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Abstract 
 Border Gateway Protocol (BGP) is the inter-domain 
routing protocol currently employed in Internet. Internet 
growth imposes increased requirements on BGP 
performance. Recent studies revealed that performance 
degradations in BGP are due to the highly dynamic nature of 
the Internet. In this paper, we describe the design of the ns-
BGP model and its implementation in the ns-2 network 
simulator. We describe a validation test for route reflection 
and provide a scalability performance analysis of the ns-
BGP model. 
 
Keywords: inter-domain routing, BGP, scalability, route 
reflection, ns-2. 
 
1.  INTRODUCTION 
 The Internet consists of thousands of interconnected 
Autonomous Systems (ASs) loosely defined as networks and 
routers under a single administrative control. Routing in the 
Internet is performed on two levels (intra-domain and inter-
domain) implemented by two sets of protocols. Interior 
gateway protocols (IGP), such as RIP, IS-IS, OSPF, IGRP, 
and EIGRP, route packets within a single AS (intra-domain). 
Exterior gateway protocols (EGP), such as EGP and BGP 
routes packets between ASs (inter-domain).  
 Although the Border Gateway Protocol (BGP) has been 
analyzed in detail, routing instability [1], [2], inefficient 
routing [3], [4], and scalability issues [5] still remain. 
Theoretical analysis and empirical measurements have been 
employed in the past, albeit with certain limitations [6]. 
Simulations allow more realistic experiments with fewer 
simplifications than the theoretical approach and with 
enhanced flexibility than empirical studies permit. We 
implemented a BGP-4 [7] model, the current version of 
BGP, in the network simulator ns-2 [8] by porting the BGP-
4 implementation from SSFNet [9].  
 The rest of the paper is organized as follows. In Section 
2, we introduce background on BGP, ns-2, and SSFNet. The 
design and implementation of ns-BGP are described in 
Section 3. A validation example for route reflection is 
presented in Section 4. We analyze the scalability of ns-BGP 
in Section 5 and conclude with Section 6. 

2.   BGP IMPLEMENTATIONS  
 A short introduction to BGP, ns-2, and the SSFNet 
network simulator follows. 
 
2.1  Border Gateway Protocol  
 BGP-4 is the de facto inter-domain routing protocol [7]. 
It is used by BGP routers in ASs to exchange reachability 
information and to determine the end-to-end path for packets 
traversing multiple ASs.  
 BGP employs TCP as its transport protocol, which 
ensures transport reliability and eliminates the need for BGP 
to handle retransmissions. Routers that use BGP are called 
BGP speakers. Two BGP speakers that participate in a BGP 
session are called neighbors or peers. Peer routers exchange 
four types of messages: open, update, notification, and keep-
alive. The update message carries routing information while 
the remaining three messages handle the session 
management [7]. 
 
2.2  ns-2 network simulator 
 We implemented ns-BGP as an extension to the latest 
version of ns-2 network simulator (ns-2.26) [8]. ns-2, one of 
the most popular network simulators,  supports simulation of 
TCP, routing, and multicast protocols over wired and 
wireless networks. ns-2 is written in both C++ and OTcl and 
employs an object-oriented paradigm. C++ is used for the 
low level implementation of packet oriented processing, 
where performance is important. OTcl is a scripting 
language used for higher level implementation where 
flexibility is more important than performance. A graphical 
animator nam is used to visualize simulation results. 
 
2.3  BGP implementation in SSFNet 
 SSF.OS.BGP4 is the BGP-4 model [6] in the SSFNet 
[9] network simulation package. SSFNet is a Java-based 
simulator for modeling large communication networks. It 
includes a simulation kernel, an open source suite of 
network component models, a management suite, and a 
configuration language called Domain Modeling Language 
(DML). 
 SSF.OS.BGP4, implemented in Java, was designed with 
a purely object-oriented approach. We ported to ns-2 the 



class hierarchy that implements the BGP-4 model in 
SSF.OS.BGP4.  
 
