King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 543 – Mobile and Wireless Networks

Term 032

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

- 1. Free-Space Propagation
- 2. Two-Ray Model for Mobile Radio Environment
- Path-Loss Models:
 - a. Path-Loss Models for Macrocellular Areas
 - b. Path-Loss Models for Microcellular Areas
 - c. Path Models for Picocellular Indoor Areas
 - d. Path Models for Femtocellular Areas
- 4. Multi-path Propagation
 - a. Rayleigh fading
 - b. Doppler
 - c. Delay Spread
 - d. Coherence Bandwidth

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Received Signal Strength

- Metric: Received Power / Transmitted Power
- Factors:
 - Distance (Path Loss Model)
 - Slow fading or Shadowing (Obstacles)
 - Fast fading (mobility, scatterers, etc.)
 - Doppler spread
 - Multipath

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

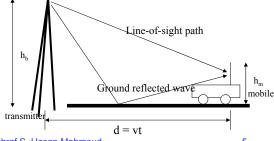
3

Free-Space Propagation

 For free-space, the ratio of received power, P_r, to transmitted power, P_t, is given by

$$\frac{P_r}{P_t} = G_t G_r \times \left(\frac{\lambda}{4\pi d}\right)^2$$

- Where: G_t and G_r are the transmit and receive antenna gains respectively λ is the wavelength of the radio signal, while d is the distance between the transmitted and the receiver
- Define P_0 as the relative signal strength at one meter distance or $P_0 = G_r G_r (\lambda/4\pi)^2 \rightarrow P_1/P_r = P_0/d^2$
- Note that received signal strength is inversely proportional to the square of the distance


3/2004 Dr. Ashraf S. Hasan M

Two-Ray Model for Mobile Radio Environments

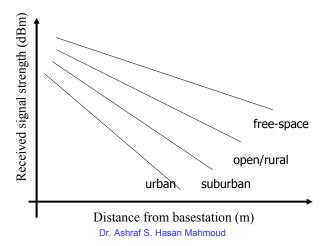
The ratio of received power, Pr, to transmitted power, P_t, is given by

$$\frac{P_r}{P_t} = G_t G_r \times \left(\frac{h_b h_m}{d^2}\right)^2$$

- Note the received power relative to transmitted power falls 40 dB per decade (αd^{-4})
- Signal strength increases as antenna heights are increased

Dr. Ashraf S. Hasan Mahmoud

Distance-Power Gradient Relation


The ratio of received power, P_r, to transmitted power, P_t, is given by

$$P_r = P_0 d^{-\alpha}$$

- For free-space $\alpha = 2$
- For the simplified two-ray model, $\alpha = 4$
- For indoor and urban radio channels ~ depending on obstructions and environment:
 - Indoor corridors or open areas α < 2
 - Metallic buildings $\alpha > 4 \ (\sim 6)$

Distance-Power Gradient Relation (2)

Typical outdoor received-signal strength vs. distance curves

Distance-Power Gradient Relation (3)

Writing the previous relation in dBs

$$10\log(P_r) = 10\log(P_0) - 10\alpha\log(d)$$

- The $10 \alpha \log(d) \sim$ represents the power loss in dB with respect to received power at one meter
- Loss of 10α dB per decade of distance
- Let $L_0 = 10\log(P_t) 10\log(P_0)$

be the path-loss in dB at a distance of one meter, then the total path-loss, $L_{p^{\prime}}$ at distance d, is given by

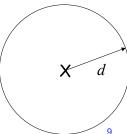
$$L_n = L_0 + 10\alpha \log(d)$$

2/23/2004

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Shadow Fading


- The received signal strength at the same distance d from transmitted is NOT exactly fixed
 - Due to obstructions (e.g. buildings for outdoor, walls for indoor, etc.)
- The variation is slow (compared to other yet to be introduced variations) – frequency independent (almost)
- Measurements have shown that when the received signal strength is reported in decibels, the variation (or random component) follows the normal distribution
- Modifying the path-loss equation to include this variation, yields

$$L_{p} = L_{0} + 10\alpha \log(d) + X_{dB}$$

Where X_{dB} follows the normal distribution with mean zero and standard deviation of σ_{dB}

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Shadow Fading (2)

