

Example # 3 Consider a window f	· · · · · · · · · · · · · · · · · · ·		
 Window size is W for each session Arrival rate of packets into the system for each session = λ Apply Little's theorem to analyze impact of W on λ and delay T 			
 Applying Little's theorem: Since, # of packets in the system is never more than w, therefore W ≥ λT If congestion builds up in the system → T increases and λ must 			
 eventually decrease Next, the network is congested and capable of delivering λ packets per unit time for each session. Assuming delays for ACKs to be negligible relative to forward packets and W ≅ λT 			
 Increasing w in t appreciably char 		creasing delay ${\ensuremath{\mathbb T}}$ without	
Term 032	3-3-6	COE540-Abdul Waheed	

Example # 7			
A monitor on a disk server showed that the average time to satisfy an I/O request was 100 milliseconds. The I/O rate was about 100 requests per second. What was the mean number of requests at the disk server?			
 Using Little's theorem: Mean number in the disk server = arrival rate x response time = (100 reqests/sec)(0.1 sec) = 10 requests 			
Term 032	3-3-16	COE540-Abdul Waheed	