2.4 Related work in BGP implementation 
 OPNET [10], a commercial network simulator, also 
provides substantial support for BGP. However, differences 
between OPNET and ns-2, would have made porting the 
BGP model from OPNET to ns-2 rather difficult. GNU 
Zebra (written in C) is a free routing software package [11], 
supporting BGP [12] and other routing protocols. The Zebra 
BGP daemon has been recently ported to ns-2 [13]. Our 
project has been developed in parallel. We preferred the 
SSF.OS.BGP4 implementation because of its object oriented 
paradigm. 
 
3.  DESIGN AND IMPLEMENTATION OF ns-BGP 
 The ns-BGP classes are derived from the existing ns-2 
class hierarchy. A brief introduction to the ns-2 unicast 
routing structure follows. 
 
3.1  ns-2 unicast routing structure 
 The ns-2 unicast routing structure consists of the 
forwarding and the control plane [8], as shown in Figure 1. 
 The forwarding plane is responsible for classifying and 
forwarding packets to the destination nodes. It includes 
various types of connected classifiers and routing modules. 

Classifiers deliver the incoming packets either to the correct 
agent or to the outgoing link. A routing module manages a 
node’s classifier and provides an interface to the control 
plane. Address classifier (classifier_) and port classifier 
(dmux_) are two types of classifiers (trapezoids) in an ns-2 
unicast node. A classifier_ examines the destination address 
of an arriving packet and forwards the packet to the dmux_ 
if the node is the packet’s destination. Otherwise, the 
classifier_ sends the packet to a downstream node. dmux_ 
forwards the packet to an agent corresponding to the 
packet’s destination port number. 
 The control plane handles route computation, creation, 
and the maintenance of routing tables. It also implements 
specific routing algorithms. The components of the control 
plane are route logic, route object, route peer, and routing 
protocol. The route logic is the centrally created and 
maintained routing table. Route objects are employed only 
in simulations of dynamic routing. The route object 
associated with a node acts as a coordinator for the node’s 
routing instances. A route peer object acts as a container 
object used by the routing protocol. It stores the address of 
the peer agent, the metric, and the preference for each route 
advertised by the peer. Routing protocols implement 
specific routing algorithms, such as distance vector and link 
state algorithms [14]. 

 

 
Figure 1.  ns-2 unicast routing structure. Address classifier (classifier_) and port classifier (dmux_) are two types of 

classifiers (trapezoids) in an ns-2 unicast node. Classifier_ forwards a packet to the dmux_ or sends it to a downstream node. 
dmux_ forwards the packet to the corresponding agent. 

 
3.2  Unicast routing architecture of ns-BGP  
 The ns-BGP node is based on the existing ns-2 unicast 
node and the SSF.OS.BGP4 model from SSFNet. We 
converted the SSF.OS.BGP4 model to ns-2 and added the 
socket layer and the IPv4 addressing and packet forwarding 
schemes. 

 In order to provide socket support and at the same time 
maintain the structure of SSF.OS.BGP4, we also ported to 
ns-2 TcpSocket, the socket layer implementation of SSFNet. 
In order to support the IPv4 addressing and packet 
forwarding, the basic address classifier was replaced with a 
new address classifier named IPv4Classifier. To support 



user data transmission, we modified FullTcpAgent [8], the 
TCP agent for TcpSocket. 
 Figure 2 shows the unicast structure of ns-BGP. 
Address classifier classifier_ is an IPv4Classifier. A new 
routing module rtModule/BGP manages the IPv4Classifier 
and replaces the basic routing module rtModule/Base. 
TcpSocket has been added to the modified FullTcpAgent, 
encapsulating the TCP services into a socket interface. A 
new routing protocol rtProtoBGP relies only on TcpSocket 
for packet transmission. rtProtoBGP has one PeerEntry for 

each peer. PeerEntry establishes and closes a peer session 
and exchanges BGP messages with a peer. Each instance of 
PeerEntry contains one AdjIn, one AdjOut, and a variable 
BGP_Timer. LocRIB, AdjIn, and AdjOut correspond to the 
three parts of the BGP Routing Information Base (RIB): 
Loc-RIB, Adj-RIBs-In, and Adj-RIBs-Out [7]. BGP_Timer 
provides support for the BGP timing features (timers). 
 The four important classes of ns-BGP are TcpSocket, 
IPv4Classifer, rtModule/BGP, and rtProtoBGP. 