- σ_{dB} is a function of the propagation environment typical value ~ 8 dB
- The signal variation on the linear scale follows the log-normal distribution:

log-normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma_{dB}x} \exp\left(\frac{-(\ln x - \mu)^2}{2\sigma_{dB}^2}\right)$$

- Note that from the above formula, the distribution of the $\ln x$ is normal with mean μ and standard deviation of $\sigma_{\rm dB}$
- Fade Margin (F_{σ}): When computing signal coverage a margin of power dBs are added to compensate for the slow fading parameter

Example: Fade Margin Calculation

 A mobile system is to provide 95% successful communication at the fringe of coverage with a shadow fading component having a zero mean Gaussian distribution with standard deviation of 8 dBs. What is the required fade margin?

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

11

Example: Fade Margin Calculation

• Solution:

Let the local mean = M,

Therefore, the overall signal level,

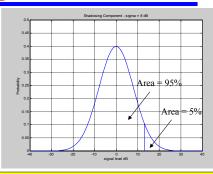
S = M + X

where X is a normal r.v. specifying the shadowing process (i.e. X \sim N(0, $\sigma{=}8$ dB)

Note that Prob[S< M] = Prob[S>M] = 0.5

It is desired to add a fade margin F such that

Prob[M-X+F>M] = 0.95, or


Prob[X > F] = 0.05, or

 $Prob[X/\sigma > F/\sigma] = 0.05$

 \rightarrow 0.05 = 0.5 erfc((F/ σ)/sqrt(2

 \rightarrow F/ σ = 1.163Xsqrt(2)

 \rightarrow F = 13.16 dB

Recall: for a Gaussian variable X with mean m and standard deviation of

 $Prob[X > F] = Prob[(X-m)/\sigma > (F-m)/\sigma] = Prob[X_{\sigma} > F_{\sigma}]$

where X_{α} is the zero-mean Gaussian r.v. with unity standard deviation.

 $\Pr[X_{\sigma} > F_{\sigma}] = \frac{1}{\sqrt{2\pi}} \int_{F_{\sigma}}^{\infty} e^{-t^2/2} dt \quad \text{which is tabulated as Q(F}_{\sigma})$

One can also use the erfc as well: since erfc is defined as

2/23/2004

Dr. erfa

therefore, $Q(F_{\sigma}) = 0.5 \text{ erfc}(F_{\sigma}/\text{sqrt}(2))$,

Path-Loss Models for Macrocellular Areas - Okumura-Hata Model

Empirical formula calculating the median path-loss for a quasismooth terrain in an urban area

$$L_p = 69.55 + 26.16 \log f_c - 13.83 \log h_b - a(h_m) + [44.9 - 6.55 \log h_m] \log d$$

Where f_c in MHz - 150 < f_c < 1500 MHz h_b in meters – basestation antenna height – 30 < h_b < 200 m h_m in meters – mobile antenna height - 1 < h_m < 10 m d in kilometers - distance - 1 < d < 20 km

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

13

Path-Loss Models for Macrocellular Areas – Okumura-Hata Model (2)

- The correction factor for the mobile antenna height is given by:
- Small-medium city:

$$a(h_m) = (1.1\log f_c - 0.7)h_m - (1.56\log f_c - 0.8)$$

Large city:

$$a(h_m) = 8.29(\log 1.54 h_m)^2 - 1.1, \quad fc \le 200MHz$$

$$a(h_m) = 3.2(\log 11.75h_m)^2 - 4.97, \quad fc \le 400MHz$$

$$a(h_m) = 3.2(\log 11.75h_m)^2 - 4.97, \quad fc \le 4000$$
 For a suburban area:
$$L_p = L_p(urban) - \left[2\log\left[\frac{f_c}{28}\right]^2 - 5.4\right]$$
 For an open area:

$$L_p = L_p(urban) - 4.78(\log f_c)^2 + 18.33\log f_c - 40.94$$

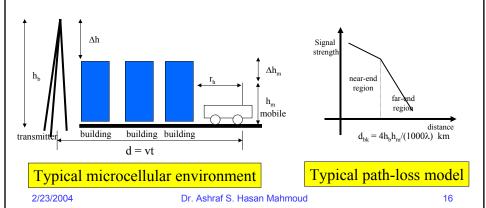
2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Path-Loss Models for Macrocellular Areas – Okumura-Hata Model (3)

