
1

Implementation of an IEEE 802.11 Wireless LAN Model using OPNET™

Rusty O. Baldwin, Nathaniel J. Davis IV, Scott F. Midkiff
Bradley Department of Electrical and Computer Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0111

ABSTRACT

Implementing a model of a multiple access protocol
such as IEEE 802.11 can be a highly error-prone task.
Standards are typically textual and can, however precise
the wording, have several plausible interpretations. In
this paper we describe how the formal specification of
the IEEE 802.11 standard [IEE97] was used to overcome
this ambiguity and produce an accurate OPNET
simulation model. We found that the objects used in the
formal specification language SDL-92 (Specification
and Description Language) mapped to OPNET objects
quite well. The IEEE 802.11 simulation model is
described and validation of the model is discussed.
Research into real-time issues in wireless LAN using the
IEEE 802.11 model is briefly presented.

INTRODUCTION

Building a simulation model from a specification is a
frustrating process. The specification is invariably
large, seemingly unorganized, and details about
important subsystem interactions can be scattered
throughout the document. The document may also
contain apparent (or actual) contradictions and
ambiguities. Furthermore, in group projects, different
interpretations of the specification will occur and
significant time will be wasted reworking the model.

In this paper, we discuss the modeling of a
communications protocol where many of the problems
cited above were avoided by using a formal
specification of the system. In a very straight-forward
manner we mapped the objects in the formal
specification to objects in MIL3’s communication
simulation system, OPNET. In this paper we describe
the communication protocol being modeled,
IEEE 802.11, and how it differs from more familiar
multiple access protocols such as Ethernet. Next, we
discuss the mapping between the formal specification of
the protocol and OPNET objects. The model itself is
then described and research issues in real-time wireless
LANs is presented. Finally, validation of the model is
discussed.

IEEE 802.11

IEEE 802.11 is a recent (1997) standard developed for
wireless local area networks (WLANs). Although we
cannot discuss the protocol in depth here due to space
limitations, [CWK97] is an excellent article to consult
for more information. IEEE 802.11 is a multiple access
protocol in which stations in the network must
“compete” for access to the shared communications
medium to transmit data. It shares some characteristics
of more familiar multiple access networks such as
Ethernet (IEEE 802.3) but also has significant
differences. IEEE 802.11 uses, as does Ethernet, a
carrier sensing capability to determine if the
communications medium is currently being used. If two
or more stations in the network transmit at the same time
(i.e., a collision occurs), stations retransmit their data
after random periods of time as in Ethernet.

IEEE 802.11 differs from many multiple access
protocols in three ways: (1) the transmission medium,
(2) collision detection, and (3) the backoff algorithm. In
most networks, the data is transmitted on a piece of wire
or fiber-optics. In wireless networks, radios transmit the
data over the air. This so-called “air-interface,” in
contrast to wires or fiber-optics, is prone to induce bit
errors into the data being transmitted. Typical
bit-error-rates (BER) for wires and fiber-optics are 10-10

and are fairly static. The wireless BER can be very
dynamic and can be as poor as 10-2 or worse. This
highly dynamic environment obviously presents unique
challenges to the implementation of WLANs.

A second area where IEEE 802.11 differs from
many multiple access protocols is in collision detection.
In wired networks, stations can listen to their own
transmissions. If another station is transmitting at the
same time, stations will detect that a collision has
occurred. When using radios to transmit data, stations
cannot listen to their own transmissions. They therefore
must rely on an acknowledgment from the receiving
station to determine if the transmission was successful.
If no acknowledgment is received, the transmission is
attempted again.

2

A third area where IEEE 802.11 differs is in its
backoff algorithm. In many backoff algorithms, a timer
is set and decrements until it reaches zero whereupon
the station will transmit the data (assuming an idle
medium). In IEEE 802.11, the timer counts idle slots
and only decrements when the medium has been
detected as being idle for the entire slot. The backoff
algorithm works basically as follows: a backoff timer is
set by selecting a random integer from a uniform
distribution over the interval [0, CW], where CW is the
width (in slots) of the contention window (the
contention window is the range of integers from which
stations in the network choose their backoff timer
values). For every idle slot that is detected, the timer is
decremented by one. If the medium becomes busy prior
to the timer expiring, the timer is frozen until another
idle period is detected—when the timer is decremented
again. When the timer reaches zero, the station
transmits its packet. If there is a collision, CW is
doubled until it reaches a maximum value, CWmax.
The CW is reset to a default minimum value of CWmin
after a successful transmission.

