Little's Theorem

Little's Theorem: Introduction

- More interested in long term, steady state than in startup \rightarrow Arrivals $=$ Departures
- Black box view of the system
- Little's theorem:

Mean \# of tasks in system = arrival rate x mean reponse time
$\mathrm{n}=\lambda \mathrm{w}$

- Observed by many, Little was first to prove
- One of the most commonly used theorems in queuing theory
- Applies to any system in equilibrium, as long as nothing in black box is creating or destroying tasks
- Can be applied even to the systems where jobs can be lost
- Applied to parts of systems consisting of waiting and service positions as a job is not lost if it finds a buffer position

Little's Theorem

- λ : customer arrival rate
- N : average number of customers in system
- T: average delay per customer in system
- Little's Theorem: System in steady-state

$$
N=\lambda T
$$

Example \# 1: Little's Theorem

- Consider a network of transmission lines
- Packets arrive at n different nodes with corresponding rates λ_{1}, ..., λ_{n}
- If N is the average total number of packets inside the network, then determine the average delay per packet (T), regardless of the packet length distribution and method of routing packet
- Applying Little's theorem:

$$
T=\frac{N}{\sum_{i=1}^{n} \lambda_{i}}
$$

- If N_{i} and T_{i} are average number in the system and average delay of packets arriving at node i, respectively, then

$$
\mathrm{N}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}
$$

Example \# 2

- A packet arrives at a transmission line every k seconds
- The first packet arriving at time 0
- All packets have equal length and require $\alpha \mathrm{K}$ seconds for transmission where $\alpha<1$
- The processing and propagation delay per packet is P seconds
- Determine average number in the system N
- Solution:
- The arrival rate here is $\lambda=1 / \mathrm{K}$
- Since packets arrive at regular rate (equal inter-arrival times), there is no delay for queuing \rightarrow time T a packets spends in the system (including propagation delay) is: $T=\alpha K+P$
- Applying Little's theorem to find time average \# in system:
$\mathrm{N}=\lambda \mathrm{T}=\alpha+\mathrm{P} / \mathrm{K}$
- Here, the \# in system $N(t)$ is a deterministic function of time
- In this case, $N(t)$ does not converge but Little's theorem holds with N viewed as a time average

Example \# 3

- Consider a window flow control system
- Window size is w for each session
- Arrival rate of packets into the system for each session $=\lambda$
- Apply Little's theorem to analyze impact of w on λ and delay T
- Applying Little's theorem:
- Since, \# of packets in the system is never more than w, therefore $\mathrm{W} \geq \lambda \mathrm{T}$
- If congestion builds up in the system $\rightarrow T$ increases and λ must eventually decrease
- Next, the network is congested and capable of delivering λ packets per unit time for each session. Assuming delays for ACKs to be negligible relative to forward packets and $W \cong \lambda T$
- Increasing w in this case only result in increasing delay T without appreciably changing λ
λ

Example \# 4

- Consider a k server queuing system
- Room for at most $\mathrm{N} \geq \mathrm{K}$ customers in system
- The system is always full
- Assume that it starts with N customers and that a departing customer is immediately replaced by a new customer
- A closed queuing system
- Average customer service time $=\bar{X}$
- We want to find the average customer time in the system T
- Applying Little's theorem twice:
- For the entire system: $\mathrm{N}=\lambda \mathrm{T}$
- For servers only: $\mathrm{K}=\lambda \bar{X} \rightarrow$ servers continuously busy
- By eliminating I in the two relations:

$$
T=\frac{N \bar{X}}{K}
$$

Example \# 4 (Cont'd)

- Now consider same system under different arrival assumptions
- Customers arrive at rate λ but are blocked (and lost) from the system if they find the system full
- Then the number of servers that may be busy are less than K
- Let \bar{K} be the average number of busy servers
- Let β be the proportion of customers that are blocked from entering the system
- Applying Little's theorem to the servers of the system:
- Effective arrival rate $=(1-\beta) \lambda$
- Then average number of busy servers are given as: $\bar{K}=(1-\beta) \lambda \bar{X}$
- Which gives: $\beta=1-\frac{\bar{K}}{\lambda \bar{X}}$
- Since, $\bar{K} \leq \mathrm{K}$, we obtain a lower bound on blocking probability as:

$$
\beta \geq 1-\frac{K}{\lambda \bar{X}}
$$

Example \# 5: A Polling System

- Consider a transmission line:
- Serves m packet streams (i.e., m users) in round-robin cycles
- In each cycle, some packets of user 1 are transmitted followed by some packets of user 2 , and son on until finally packets of user m are transmitted
- An overhead period of average length A_{i} precedes the transmission of the packets of user i in each cycle
- The arrival rate and average transmission time of the packets of user i are λ_{i} and \bar{X}_{i} respectively
- If $A=A_{1}+A_{2}+\ldots+A_{m}$, determine average cycle length L
- Applying Little's theorem:
- Fraction of time the transmission line is busy transmitting packets of user i is $=\lambda_{i} \cdot \bar{X}_{i}$
- Overhead period of packet i can be viewed as transmission of "packets" with average transmission time of A_{i}