- COST-231: For PCS operating at 1,800 2,000 MHz, the European Co-operative for Scientific and Technical Research extended the previous model
 - See parameters in Appendix 2C in Pahlavan's book
- Joint Technical Committee (JTC) of Telecommunication Industry Association (TIA) has models for PCS at 1,800 MHz

A good summary of Hata / COST 231 models can be found at http://www.comappls.com/tonyt/Applets/Propagation/PropEqns1.doc


2/23/2004

Dr. Ashraf S. Hasan Mahmoud

15

Path-Loss Models for Microcelluar Areas

- Spanning: 100 m ~ few kilometers
- Basestation height ~ roof tops or lampposts
- See Table 2.2 (of Pahlavan's book) for detailed model

Path-Loss Models for Picocelluar Indoor Areas

- Covering buildings or parts of buildings
- Spanning: 30 ~ 100 m
- Applications: WLANs, wireless PBX, PCS
- **Multifloor Attenuation Model**

 $L_p = L_0 + nF + 10\alpha \log(d)$ F is signal attenuation per floor Where

L₀ is the path-loss at first meter

d is distance in meters n is number of floors

- Typical values for F = 10 dB and 16 dB for measurements at 900 MHz and 1.7 GHz, respectively
- Furniture objects cause shadowing $\sim \sigma_{dB} = 4 \text{ dB}$

Path-Loss Models for Picocelluar Indoor Areas – JTC Model (@ 1.8 GHz)

The previous formula modified to

$$L_p = L_0 + L_f(n) + 10\alpha \log(d) + X$$

Where L_f is power loss due to floors

L₀ is the path-loss at first meter

d is distance in meters

 α is the path-loss exponent

n is number of floors

X is log-normally distributed (σ_{dB})

Environment	Residential	Office	Commercial
L_0	38	38	38
10α	28	30	22
L _f (n)	4n	15+4(n-1)	6+3(n-1)
$\sigma_{\sf dB}$	8	10	10

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Path-Loss Models for Picocelluar Indoor Areas – Partition Dependent Model

 Fixed path-loss exponent α = 2; introduces loss for each partition encountered by a straight line connecting the transmitter and receiver

 $L_p = L_0 + 20\log(d) + \sum m_{type} w_{type}$

Where m_{type} refers to # of partition of that type

 \mathbf{w}_{type} the loss in dBs for that type

d is distance in meters

Partitions: Soft ~ 1.4 dB –
 Hard ~ 2.4 dB

 Walls: dry plywood ~ 1 dB – concrete ~ 20 dB

Signal Attenuation of 2.4 GHz through	dB
Window in brick wall	2
Metal frame, glass wall into building	
Office wall	6
Metal door in office wall	
Cinder wall	
Metal door in brick wall	
Brick wall next to metal door	

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Path-Loss Models for Femtocelluar

Span: 2 ~ 10s of meters

Individual residences

Applications: bluetooth, home RF

Previous JTC model may apply at 1.8 GHz

For operation at 2.4 GHz and 5 GHz (unlicensed bands)

$$L_p = L_0 + 10\alpha \log(d)$$

Where L_0 is the path-loss at first meter

d is distance in meters α is the path-loss exponent

2/23/2004

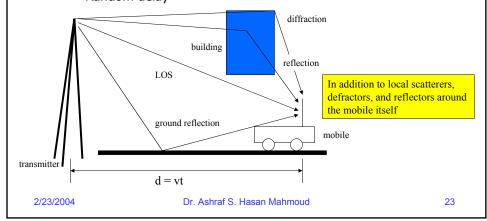
Dr. Ashraf S. Hasan Mahmoud

20

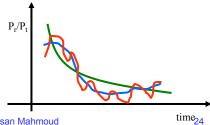
Path-Loss Models for Femtocelluar – Model Parameters

f _c (GHz)	Environment	Scenario	Path Loss at d = 1 m (dB)	
2.4	Indoor office	LOS	41.5	1.9
		NLOS	37.7	3.3
5.1	Meeting room	LOS	46.6	2.22
		NLOS	61.6	2.22
5.2	Suburban residences	LOS and same floor	47	2 to 3
		NLOS and same floor		4 to 5
		NLOS and room in the higher floor directly above Tx		4 to 6
		NLOS and room in the higher floor not directly above the Tx		6 to 7
2/23/20	004	Dr. Ashraf S. Hasan Mahmoud		21