MAPPING BETWEEN SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL) OBJECTS

AND OPNET OBJECTS

The IEEE 802.11 specification has both a textual
description of the standard and a formal description
written in SDL-92 [EHS97]. Both the textual and the
formal description are normative, that is, if a system
correctly implements the formal (and/or the textual)
description, it is, by definition, an IEEE 802.11
implementation. This presents an obvious advantage to
someone modeling the system since the model (correctly
implemented) inherently conforms to the standard.
Additionally, the formal description contains all of the
subsystem interactions explicitly identified in the
location where they occur and all subsystem interfaces
are identified. Obviously, we cannot present a complete
description of SDL, however, the major components of
the SDL language are quite similar to OPNET objects
and so should be easily followed by anyone familiar
with OPNET.

Three fundamental objects in SDL are blocks,
processes, and signals. Blocks determine lexical scope
and structural hierarchy while processes specify
behavior using finite state machines. Processes operate
concurrently and independently and they communicate
using signals. Each block may contain other blocks
and/or processes. These fundamental SDL objects are
shown in Figure 1. Note that this figure does not

contain all (or even most) of the objects available in
SDL. Figure 2 is the SDL diagram for the subset of
IEEE 802.11 functionality we implemented. The model
does not include encryption, authentication, power-save
mode functions, fragmentation/de-fragmentation, and
the point coordination function (PCF). These functions
were not included since they were not relevant to the
real-time issues we were investigating. The
request-to-send (RTS) and clear-to-send (CTS)
capability will be added at a later date. The solid line
that encloses the figure denotes the logical boundary of
the object.

Block

Comment

Process

Signal Route

 Signal A,
 Signal B

Signal List

Figure 1: SDL Legend

At some point in a hierarchy of SDL blocks
behavior is specified by including process objects.
Focusing on the Transmission block in Figure 2, we will
describe the process objects and the symbols used.
Figure 3 shows the view inside of the block
Transmission. Note how the input and output signals in
Figure 3 correspond to those in Figure 2, as one would
expect. More detail about which processes these signals
go to or are received from is included at this level.

Protocol_Control_STA

Transmission

IEEE 802.11 System Station

Reception

Busy,
Idle,
Slot

Backoff,
Cancel,
TxRequest

BkDone,
TxConfirm

ChangeNav

RxIndicate,
NeedAck,
RxCfAck,
RxCfPoll

PhyRxSignalsPhyTxSignals

This block implements
the Distributed

Coordination Function
protocol of IEEE

802.11.

This block handles
transfers of Protocol

Data Units to the
Physical Layer.

This block handles the
reception of Protocol
Data Units from the
Physical Layer.

PduRequest

MsduIndicate

Figure 2: IEEE 802.11 System Station

3

The process objects have their own symbols,
some of which include: start, state, input signal, output
signal, and task. These process object symbols are
shown in Figure 4. They are self-explanatory if one
keeps in mind that the process object is essentially a
finite state machine. One exception is the task symbol
which indicates algorithmic steps that need to be
accomplished within the process.

Block Transmission

Busy,
Idle,
Slot

Backoff,
Cancel

PhyTxSignals

This process places the
Protocol Data Units on
the Physical Layer and
generates checksums.

Busy,
Idle,
Slot

TxRequest

TxConfirm BkDone

Backoff_Procedure

Data_Pump

This process
determines the backoff
count and signals
Protocol Control when
backoff is done.

Figure 3: Block Transmission

Start

State

Input
Signal

Input
Signal

(signal from processes
logically above or parallel
to this proccess)

(signal from processes
logically below this proccess)

Output
Signal

(signal to processes
logically below this proccess)

Output
Signal

(signal to processes
logically above or parallel
to this proccess)

Task

Figure 4: Process Legend

Figure 5 shows an extract of the process block
for Data_Pump in Figure 3. In this process, a
computational task block is encountered first. Next, the
process enters the Tx_Idle state where it remains until it
receives one of the signals TxRequest, Busy, Idle, or
Slot. If Data_Pump receives TxRequest, the process
transmits a packet via other processing not shown in the
figure. If it receives Busy, Idle, or Slot, Data_Pump
sends the same signal to Backoff_Procedure and returns
to state Tx_Idle.

