be generated from the rate-SNR characteristics of the
channel, which are invariant to the channel conditions.
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For a given , the Lagrange minimization formulation of (2.4)
states that the optimal operating point is found using the slope

of the rate-SNR function of each subchannel.
Due to the discrete number of operating points, rate-SNR
ranges can also be precomputed and placed into a lookup table to
avoid real-time computation. In practice, all or most of the sub-
channels have identical rate-SNR operating characteristics (i.e.,
the available signal constellations and constraint are the
same), and the difference between them are the ’s. Con-
sequently, the ranges for these channels will be identical, and
only one lookup table need be stored,3 resulting in a significant
memory reduction.

Following the computation of for a subchannel and using
the lookup table to find the rate-SNR operating point, the allo-
cated power and rates are computed as

(3.1)

B. Bisection Method for Fast Convergence

There are two major problems that can be encountered when
trying to find a : fast convergence and the ability to recognize
when a has been reached. A bisection method (similar to
the false position method [10]) solves both of these problems
and exploits the monotonic relationship betweenand
through a binary search-like procedure [8].

The bisection method uses two previously evaluated slope
values and corresponding to total powers and

(which are below and above , respectively) and
total rates and . The bisection method simply lowers
the gap between and by computing the following
updated slope on the composite rate-power curve:

(3.2)

The total power corresponding to is then evaluated. If
is greater than , we update with while

keeping the same. The opposite update is done if is
less than . An example of the bisection method slope up-
date is shown in Fig. 3. The slope update procedure is repeated
until equals either or , and the power allocation
corresponding to is chosen to load the multicarrier system.4

C. Performance Margin Optimization

Another important quantity of interest in DMT systems is the
performance margin5 , which is the amount of noise (in

3For any remaining subchannels with different rate-SNR characteristics, dif-
ferent lookup tables need to be defined.

4It is highly improbable thatP will exactly equalP , but if this does
occur, the algorithm allocates power according to� .

5For example, if a single channel requires a 12-dB SNR to operate at some
data rate withP , then providing 18 db of SNR results in a +6-dB perfor-
mance margin.

Fig. 3. Illustration of bisection method slope update.

decibels) that a system can tolerate while still operating under
the bit-error-probability constraint [4]. The performance margin
optimization problem for a given target rate is as follows:

subject to

and

(3.3)

Since performance margin is simply a scaling of the zero-margin
allocated power in each subchannel by a constant amount, the
minimum power allocation needed to meet the rate target with
zero margin can be found, and the resulting powers can be scaled
to utilize the total power budget. This new optimization problem
is as follows:

subject to

and

(3.4)

In this case, only the convex hull operating points of the com-
posite rate-power function can be optimal solutions because
there is no leftover power as in the rate maximization problem.
An algorithm very similar to the rate maximization algorithm
can be used to solve (3.4), with the difference thatis up-
dated so that the total rate converges to [11]. Once this
has been done, the final power allocation is computed as

, where .
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(a) (b)

(c) (d)

Fig. 4. (a) SNR (in decibels) for 256 subchannels. (b) Optimal power allocation. (c) Optimal bit allocation.(d) Total bits allocated versus bisection iteration
number.

TABLE I
ALGORITHM PSEUDOCODE

D. Algorithm Implementation

Pseudocode for the rate maximization algorithm using
rate-SNR lookup tables is listed in Table I. Initial loading
of the system may require initial and , which are
far from the optimum values to ensure that the condition in
step 1 is met. Simple worst case initializations are the point

with zero rate and power and the point with maximum rate
and power ( ). Prior knowledge of typical channels can
help the designer choose initial values closer to the range
of optimal values, which will allow the algorithm to converge
faster. Convergence of the bisection method to atakes
approximately iterations. Assuming is
precomputed, each iteration requires at most additions,
1 division, multiplies, and lookup table evaluations.
The resulting computational complexity of the algorithm is

. Knowledge of previous iteration lookup results
can be used todrastically reduce complexity [12] as some
subchannels converge rather quickly, and most subchannel
rate-power assignments do not change in the final one-third or
so iterations.