Multi-path Characteristic of a Radio Wave


- Radio waves arrive at the receiver from different directions with different delays
- At the receiver antenna they combine via vector addition

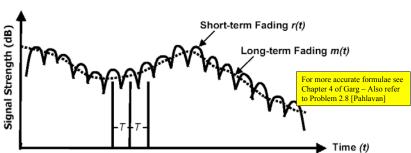
- Received signal level varies (10s of dBs):
 - Short-term (rapid) variations
 - Long-term (slow) variations


- Random number of paths, each with
 - Random amplitude and phase
 - Random Doppler
 - Random delay

Short-Term Fading

- Three contributors to final signal level:
 - Path loss (function of distance and path loss exponent – covered earlier)
 - Long-term or slow fading function of obstructions and environment (covered earlier too)
 - Short-term or fast fading function of scattering environment and speed of mobile

Received power relative to transmitted power as the mobile moves away from transmitter – Of course the net or observed level is the red one

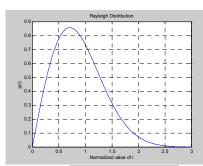


2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Short-Term Fading (2)

• Signal Strength at a given *fixed* distance from transmitter


- Level crossing rate $N(R) \approx \sqrt{2\pi} \frac{v}{\lambda} \rho$; $\rho = R/R_{RMS}$
- Average fade duration $\tau(R) \approx \frac{\lambda}{V} \frac{\rho}{\sqrt{2\pi}}$; $\rho = R/R_{RMS}$ 2/23/2004 Dr. Ashraf S. Hasan Mahmoud

Modeling of Multipath Fading

- Let
 - 2P₀ is the mean power received at the mobile,
 - r is the received signal *envelope* (random variable)
- Then the distribution of r is given by

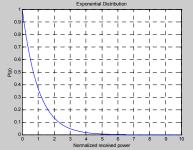
$$f(r) = \frac{r}{P_0} \exp\left(\frac{-r^2}{2P_0}\right)$$

- This is referred to as Rayleigh Distribution
- This analysis assumes the received signal envelope has zero mean (i.e. no line of sight)

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Normalization: $2P_0 = 1$


26

Modeling of Multipath Fading (2)

- What is the instantaneous power?
- Instantaneous power = r²
- The distribution of the instantaneous power is exponential, as in

$$f(p) = \frac{1}{2P_0} \exp\left(\frac{-p}{2P_0}\right)$$

 You can note that the mean received power is 2P₀

Normalization: $2P_0 = 1$

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

27

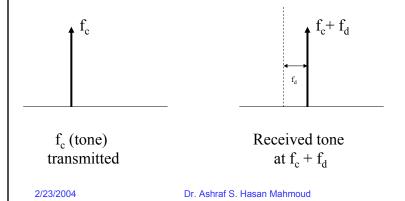
What if There is a Line-of-Sight Component?

 When there is a LOS component, the signal envelope follows the Ricean distribution:

$$f(r) = \frac{r}{P_0} \exp\left(\frac{-\left(r^2 + K\right)}{2P_0}\right) I_0\left(\frac{Kr}{P_0}\right) \qquad r \ge 0; K \ge 0$$

- Exercise:
- 1. Derive the probability distribution of the power variable?
- 2. Show that this reduces to the Rayleigh distribution when the line-of-sight component is set to zero.

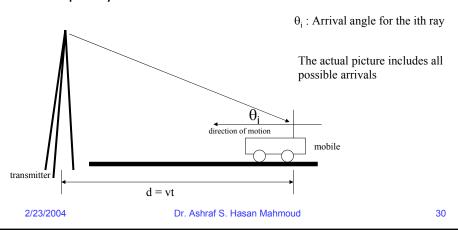
2/23/2004


Dr. Ashraf S. Hasan Mahmoud

Doppler Shift

Due to relative motion between transmitted and receiver

 the received signal is not at the same transmitted
 frequency!


29

Doppler Shift (2)

Due to relative motion between transmitted and receiver

 the received signal is not at the same transmitted
frequency!