These SDL objects map quite nicely to OPNET
objects. The IEEE 802.11 System Station block shown
in Figure 2 corresponds to a node. The processes within

lower level blocks (i.e., Data_Pump and
Backoff_Procedure within Transmission) map to objects
available within the OPNET Node Editor such as
processors, queues, generators, etc.

Tx_Idle

Tx_Idle

Process Data_Pump

dTx:=dUsec
(aTxRfDelay+
aTxPlcpDelay)

TxRequest Busy Idle Slot

SlotIdleBusy...

Figure 5: Process Block

Referring to Figure 5, the implementation of a process
block corresponds to objects available within the
OPNET Process Editor such as initial states, states, and
transitions. SDL signals would obviously be
implemented using OPNET interrupts combined with
state transition conditions. A task would be
implemented using Proto-C code in state enter/exit
executives or transition executives. Figure 6
summarizes these mappings. SDL has other objects to
model more complex behavior but we have found that
they can all be implemented with ease in a manner
similar to the objects discussed.

Start

State

Input
Signal

Input
Signal

Output
Signal

Task

Block

Process

SDL Objects OPNET Objects

Node

Processor, Generator,
Queue, Receivers,
Transmitters, Antenna

Initial State

State

Interrupt, Transition
Condition

Proto-C code in
Entry/Exit Executive,
Transition Executive

Entry Executive

Exit Executive

Output
Signal

ND

 State
st_0

 State
st_0

 State
st_0

Figure 6: SDL to OPNET Object Mapping

4

While metrics of programming errors were not
collected (this was not the focus of the research effort)
mapping the objects in the formal specification to
OPNET objects seemed to greatly reduce the number of
logical errors as well as reduce development time.
Development of this complex system from initial design
through debugging and model validation took
approximately 250 man-hours. This time included
learning OPNET. In addition, since we used the formal
specification of IEEE 802.11, we had the added
assurance that the model would indeed be a valid
IEEE 802.11 implementation.

THE MODEL

The IEEE 802.11 model is to be used to conduct
research into the real-time capabilities of IEEE 802.11.
The model implements the distributed coordination
function (DCF) of IEEE 802.11. Stations within model
form an ad-hoc network (i.e., an independent basic
service set (IBSS) in IEEE 802.11 terms).

Each station can generate three classes of data
packets: hard real-time (i.e., packets with deadlines that
cannot be missed), soft real-time (i.e., packets with
deadlines that can be met within a certain tolerance),
and normal data packets with no deadlines. As currently
implemented, each class of data packets has up to three
independent input streams that can be specified to
simulate different applications running on the station.
The arrival, service, and packet deadline distributions
can be any of the predefined distributions supported by
OPNET. Hard real-time packets are transmitted until
the hard real-time queue is empty, then soft real-time
packets are transmitted. Finally, normal data packets are
sent. The queueing discipline is currently
first-come-first-served (FCFS), although we plan to
enhance the model to support several other disciplines.

The model is highly parameterized; in an
individual station, over 20 different IEEE 802.11
parameters can be varied. It would be impossible to
discuss each parameter in detail here but examples
include the transmission rate, the idle period slot time,
the packet length (which can be fixed or described
stochastically), and the radio transmit to receive mode
switch time. All parameters are set to the default values
(where applicable) specified in the IEEE 802.11
standard. If one parameter is changed and that change
affects the value of another parameter, this change is
automatically calculated and dynamically updated in the
model prior to simulation execution.

We believe that one way to improve the
real-time performance of IEEE 802.11 is to change the

backoff algorithm. We are in the process of modifying
the model to allow the user to select from a variety of
different backoff algorithms.

One of the characteristics of wireless LANs is
the large number of errors introduced in the channel.
We are incorporating a Gilbert model [Gil60] into the
radio transceiver pipeline to induce bursty bit errors in
the transmitted packets. This type of bit error model
allows us to directly specify the BER of the channel as
well as the burstiness of the errors. This model is,
conceptually, a higher-level model than that which is
supported in the default radio transceiver pipeline, but it
can very easily and seamlessly be incorporated into it.

The model collects several specialized statistics
including the mean number of transmission attempts
until successful transmission, the mean access delay
until a waiting packet accesses the channel, and percent
of packets that meet/miss their deadlines. Statistics that
are automatically supported by OPNET such as
throughput, queue size, etc. are available as well.