Fig. 4 shows an example of our algorithm for a test channel
where the available signal constellations were 0–10 bits/symbol
QAM and a symbol error probability constraint of 10was
imposed on each subchannel. The algorithm converged very
quickly6 to the optimal solution with 14 bisection search itera-
tions using very conservative initial low and high slope values.

6After only eight iterations, 98.8% of the optimal rate is achieved.
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For tracking scenarios, when the channel conditions change
only slightly, an optimal value may not be very different from
the previous optimal one. Therefore, initial low and high
values can be chosen much closer to obtain faster convergence.

IV. COMPARISONS ANDCONCLUSIONS

The Hughes–Hartog algorithm [7] is an optimal loading algo-
rithm which achieves the solution by adding one bit at a time to
the channel requiring the smallest additional power to increase
its rate. Whereas this technique can be used to solve both data
rate and margin maximization, the algorithm requires an inten-
sive amount of sorting and converges very slowly in practical
DMT scenarios [3]. Our algorithms achieve exactly the same
solutions and are cheaper to implement.

The algorithm in [4] attempts to maximize margin in a sub-
optimal fashion that relies on rounding to integer rates. Another
disadvantage of this algorithm is its use of the SNR gap approx-
imation [2] to allocate bits to its subchannels. Furthermore, in
the final part of the algorithm, it requires a modest amount of
sorting to subtract or add bits one at a time to meet the target
bit rate. The overall complexity is less than Hughes–Hartog, but
is approximately the same or slightly more than the proposed
margin algorithm in this paper.

The algorithm in [6] attempts to maximize the subchannel
SNR’s rather than the margin and again relies on rounding.
Whereas this is a different criterion for loading, the resulting
allocation should be extremely close if not identical. The re-
sults in [6] in show improvement of overall SNR compared to
[4] as well as some reduction in complexity. As in [4], it uses a
modest amount of sorting to subtract or add bits one at a time,
which may be expensive if the initial part of the algorithm is too
far from the target rate. The overall complexity of the algorithm
is dominated by searches and additions, but the operation count
will typically be on the same order as the margin algorithm in
this paper.

Using the same channel SNR’s shown in Fig. 4(a), optimal
margin maximization is compared to the two algorithms de-
scribed above. In the case of [6], the final rate assignment is used
and power is allocated to meet the 10symbol-error-proba-
bility constraint. The target data rate is 500 bits/symbol which
corresponds to 2 Mbp/s for a multicarrier symbol rate of 4 kHz,
and QAM signal constellations with a range of 2–10 bits/symbol
are employed.7 Table II shows the resulting margins for the ex-
ample channel and with AWGN levels of +3,−3, and−6 dB from
the original. As can be seen, the method of [6] is very close to
the optimal margin, with about a 2% margin differential for all
conditions. However, the method of [4] has significant perfor-
mance variation with different amounts of AWGN added to the
channel. This is due to the SNR gap becoming even more subop-
timal as subchannel SNR’s decrease and the number of assigned
bits in a subchannel also decreases.

TABLE II
COMPARISON OFMARGIN MAXIMIZATION ALGORITHMS

The rate maximization algorithms in [3] and [5] are also based
upon the SNR gap approximation combined with rounding, and
they suffer from its drawbacks as well. Both methods require
moderate amounts of sorting, in addition to mathematical com-
putation, and the resulting complexities are probably higher than
the proposed optimal algorithm.

Although we developed our algorithms specifically for in-
teger-bit constellations, they can be used for systems containing
noninteger-bit constellations as well. In fact, the algorithms will
work for any set of discrete points on the rate-SNR curve pro-
vided the function is convex, which it almost always will be.
Thus, these algorithms should be considered optimal loading al-
gorithms for any discrete set of available signal constellations.
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