Doppler Shift (3)

• Speed of light, $C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8$

Where μ_0 and ε_0 are the free-space magnetic permeability $(4\pi X 10^{-7} \text{ H/m})$, and the free-space electric permittivity $(8.854 X 10^{-12} \text{ F/m})$

 For a vehicle moving in a direction with a constant velocity, v, the received carrier is Doppler shifted by

 $f_d = f_m \times \cos(\theta) = \frac{v\cos(\theta)}{\lambda} = \frac{v_{eff}}{\lambda} = \frac{v_{eff} \times f_c}{c}$

Where $f_m = \nu/\lambda = \text{maximum value of Doppler}$

 v_{eff} is the effective velocity f_c is the carrier frequency

 θ is the path angle

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

31

Example:

A vehicle is traveling at speed of 100 km/h receiving a signal at a carrier frequency of 880 MHz → maximum Doppler shift, fm = ν/λ = 100X(1000/3600)X880X10⁶/3X10⁸ = 81.5 Hz

2/23/2004

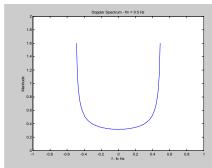
Dr. Ashraf S. Hasan Mahmoud

Is Doppler Shift Bad?

- It is not so much the frequency shift that is harmful, but rather the fact that a large number of rays with different amplitudes and phases add vector-wise to form the resultant signals
- This resultant signal varies greatly in amplitude and phase
- The GREATER the Doppler shift the greater this variation
- Verify the above statement by comparing the expression for the level crossing rate with the Doppler shift expression

2/23/2004

Dr. Ashraf S. Hasan Mahmoud


33

Doppler Spectrum

 The Doppler spectrum for a Rayleigh fading channel is modeled by

$$D(f) = \frac{1}{2\pi f_m} \times 1 / \sqrt{1 - \left(\frac{(f - f_c)}{f_m}\right)^2}$$

 The uniform model is also used for some channels (see problem 2.10 [Pahlavan])

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

How Do Systems Overcome the Doppler Effect?

- Analog Technology:
 - Use low carrier frequency → f_m is low
- GSM
 - · Channel bit rate well above Doppler spread
 - TDMA during each bit / burst transmission the channel is fairly constant.
 - · Receiver training/updating during each transmission burst
 - Feedback frequency correction
- IS-95
 - Downlink: Pilot signal for synchronization and channel estimation
 - · Uplink: Continuous tracking of each signal

Source: http://www.wireless.per.nl:202/multimed/cdrom97/doppler.htm

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

35

Delay Spread

- Due to multipath, a transmitted narrow pulse arrives as multiple added copies with different strengths and different delays
- Wideband channel impulse response

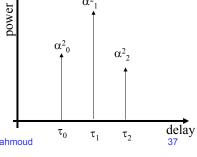
$$h(t) = \sum_{i=0}^{L} \alpha_i \delta(t - \tau_i) \exp(j\phi_i)$$

• Where: $\alpha_i \sim \text{Rayleigh distributed amplitude}$

 $\phi_i \sim \text{uniform r.v. } (0, 2\pi)$ $\tau_i \sim \text{multipath arrival time}$

- $E[\alpha_i^2] = 2\sigma_i^2$ power associated with the ith path
- Intersymbol interference (ISI) → irreducible errors

See tutorial at: http://users.ece.gatech.edu/~mai/tutorial_multipath.htm


2/23/2004 Dr. Ashraf S. Hasan Mahmoud

RMS Delay Spread

 For a discrete wideband channel impulse response as the one depicted, the rms delay spread parameter is computer by

$$\tau_{rms} = \sqrt{\frac{\sum_{k=0}^{N} \tau_{k} \sigma_{k}^{2}}{\sum_{k=0}^{N} \sigma_{k}^{2}} - \left(\frac{\sum_{k=0}^{N} \tau_{k} \sigma_{k}^{2}}{\sum_{k=0}^{N} \sigma_{k}^{2}}\right)^{2}}$$

 Delay spread limits the maximum data rate supported by the channel – successive symbols interfere with each other (ISI) and can not be detected properly – refer to coherence bandwidth slides

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Typical Delay Spread Figures