MODEL VALIDATION

The model was validated by comparing the performance
metrics of our model against those obtained in [BiF96].
Because [BiF96] was based on an earlier draft, several
of that paper’s parameters did not match those in the
latest IEEE 802.11 standard. For the validation, we
changed the values of these parameters in our model to
match [BiF96].

Figure 7 shows throughput for 5, 10 and 20
station networks. Figure 8 shows the average
transmission attempts per packet for various values of
the contention window, CWmin, and CWmax. Figure 9
shows saturation throughput versus number of stations
for various values of the contention window, CWmin,
and CWmax.

As can be seen from these three figures, the
agreement between the two models is quite good. In
fact, the data obtained in the two uppermost plots in
Figure 8 were so close to [BiF96] that our data and their
data virtually overlap. The agreement of other
performance metrics is similar.

Other papers that can be consulted regarding the
performance of IEEE 802.11 include [ChG95] and
[ViZ95].

CONCLUSION

In this paper, we demonstrated the advantages of
implementing a simulation model using a formal
specification of the system mapped to OPNET objects.

5

The validation data showed excellent agreement
between our model and other published results. In
addition, using this approach we were able to construct
this model in a short time with no prior experience using
OPNET. Our model is highly parameterized and can
model a wide range of input traffic. We expect that by
modifying the default backoff algorithm in IEEE 802.11
we can significantly enhance its real-time performance.

REFERENCES

BiF96 G. Bianchi, L. Fratta, M. Oliveri,
“Performance Evaluation and Enhancement
of the CSMA/CA MAC Protocol for
802.11 Wireless LANs,” 7th IEEE
International Symposium on Personal,
Indoor and Mobile Radio Communications
PIMRC ’96, pp. 392-396, Oct. 1996.

ChG95 H. Chhaya, S. Gupta, “Throughput and
Fairness Properties of Asynchronous Data
Transfer Methods in the IEEE 802.11
MAC Protocol,” 6th IEEE International
Symposium on Personal, Indoor and
Mobile Radio Communications PIMRC
’95, Vol. 2, pp. 613-617, Sep. 1995.

CWK97 B. Crow, I. Widjaja, J. Kim, P. Sakai,
“IEEE 802.11 Wireless Local Area
Networks,” IEEE Communications
Magazine, pp. 116-126, Sep. 1997.

EHS97 Jan Ellsberger, D. Hogrefe, A. Sarma, SDL,
Formal Object-Oriented Language for
Communicating Systems, Prentice-Hall
Europe, Hertfordshire, UK, 1997.

Gil60 E. N. Gilbert, “Capacity of a Burst-Noise
Channel,” Bell Systems Technical Journal,
Vol. 39, pp. 1253-1265, 1960.

IEE97 Editors of IEEE 802.11, Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, Draft
Standard 802.11, P802.11/D6.1, Institute
of Electrical and Electronics Engineers,
Inc., New York, May 9, 1997.

ViZ95 M. A. Visser, M. El Zarki, “Voice and
Data transmission over an 802.11 Wireless
network,” 6th IEEE International
Symposium on Personal, Indoor, and
Mobile Radio Communications PIMRC
’95, Vol. 2, pp. 648-652, Sep. 1995.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

T
h

ro
u

g
h

p
u

t

5 station (Bif96)

10 station (Bif96)

20 station (Bif96)

5 station (OPNET)

10 station (OPNET)

20 station (OPNET)

Figure 7: Throughput versus Offered Load

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

5 10 15 20 25 30 35 40 45 50

Number of Stations

M
ea

n
 A

tt
em

p
ts

CWmin 32; CWmax 256 (BiF96)

CWmin 32; CWmax 1024 (BiF96)

CWmin 128; CWmax 1024 (BiF96)

CWmin 32; CWmax 256 (OPNET)

CWmin 32; CWmax 1024 (OPNET)

CWmin 128; CWmax 1024 (OPNET)

Figure 8: Mean Attempts per Packet

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5 10 15 20 25 30 35 40 45 50

Number of Stations

S
at

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

CWmin 32; CWmax 256 (BiF96)

CWmin 32; CWmax 1024 (BiF96)

CWmin 128; CWmax 1024 (BiF96)

CWmin 32; CWmax 256 (OPNET)

CWmin 32; CWmax 1024 (OPNET)

CWmin 128; CWmax 1024 (OPNET)

Figure 9: Saturation Throughput