 

 
Figure 2.  Unicast structure of ns-BGP. rtModule/BGP manages classifier_. TcpSocket resides on top of  Agent/TCP/FullTcp, 

while routing protocol rtProto/BGP is introduced on top of TcpSocket. rtProto/BGP has one PeerEntry for each peer. 
 
3.2.1  TcpSockets 
 A socket is an Application Programming Interface 
(API) used in network communications. Socket applications 
treat network connections as UNIX file descriptors. Similar 
to files, communication endpoints can be written to, read 
from, or deleted. 
 The TcpSocket class is an implementation of the sockets 
API, similar to UNIX implementations. Its most important 
functions are: bind, listen, connect, close, read, and write. 
The TcpSocket interface involved implementation of 
blocking calls using the Continuation caller, a class 
consisting of two callback functions: Success and Failure. 
Necessary data structures and classes, such as queue classes 
that store the data and a TcpData class that contains the 
transmitted user data, were also added to ns-2. The 
FullTcpAgent was modified to send and receive data packets 
containing user data and to inform the corresponding 
TcpSocket of changes in the TCP status.  
 
3.2.2  IPv4Classifier 
 The IPv4Classifier is derived from Classifier. It is 
implemented as one of the ns-2 dual classes (in both C++ 
and OTcl). The IPv4Classifier uses map from the C++ 
Standard Template Library to store and search the routing 
table. To classify an incoming packet, the IPv4Classifier 
examines the packet’s destination address. It then matches 
this address in the routing table of the classifier in order to 
find a route that has the longest prefix match. 

 
3.2.3  rtModule/BGP 
 The rtModule/BGP, a new routing module implemented 
in Tcl, provides a registration interface. When a node is 
created, active route models must register with the node. 
This registration replaces the existing classifier objects in 
the node. 
 
3.2.4  rtProtoBGP 
 The rtProtoBGP class (Agent/rtProto/BGP) is 
implemented as an ns-2 dual class. An instance of this class 
implements BGP-4 in a node. This new routing protocol 
performs most BGP operations: establishing BGP peer 
sessions, learning multiple paths via internal and external 
BGP speakers, selecting the best path and storing it into the 
IP forwarding table (IPv4Classifier), and managing the BGP 
finite state machine. 
 
3.3  Supported features 
 The implementation of the ns-BGP is compliant with 
the BGP-4 specification RFC 1771 [7]. Nevertheless, it 
currently does not support the multiprotocol extensions for 
BGP-4 [15]. It includes several optional protocol extensions 
and additional experimental features. We implemented 
experimental features: sender-side loop detection, 
withdrawal rate limiting, unjittered Minimum Route 
Advertisement Interval timer, and per-peer and per-
destination rate limiting. Implemented optional features are 



Multiple Exit Discriminator, Aggregator, Community, 
Originator ID, and Cluster List path attributes. We have also 
implemented route reflection.  
 
4.  VALIDATION TEST: ROUTE REFLECTION 
 SSF.OS.BGP4 includes a suite of tests that ensured that 
the SSF.OS.BGP4 model complies with the BGP-4 
specifications, including BGP-4 features such as: basic peer 
session maintenance (keep-alive and hold timer operation), 
route advertisement and withdrawal, route selection, internal 
BGP (iBGP), and route reflection [6]. We implemented 
most of these validation tests in ns-2 and tested the same 
network topologies as employed in the SSFNet validation 
tests [9]. We also introduced a new validation test for route 
reflection [16].  
  