- Indoor: @910 MHz: 50~250 ns; @2.4GHz: 10~40 ns
- Urban areas
 - RMS delay spread: 2 µsec
 - Min 1 µsec to max 3 µsec
- Suburban areas
 - RMS delay: 0.25 µsec to 2 µsec
- Rural areas
 - RMS delay: up to 12 µsec
- GSM example
 - Bit period 3.69 µsec
 - Uses adaptive equalization to tolerate up to 15 µsec of
 - delay spread (26-bit Viterbi equalizer training sequence)

Coherence Bandwidth

- <u>Coherence Bandwidth of a Channel, Bc</u>: The range of frequencies that experience the same (flat) fading
- Bc $\sim 1/(5\tau_{rms})$
- Signals with bandwidth less than Bc are said to experience flat fading
- Signals with bandwidth greater than Bc are said to experience selective fading
- Transmission rate, R is typically equal to Bc (without resorting to advanced transmission techniques)
 - Example: For indoor areas τ_{rms} ~ 30ns to about 300 ns \rightarrow Maximum data rate ~ 6.7 Mb/s to about 0.67 Mb/s at most
 - Example: For outdoor urban $\tau_{rms}{\sim}~4\mu s \rightarrow$ Maximum data rate $\sim~50~kb/s$

2/23/2004 Dr. Ashraf S. Hasan Mahmoud

Mitigation Methods

Issue	Performance Affected	Mitigation Techniques
Shadow fading	Received signal strength	Fade margin – Increase transmit power or decrease cell size
Fast fading	Bit error rate	Error control coding
	Packet error rate	Interleaving, Frequency hopping, Diversity
Multipath delay spread	ISI and irreducible error rates	Equalization, DS-spread spectrum, OFDM, Directional antennas

2/23/2004 Dr. Ashraf S. Hasan Mahmoud

40

References

- Chapter 2: "Principles of Wireless Networks A Unified Approach," Kaveh Pahlavan and Prashant Krishnamurthy
- Chapter 4: "Wireless sand Personal Communications Systems," Vijay Garg and Joseph Wilkes
- Chapters 3 and 4 "Probability and Random Processes for Electrical Engineering," Alberto Leon-Garcia Addison Wesley, 1989 (TK153.L425 1989)

A necessary background info for the course

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

41

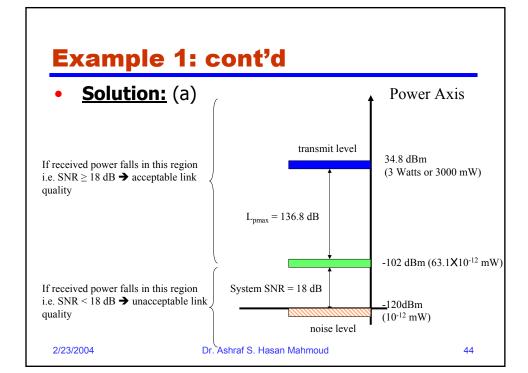
Example 1:

- **Problem 2.8 [Pahlavan]**: The modulation technique used in the existing AMPS is analog FM. The transmission bandwidth is 30 kHz per channel and the maximum transmitted power from a mobile use is 3 W. The acceptable quality of the input SNR is 18 dB, and the background noise in the bandwidth of the system is -120 dBm (120 dB below the 1mW reference power). In the cellular operation we may assume the strength of the signal drops 30 dB for the first meter of distance from the transmitter antenna and 40 dB per decade of distance for distances beyond 1 meter.
 - a. What is the maximum distance between the mobile station and the base station at which we have an acceptable quality of signal?
 - Repeat (a) for digital cellular systems for which the acceptable SNR is 14 dB

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Example 1: cont'd


Solution:

- (a) Maximum distance for an SNR of 18 dB.
 - The transmitter power is $P_t = 10 \log(3 W/1 mW) = 34.8 \text{ dBm}$
 - The minimum acceptable received power is P_{rmin} = -120 dBm + 18 dB = -102 dBm
 - The maximum allowable path loss is $L_{p\,{\rm max}}=P_{t}-P_{r\,{\rm min}}=$ 34.8 dBm (-102 dBm) = 136.8 dB
 - The path loss model based on 30 dB in the first meter and 40 dB per decade of distance is

