Little's Theorem

Little’s Theorem: Introduction

Arrivals Departures
_— _—

More interested in long term, steady state than in startup = Arrivals =
Departures
= Black box view of the system
Little's theorem:
Mean # of tasks in system = arrival rate x mean reponse time
n=A\Aw
= Observed by many, Little was first to prove
= One of the most commonly used theorems in queuing theory
Applies to any system in equilibrium, as long as nothing in black box is
creating or destroying tasks
= Can be applied even to the systems where jobs can be lost

= Applied to parts of systems consisting of waiting and service positions as a
job is not lost if it finds a buffer position
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Little's Theorem

N T
= A: customer arrival rate
= N: average number of customers in system
T: average delay per customer in system
Little's Theorem: System in steady-state

L4
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Example # 1: Little’s Theorem

= Consider a network of transmission lines
= Packets arrive at n different nodes with corresponding rates A,
oy A
= If N is the average total number of packets inside the network,
then determine the average delay per packet (T), regardless of the
packet length distribution and method of routing packet

= Applying Little's theorem: N

z; ﬂ“i

= If N, and T, are average number in the system and average
delay of packets arriving at node 1, respectively, then
N, = XiTi

i
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1 K<oK+P<2K

Example # 2

= A packet arrives at a transmission line every K seconds
= The first packet arriving at time 0

= All packets have equal length and require ak seconds for transmission
where o < 1

= The processing and propagation delay per packet is p seconds
= Determine average number in the system n
= Solution:
= The arrival rate hereisA = 1/K
= Since packets arrive at regular rate (equal inter-arrival times), there is no
delay for queuing =» time T a packets spends in the system (including
propagation delay) is: T = akK + P
= Applying Little’s theorem to find time average # in system:
N = AT = o + P/K
= Here, the # in system N (t) is a deterministic function of time

= In this case, N (t) does not converge but Little’s theorem holds with N
viewed as a time average
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Example # 3

= Consider a window flow control system
= Window size is w for each session
= Arrival rate of packets into the system for each session = A
= Apply Little’s theorem to analyze impact of w on A and delay T
= Applying Little’s theorem:
= Since, # of packets in the system is never more than w, therefore
W > AT
= If congestion builds up in the system - T increases and A must
eventually decrease

= Next, the network is congested and capable of delivering A packets
per unit time for each session. Assuming delays for ACKs to be
negligible relative to forward packets and
Wx=AT
= Increasing w in this case only result in increasing delay T without
appreciably changing A
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Example # 4 N K
[ I-®
= Consider a K server queuing system ®

= Room for at most N > K customers in system

= The system is always full
= Assume that it starts with N customers and that a departing
customer is immediately replaced by a new customer
= A closed queuing system
= Average customer service time = X
= We want to find the average customer time in the system T

= Applying Little’s theorem twice:
= For the entire system: N = AT

= For servers only: K = A X = servers continuously busy
= By eliminating | in the two relations:
NX
T=—
K
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Example # 4 (Cont'd)

= Now consider same system under different arrival assumptions

= Customers arrive at rate A but are blocked (and lost) from the
system if they find the system full

= Then the number of servers that may be busy are less than k
= Let K be the average number of busy servers
= Let B be the proportion of customers that are blocked from
entering the system
= Applying Little’s theorem to the servers of the system:
= Effective arrival rate = (1 — B)A
= Then average number of busy servers are given as: K = (1 - B)A X
= Which gives: ﬁ:Fé
X
= Since, ¥ < K, we obtain a lower bound on blocking probability as:

K
>21-—
p AX
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Example # 5: A Polling System

= Consider a transmission line:
= Serves m packet streams (i.e., m users) in round-robin cycles

= In each cycle, some packets of user 1 are transmitted followed by
some packets of user 2, and son on until finally packets of user m
are transmitted

= An overhead period of average length A, precedes the transmission
of the packets of user i in each cycle

= The arrival rate and average transmission time of the packets of
user i are A, and y, respectively

« Ifa =2 + 2, + . + A, determine average cycle length L
= Applying Little’s theorem:
= Fraction of time the transmission line is busy transmitting packets
of user i is =1, X,
= Overhead period of packet i can be viewed as transmission of
“packets” with average transmission time of A,
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Example # 5 (Cont'd)

= Application of Little’s theorem (cont'd)
= Arrival rate of these overhead “packets” = 1/L

= Fraction of time used for transmission of these overhead “packets
using Little’s theorem = A/,

= Therefore,

”

A m _
1—24‘;21)({

which yields the average cycle length as:

A

L=—"f
1->"1.X,
i=1
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Example # 6: Time-Sharing System

= Time-sharing system with N
terminals
= A user logs into the system
through a terminal
= After an initial period of
average length R submits a job
that requires an average
processing time p at the
computer
= Jobs queue up inside computer
and are served by a single CPU
according to an unspecified
priority or time-sharing rule
n Estimate:

= Maximum throughput
sustainable by the system (in

jobs per unit time); and ’t:f W i ".‘"E'dgﬂ'iu"ﬂ’ﬂfessing
Ll time
= Average delay of a user

Computer  —

Terminal 2 I—
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Example # 6 (Cont'd)

= Bounds on the attainable system throughput A
= Assume number in the system is always N - to get upper bound
= As soon as a user departs > replaced by another immediately
= Model: departing user re-enters the system immediately
= Bounds on N and T can be translated into throughput bounds via
Little’s theorem: A = N/T
= Apply Little’s theorem between points A to C:
= If T is the average time in the system: A = N/T
s T =R + D
= R is the average reflection time before a job is submitted

= D is the average delay between submitting job until its completion:
P < D < NP = D varies from no waiting (P) to maximum waiting (NP)

= Therefore, R+P < T < R+NP

N
= Thus, bounds on A are given as:

R+NP  R+P
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Example # 6 (Cont'd)

= Throughput is also bonded above by processing capacity
= Execution time of a job is P units on the average
= Computer cannot process more 1/p jobs per unit time in the long

run 1
= Therefore, 2 P N T
. ] ciemin] L N
= By combing two results: e <i mln{P,R+P}
= Bounds on average delay using T = N/A:
= When system is fully loaded
max{NP,R+ P}<T < R+ NP
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Example # 6 (Cont'd)

E?u\_md induced by B ;
limited number ound indueed by
of terminals EFU processing
apacity
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= Throughput bounds:
= As # of terminals N increases - throughput reaches up to 1/p

= When N < 1 + R/P & N becomes throughput bottleneck

= When N > 1 + rR/P > limited processing power is the bottleneck
= These bounds are independent of system parameters

= This is due to Little’s theorem
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Example # 6 (Cont'd)

Upper bound fordolay

he System

Loy
& wer bound for delay cue 10 limjted

\/ e ’F‘U Processing capacity
R+pl__ .
P25 -

1
a1l -

I - ‘<

e =

| e Da

ot lay assuming no waiting in queus
P
T

a T

Average User Time in 1

Number of Terminals o/

= Bounds on average delay:
= Delay rises in direct proportion to N
= Assume fully loaded system
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Example # 7

= A monitor on a disk server showed that the average time to
satisfy an I/O request was 100 milliseconds. The I/O rate was
about 100 requests per second. What was the mean number of
requests at the disk server?

= Using Little’s theorem:
Mean number in the disk server = arrival rate x response time
= (100 regests/sec)(0.1 sec)
= 10 requests
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Example # 8: The M/M/1 Queue

= Little's Theorem: average time in system

A 1

SN
A Au-1 pu-4

= Average waiting time and number of customers in the queue —
excluding service
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