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Little’s Theorem: Introduction

More interested in long term, steady state than in startup Arrivals = 
Departures

Black box view of the system
Little’s theorem:
Mean # of tasks in system = arrival rate x mean reponse time
n = λw

Observed by many, Little was first to prove
One of the most commonly used theorems in queuing theory

Applies to any system in equilibrium, as long as nothing in black box is 
creating or destroying tasks

Can be applied even to the systems where jobs can be lost 
Applied to parts of systems consisting of waiting and service positions as a 
job is not lost if it finds a buffer position

Arrivals Departures
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Little’s Theorem

λ: customer arrival rate
N: average number of customers in system
T: average delay per customer in system
Little’s Theorem: System in steady-state 

N Tλ=

N

T

λ

Term 032 3-3-4 COE540-Abdul Waheed

Example # 1: Little’s Theorem

Consider a network of transmission lines
Packets arrive at n different nodes with corresponding rates λ1, 
…, λn
If N is the average total number of packets inside the network, 
then determine the average delay per packet (T), regardless of the 
packet length distribution and method of routing packet 

Applying Little’s theorem:

If Ni and Ti are average number in the system and average 
delay of packets arriving at node i, respectively, then 
Ni = λiTi
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Example # 2
A packet arrives at a transmission line every K seconds

The first packet arriving at time 0
All packets have equal length and require αK seconds for transmission
where α < 1
The processing and propagation delay per packet is P seconds
Determine average number in the system N

Solution:
The arrival rate here is λ = 1/K
Since packets arrive at regular rate (equal inter-arrival times), there is no 
delay for queuing time T a packets spends in the system (including 
propagation delay) is: T = αK + P

Applying Little’s theorem to find time average # in system:
N = λT = α + P/K

Here, the # in system N(t) is a deterministic function of time
In this case, N(t) does not converge but Little’s theorem holds with N
viewed as a time average 

K<αK+P<2K
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Example # 3
Consider a window flow control system

Window size is W for each session
Arrival rate of packets into the system for each session = λ
Apply Little’s theorem to analyze impact of W on λ and delay T

Applying Little’s theorem:
Since, # of packets in the system is never more than W, therefore
W > λT
If congestion builds up in the system T increases and λ must 
eventually decrease
Next, the network is congested and capable of delivering λ packets 
per unit time for each session. Assuming delays for ACKs to be 
negligible relative to forward packets and 
W ≅ λT

Increasing W in this case only result in increasing delay T without 
appreciably changing λ
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Example # 4

Consider a K server queuing system
Room for at most N > K customers in system
The system is always full
Assume that it starts with N customers and that a departing 
customer is immediately replaced by a new customer

A closed queuing system
Average customer service time = X
We want to find the average customer time in the system T

Applying Little’s theorem twice:
For the entire system: N = λT
For servers only:         K = λ X servers continuously busy 
By eliminating l in the two relations: 
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Example # 4 (Cont’d)

Now consider same system under different arrival assumptions
Customers arrive at rate λ but are blocked (and lost) from the 
system if they find the system full 
Then the number of servers that may be busy are less than K
Let K be the average number of busy servers
Let β be the proportion of customers that are blocked from 
entering the system

Applying Little’s theorem to the servers of the system:
Effective arrival rate = (1 – β)λ
Then average number of busy servers are given as: K = (1 – β)λX
Which gives: 

Since, K < K, we obtain a lower bound on blocking probability as:
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Example # 5: A Polling System
Consider a transmission line:

Serves m packet streams (i.e., m users) in round-robin cycles
In each cycle, some packets of user 1 are transmitted followed by 
some packets of user 2, and son on until finally packets of user m
are transmitted
An overhead period of average length Ai precedes the transmission 
of the packets of user i in each cycle
The arrival rate and average transmission time of the packets of
user i are λi and Xi respectively
If A = A1 + A2 + … + Am, determine average cycle length L

Applying Little’s theorem:
Fraction of time the transmission line is busy transmitting packets 
of user i is = λiXi
Overhead period of packet i can be viewed as transmission of 
“packets” with average transmission time of Ai

iX

iX
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Example # 5 (Cont’d)

Application of Little’s theorem (cont’d)
Arrival rate of these overhead “packets” = 1/L
Fraction of time used for transmission of these overhead “packets”
using Little’s theorem = A/L
Therefore, 

which yields the average cycle length as: 
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Example # 6: Time-Sharing System
Time-sharing system with N
terminals

A user logs into the system 
through a terminal 
After an initial period of 
average length R submits a job 
that requires an average 
processing time P at the 
computer 
Jobs queue up inside computer 
and are served by a single CPU 
according to an unspecified 
priority or time-sharing rule

Estimate:
Maximum throughput
sustainable by the system (in 
jobs per unit time); and
Average delay of a user
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Example # 6 (Cont’d)

Bounds on the attainable system throughput λ
Assume number in the system is always N to get upper bound

As soon as a user departs replaced by another immediately
Model: departing user re-enters the system immediately

Bounds on N and T can be translated into throughput bounds via 
Little’s theorem: λ = N/T

Apply Little’s theorem between points A to C:
If T is the average time in the system: λ = N/T
T = R + D

R is the average reflection time before a job is submitted
D is the average delay between submitting job until its completion:
P < D < NP D varies from no waiting (P) to maximum waiting (NP) 

Therefore, R+P < T < R+NP

Thus, bounds on λ are given as: 
PR
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Example # 6 (Cont’d)

Throughput is also bonded above by processing capacity
Execution time of a job is P units on the average
Computer cannot process more 1/P jobs per unit time in the long 
run
Therefore, 

By combing two results:

Bounds on average delay using T = N/λ: 
When system is fully loaded
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Example # 6 (Cont’d)

Throughput bounds:
As # of terminals N increases throughput reaches up to 1/P
When N < 1 + R/P N becomes throughput bottleneck
When N > 1 + R/P limited processing power is the bottleneck

These bounds are independent of system parameters
This is due to Little’s theorem
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Example # 6 (Cont’d)

Bounds on average delay:
Delay rises in direct proportion to N
Assume fully loaded system
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Example # 7

A monitor on a disk server showed that the average time to 
satisfy an I/O request was 100 milliseconds. The I/O rate was 
about 100 requests per second. What was the mean number of 
requests at the disk server?

Using Little’s theorem:
Mean number in the disk server = arrival rate x response time

= (100 reqests/sec)(0.1 sec)
= 10 requests
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Example # 8: The M/M/1 Queue

Little’s Theorem: average time in system

Average waiting time and number of customers in the queue –
excluding service
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