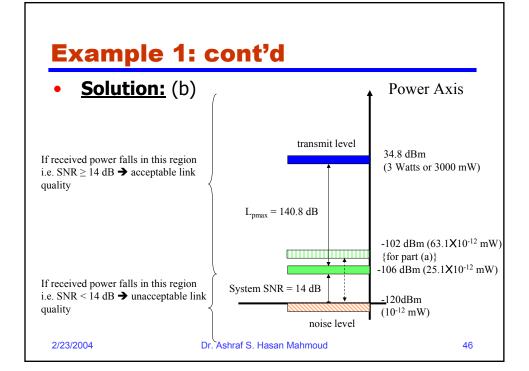
$$L_p = 30 + 40\log(d) \quad \text{so that} \quad d = 10^{\frac{L_p - 30}{40}} \text{ and}$$

$$d_{\max} = 10^{\frac{L_{pmx} - 30}{40}} = 10^{\frac{136.8 - 30}{40}} = 468 \text{ m}$$

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Example 1: cont'd


Solution:

- (b) Maximum distance for an SNR of 14 dB.
 - The transmitter power is $P_t = 10 \log(3 W/1 mW) = 34.8 \text{ dBm}$
 - The minimum acceptable received power is P_{rmin} = -120 dBm + 14 dB = -106 dBm
 - The maximum allowable path loss is $L_{p\,{\rm max}}=P_t-P_{r\,{\rm min}}=$ 34.8 dBm (-106 dBm) = 140.8 dB
 - The path loss model based on 30 dB in the first meter and 40 dB per decade of distance is

$$L_p = 30 + 40\log(d) \quad \text{ so that} \quad d = 10^{\frac{L_p - 30}{40}} \text{ and}$$

$$d_{\max} = 10^{\frac{L_{\max} - 30}{40}} = 10^{\frac{140.8 - 30}{40}} = 589 \text{ m}$$

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Example 1: cont'd

- Solution:
- A reduced SNR requirement at the mobile receiver translates to greater coverage distance
- Digital modulation and advance communication techniques (equalization, diversity, CDMA, etc) allow the reduction of minimum acceptable SNR

2/23/2004 Dr. Ashraf S. Hasan Mahmoud

47

48

Example 2:

- **Problem 2.10 [Pahlavan]:** The Doppler spectrum of the indoor radio is often assumed to have uniform distribution with a maximum Doppler shift of 10 Hz
 - a. Determine the rms Doppler spread of the channel
 - b. Determine the average number of fades per second and the average fade duration, assuming that the threshold for fading is chosen 10 dB below the average rms value of the signal

2/23/2004 Dr. Ashraf S. Hasan Mahmoud

Example 2:

- Solution: (a)
- The maximum Doppler frequency is ± 10 Hz, and for a uniform distribution the area should be equal to 1, so that A[10 - (-10)]= 20 A = 1, or A = 0.05

 $D(\lambda) = 0.05 [U(\lambda + 10 \text{ Hz}) - U(\lambda - 10 \text{ Hz})]$

- The RMS Doppler spread is
- The RMS Doppler spread is given by $\lambda_{rms} = \sqrt{\lambda^2 \overline{\lambda}^2}$, but

$$\overline{\lambda} = \int_{-\infty}^{\infty} \lambda D(\lambda) d\lambda = \int_{-10}^{10} 0.05 \, \lambda \, d\lambda = 0.05 \left[\frac{\lambda^2}{2} \right]_{-10}^{10} = 0 \text{ Hz, and}$$

$$\overline{\lambda^2} = \int_{-\infty}^{\infty} \lambda^2 D(\lambda) d\lambda = \int_{-10}^{10} 0.05 \, \lambda^2 \, d\lambda = 0.05 \left[\frac{\lambda^3}{3} \right]_{-10}^{10} = 33.33 \text{ Hz}^2, \text{ therefore}$$

$$\lambda_{rms} = \sqrt{\overline{\lambda^2} - \overline{\lambda}^2} = \sqrt{33.33 - (0)^2} = 5.77 \text{ Hz}$$

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

49

Density function

Example 2:

•Solution: (b)

For a Raleigh fading envelope distribution, the average number of downward crossings of a level ${\cal A}$ per second, ${\cal N}$, is given by:

$$N(\rho) = \sqrt{2\pi} B_{D-rms} \rho e^{-\rho^2}$$

where $\rho = A/A_{rms}$ is the ratio of the threshold level to the RMS amplitude of the fading envelope, and B_{D-rms} is the RMS Doppler shift of the signal.