4.1  Network topology  
 Figure 3 shows the network topology used for 
simulation of route reflection. The network consists of three 
AS’s: AS 0 containing eight nodes (0 through 7), AS 1 
containing two nodes (8 and 10), and AS 2 with a single 
node (9). The addresses space associated with each node is 
shown in Table 1. 
 

Table 1. IP address space associated with network nodes. 
Nodes: 0 through 7 10.0.0.0/24 though 10.0.7.0/24 
Nodes: 8 and 10 10.1.8.0/24 and 10.1.10.0/24 
Node: 9 10.2.9.0/24 

 

 
Figure 3. Network topology used in the route reflection 

validation test. 
 
4.2  BGP configuration  
 The goal of the simulation test was to validate the 
behavior of multiple reflectors inside a BGP cluster [14]. AS 
0 contains two clusters. The first cluster contains two 
reflectors: nodes 0 and 1. Reflection clients of nodes 0 and 1 
are nodes 2, 3, and 4. The second cluster has one reflector 
node (5), with nodes 6 and 7 as its clients. The three 
reflectors (nodes 0, 1, and 5) are fully connected via iBGP 
sessions. External BGP (eBGP) peer sessions exist between 
nodes 2 and 8, as well as between nodes 7 and 9.  
 
4.3  Traffic source and event scheduling  
 A constant bit rate (CBR) traffic source, attached to 
node 4, employs UDP as its transport protocol. It sends 

segments of 10 bytes every millisecond to the IP address of 
node 10 (10.1.10.1). 
 The traffic source begins sending UDP segments at 0.23 
s and stops sending them at 20.0 s. At 0.25 s, the BGP agent 
in node 8 sends a route advertisement for a network 
10.1.10.0/24 that is within its AS (AS 1). At 0.35 s, the BGP 
agent in node 9 sends a route advertisement for network 
10.2.9.0/24 (AS 2). At 39.0 s, ns-2 displays all routing tables 
for BGP agents. The simulation terminates at 40.0 s.  
 
4.4 Simulation results. 
 The simulation sequence of events is shown in Table 2. 
Simulation results displayed by nam are shown in Figures 
4(a)–(g).  
 

Table 2. Sequence of simulation events. 
0.05 s 

 
Figure 4(a):  TCP SYN segments are 
exchanged between BGP peers, establishing 
the underlying TCP connections. 

0.2505 s Figure 4(b): node 8 originates an update 
message advertising the route for network 
10.1.10.0/24. 

0.2525 s Figure 4(c):  node 2 propagates the route 
advertisement to nodes 0 and 1. 

0.2561 s Figure 4(d): route reflectors (nodes 0 and 1) 
reflect the route advertisement to their clients 
(nodes 3 and 4) and to their iBGP peers. 

0.2568 s Figure 4(e): node 5 reflects the route 
advertisement to its clients (nodes 6 and 7). 
Because node 4 now knows the route to 
network 10.1.10.0/24, the UDP segment will 
be forwarded to node 10. 

0.2578 s Figure 4(f): the second UDP segment is sent 
to the destination (node 10). Node 7 
propagates the route advertisement to node 9. 

0.2580 s Figure 4(g): UDP segments are delivered to 
node 10. 

 

 
(a) Establishing TCP connections (0.05 s). 

 

 
(b) Node 8 originates a route (0.2505 s). 



 
(c) Node 2 propagates the route to nodes 0 and 1 (0.2525 s). 

 

 
(d) Nodes 0 and 1 reflect the routes to nodes 3 and 4 

(0.2561 s). 
 

 
(e) Node 4 sends a UDP segment to node 10. Node 5 

reflects the route to nodes 6 and 7 (0.2568 s). 
 

 
(f) Node 4 sends the second UDP segment. Node 7 

propagates the route to node 9 (0.2578 s). 
 

 
(g) Four UDP segments are being delivered to node 10 

(0.2580 s). 
 

Figure 4.  Snapshots of simulation results. 
 
 By the end of the simulation run, every BGP node 
knows routes to 10.1.10.0/24 and 10.2.9.0/24. We printed 
routing tables for BGP agents at 39.0 s. Status codes are: * 
valid, > best, i – internal. 