Example \# 5 (Cont'd)

- Application of Little's theorem (cont'd)
- Arrival rate of these overhead "packets" $=1 / \mathrm{L}$
- Fraction of time used for transmission of these overhead "packets" using Little's theorem =A/L
- Therefore,

$$
1=\frac{A}{L}+\sum_{i=1}^{m} \lambda_{i} \bar{X}_{i}
$$

which yields the average cycle length as:

$$
L=\frac{A}{1-\sum_{i=1}^{m} \lambda_{i} \bar{X}_{i}}
$$

Example \# 6: Time-Sharing System

- Time-sharing system with N terminals
- A user logs into the system through a terminal
- After an initial period of average length R submits a job that requires an average processing time P at the computer
- Jobs queue up inside computer and are served by a single CPU according to an unspecified priority or time-sharing rule
- Estimate:
- Maximum throughput sustainable by the system (in jobs per unit time); and
- Average delay of a user

Example \# 6 (Cont'd)

- Bounds on the attainable system throughput λ
- Assume number in the system is always $\mathrm{N} \rightarrow$ to get upper bound
- As soon as a user departs \rightarrow replaced by another immediately
- Model: departing user re-enters the system immediately
- Bounds on N and T can be translated into throughput bounds via Little's theorem: $\lambda=\mathrm{N} / \mathrm{T}$
- Apply Little's theorem between points A to C:
- If T is the average time in the system: $\lambda=\mathrm{N} / \mathrm{T}$
- $T=R+D$
- R is the average reflection time before a job is submitted
- D is the average delay between submitting job until its completion: $P \leq D \leq N P \rightarrow D$ varies from no waiting (P) to maximum waiting (NP)
- Therefore, $\mathrm{R}+\mathrm{P} \leq \mathrm{T} \leq \mathrm{R}+\mathrm{NP}$
- Thus, bounds on λ are given as: $\frac{N}{R+N P} \leq \lambda \leq \frac{N}{R+P}$

Example \# 6 (Cont'd)

- Throughput is also bonded above by processing capacity
- Execution time of a job is P units on the average
- Computer cannot process more $1 / \mathrm{P}$ jobs per unit time in the long - Therefore, $\lambda \leq \frac{1}{P}$
- By combing two results:
$\frac{N}{R+N P} \leq \lambda \leq \min \left\{\frac{1}{P}, \frac{N}{R+P}\right\}$
- Bounds on average delay using $T=N / \lambda$:
- When system is fully loaded

$$
\max \{N P, R+P\} \leq T \leq R+N P
$$

Example \# 6 (Cont'd)

- Throughput bounds:
- As \# of terminals N increases \rightarrow throughput reaches up to $1 / \mathrm{P}$
- When $\mathrm{N}<1+\mathrm{R} / \mathrm{P} \rightarrow \mathrm{N}$ becomes throughput bottleneck
- When $N>1+R / P \rightarrow$ limited processing power is the bottleneck
- These bounds are independent of system parameters
- This is due to Little's theorem

Example \# 6 (Cont'd)

- Bounds on average delay:
- Delay rises in direct proportion to N
- Assume fully loaded system

Example \# 7

- A monitor on a disk server showed that the average time to satisfy an I/O request was 100 milliseconds. The I/O rate was about 100 requests per second. What was the mean number of requests at the disk server?
- Using Little's theorem:

Mean number in the disk server $=$ arrival rate x response time

$$
\begin{aligned}
& =(100 \text { reqests } / \mathrm{sec})(0.1 \mathrm{sec}) \\
& =10 \text { requests }
\end{aligned}
$$

Example \# 8: The M/M/1 Queue

- Little's Theorem: average time in system

$$
T=\frac{N}{\lambda}=\frac{1}{\lambda} \frac{\lambda}{\mu-\lambda}=\frac{1}{\mu-\lambda}
$$

- Average waiting time and number of customers in the queue excluding service

$$
W=T-\frac{1}{\mu}=\frac{\rho}{\mu-\lambda} \text { and } N_{Q}=\lambda W=\frac{\rho^{2}}{1-\rho}
$$