The average fade duration for a given threshold ρ is given by $\tau(\rho) = \frac{\Pr{ob}[\alpha < \rho]}{N(\rho)} = \frac{e^{\rho^2} - 1}{\sqrt{2\pi} \ B_{D-rms} \ \rho}$

$$\tau(\rho) = \frac{\Pr{ob[\alpha < \rho]}}{N(\rho)} = \frac{e^{\rho^2} - 1}{\sqrt{2\pi} B_{D-rms} \rho}$$

Example 2: cont'd

•Solution: (b)

In our case, ρ = -10 dB or 0.316 (This is an amplitude so use 20log(x)), and $B_{D\text{-}rms}$ = 5.77 Hz and

$$N(\rho) = \sqrt{2\pi} B_{D-rms} \rho e^{-\rho^2} = \sqrt{2\pi} (5.77 \text{ Hz}) 0.316 e^{-0.316^2} = 4.14 \text{ fades / sec}$$

The average fade duration
$$\tau(\rho) = \frac{e^{\rho^2} - 1}{\sqrt{2\pi} \ B_{D-rms} \ \rho} = \frac{e^{0.316^2} - 1}{\sqrt{2\pi} \ 5.77 Hz \ 0.316} = 23 \text{ msec}$$

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

51

Example 3:

• **Problem 2.14 [Pahlavan]:** Use a software tool like MatlabTM or Mathcad to generate 1000 impulse responses of the JTC indoor residential radio channel (for case A). Determine the RMS multi-path delay spread for each sample and plot the cumulative distribution function

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Example 3: cont'd

• Solution: (code)

```
% dependents: ftrms.m
% Generate 1000 cirs of JTC indoor residential
% RMS delay spread for each sample
% CDF of the RMS delay spread
close all;
clear;
clc;
akA_db = [0 -13.8];

tkA = [0 100];
                     % avg tap power in db
                       % relative delay in ns <
```

for i=1:1000 x_nor_1 = randn(1);
x_nor_2 = randn(1);
x_rayleigh = sqrt(x_nor_1^2 + x_nor_2^2);
ak_square_rayleigh(j) = ak_square(j) +
x_rayleigh^2;
end: trmsA(i) = ftrms(ak_square_rayleigh, tk); end; [fA x] = hist(trmsA * 1e9, [0:2:300]);pA = fA./sum(fA); cdfA = cumsum(pA); = 1 - cdfA; sfA figure(1) plot(x, sfA)
title('JTC indoor residential wideband models - Model
A') xlabel('RMS delay spread (ns)')

ylabel('probability signal level > abscissa')

 $ak_square = 10.^(akA_db/10); % \ avg \ tap \ amplitude \ linear$ = le-9*tkA; % relative delay in seconds = length(tk);

channel definition

creating random channel samples

calculating the survivor function and 2/23/ plotting the results

asan Mahmoud

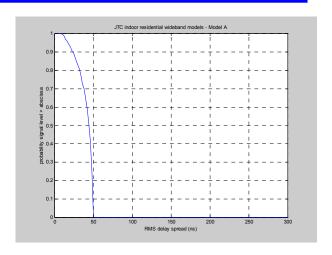
Ntaps

53

Example 3: cont'd

• Solution: (code)

```
% function y =ftrms(sig,tau) to calculate the RMS delay
    spread
% sig is the local mean strengths of the discrete multipath components
% tau is the relative delays
% Note you should supply sig = E(alph^2)
den = sum(sig);
tbar=sum(sig.*tau)./den;
tbar2=sum(sig.*tau.^2)./den;
y=sqrt(tbar2-tbar^2);
```



Function to calculate τ_{rms}

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

Example 3: cont'd

• Solution:

2/23/2004 Dr. Ashraf S. Hasan Mahmoud

Problems

- Homework #2
- 2.5, 2.7, 2.9, and 2.11
- Due Date: Sunday March 23rd, 2002

2/23/2004

Dr. Ashraf S. Hasan Mahmoud

56