 

LocRIB dump of node 0, router ID: 10.0.0.1 
       Network             Next Hop  Metric LP Weight Path 
*>   10.1.10.0/24       10.0.2.1                -      -      - 1         i 
*>   10.2.9.0/24         10.0.7.1                -      -      - 2         i 
LocRIB dump of node 1, router ID: 10.0.1.1 
       Network             Next Hop  Metric LP Weight Path 
*>   10.1.10.0/24       10.0.2.1                -      -      - 1         i 
*>   10.2.9.0/24         10.0.7.1                -      -      - 2         i 

. 

. 

. 
LocRIB dump of node 8, router ID: 10.1.8.1 
       Network             Next Hop  Metric LP Weight Path 
*>   10.1.10.0/24       self                   
*>   10.2.9.0/24         10.0.2.1                -      -      - 0 2       
LocRIB dump of node 9, router ID: 10.0.9.1 
       Network             Next Hop  Metric LP Weight Path 
*>   10.1.10.0/24       10.0.7.1                -      -      - 0 1       
*>   10.2.9.0/24         self  
 
5.  MODEL SCALABILITY 
 As the size and complexity of simulated networks grow, 
it is important to address the scalability properties of 
simulation models. Such properties include execution speed 
and memory requirements of a simulation experiment [17]. 
The ns-BGP model should scale both with respect to the 
number of peer sessions and the size of routing tables. Our 
simulation experiments were performed on a 1.6 GHz Intel 
Xeon host with 2 GBytes of memory and the RedHat Linux 
9.0 operating system.  
 
5.1 Scalability: number of peer sessions 
 We used completely connected network topologies to 
analyze the scalability of the ns-BGP model with respect to 
the number of peer sessions. Each node is an individual AS 
containing one BGP instance and it is connected to every 
other node by eBGP sessions. Figure 5 shows the execution 
times of the ns-2 simulations as function of the number of 
peer sessions. 
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Figure 5.  Execution times for completely connected 
networks. Simulated time is 100 s. BGP timer intervals are 

the default values suggested in RFC 1771 [7].  



 The total ns-BGP execution time increases nonlinearly 
with the number of peer sessions. The nonlinear increase is 
due to the execution time spent by the scheduler that is 
responsible for scheduling simulation events. The 
contribution to execution time due to ns-BGP model 
increases linearly in the number of peer sessions. This 
contribution is no larger than the difference between the 
total execution time and the execution time spent by the 
scheduler. 
 The malloc C library call was employed to calculate the 
dynamic memory utilization per peer session using a 
modification of the approach given in [17]. Each peer 
session required 50.6 Kbytes of memory.  
 
5.2 Scalability: size of routing tables 
 We use the network topology shown in Figure 3 to 
analyze the scalability of the ns-BGP model with respect to 
the size of routing tables. In the simulation experiment, 
nodes 8 and 9 send to their peers a number of routes (half 
the number of routes contained in their respective routing 
tables). The execution times and their linear dependence on 
the size of routing tables are shown in Figure 6.   
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Figure 6. Execution time for various sizes of routing tables. 
Simulated time is 100,000 s. BGP timer intervals are default 

values as suggested in RFC 1771 [7]. 
 
 We also measured the memory utilization of the ns-
BGP model. We found that the total memory utilization 
grows linearly and calculated a memory usage of 23.1 
Kbytes per route.   
 
6.  CONCLUSIONS 
 In this paper, we presented the architecture and 
implementation of ns-BGP, a BGP-4 model for the ns-2 
network simulator. ns-BGP enables simulation and 
evaluation of BGP protocol and its variants. The described 
ns-BGP implementation includes several optional BGP 
features. Other features, such as confederation and policy-
based filtering, could be added in the future. The validation 

test illustrated the validity of the ns-BGP implementation. 
Our scalability analysis shows that the internal data 
structures and employed algorithms are scalable in terms of 
the number of peer sessions and the size of routing tables. 
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