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Machine Representation of 
Numbers 

Registers 
 

��Digital computers store numbers in special 
digital electronic devices called Registers 

 
��Registers consist of a fixed number of storage 

elements. 
 

��Each storage element is capable of storing one 

bit of data (either 0 or 1). 

 

��Thus, every register has a finite number of bits 

Digital computers store numbers in 
special digital electronic devices called 

Registers consist of a fixed number 
of storage elements. 

Each storage element is capable 
of storing one bit of data (either 0 
or 1). 

Thus, (every) register has a 

finite number of bits 
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��The register size is the number of storage bits 

in this register (n). 

 

��Register size is typically a power of 2, e.g. 8, 

16, 32, 64, etc. 

 

��A register of size n can represent (store) a 

Number of Distinct Values (= 2n).�

��Registers are, thus,  capable of holding binary 

numbers. 

 

��Numbers stored in registers may be either 

unsigned or signed numbers. For example, 13 

The register size is the number of 
storage bits in this register (n). 

Register size is typically a power of 
2, e.g. 8, 16, 32, 64, etc. 

A register of size n can represent 
(store) a Number of Distinct 
Values (= 2n).equal to two to the 
power of n  

Registers are, thus,  capable of 
holding binary numbers 

Numbers stored in registers may 
be either (unsigned) or (signed) 
numbers. For example, 13 is an 
unsigned number while +13 and 
–13 are (signed) numbers. 
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is an unsigned number while +13 and –13 are 

signed numbers. 
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Unsigned Number Representation 
 

bit 0bit 1bit 2bit n-2bit n-1

LSBMSB

N-Bit Register holding an n-Bit Unsigned Number

. . . . . . . . . .

 

 

 
 

Example 
 

Show how the value (13)ten (or D in 

Hexadecimal) is stored in a 4-bit register and in 

an 8-bit register 

A register of n-bits, can store any 
unsigned number that has n-bits or 
less. 
 
Typically the rightmost bit of the 
register is designated as the least 
significant bit (LSB), while the 
leftmost bit is the most-significant 
bit (MSB) 
 
(When representing an integer), 
this register can hold values from 0 
up to two to the n, minus 1. 

Unsigned_Reg.vsd 
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11 01

4-Bit Register Storing 13

LSBMSB

 

 
 

0000 1011

8-Bit Register Storing 13

LSBMSB

Unsigned_13.vsd 

Zeros will be used to pad the 
binary representation of 13 in 
the 8-bit register 
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Signed Number Representation 
 

�� In addition to magnitude information, a 

signed number representation must also 

indicate whether the number is positive or 

negative. 

�� Two major techniques are used to represent 

signed numbers: 

1. Signed Magnitude Representation 

2. Complement method 

– Radix (R`s) Complement (2`s 
Complement) 

– Diminished Radix (R-1`s) Complement 
(1`s Complement) 

 

In signed number representation,
both the magnitude and sign
information of  the number must
be represented. 

Two major techniques are used to 
represent signed numbers. 
 
One. is the (signed-magnitude) 
method, while the other is the 
complement representation 
method. 
 
Two complement methods have 
been commonly used.  
 
The first is the radix complement, 
( or the R’s complement) while, 
 
The second is the diminished radix 
complement or the R minus one's 
complement.. 
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Signed Magnitude Number 

Representation 

bit 0bit 1bit 2bit n-2

LSBMSB

Signed-Magnitude Number Representation
in N-Bit Register

. . . . . . . . . .Sign
Bit

0 Æ +ive1 Æ -ive
Magnitude

 
 

�� •Independent Representation of The Sign and 

The Magnitude 

�� The leftmost bit is used as a Sign Bit. 

�� The remaining n-1 bits are used to represent 

the magnitude of the number 

The first signed number 
representation method is the 
(Signed-Magnitude) nethod 

Signed_Ma
g.vsd 

In this method, both the sign of the 
number and its magnitude are 
represented independent from one 
another 

The leftmost bit is dedicated 
for use as a Sign Bit 

For a register of size n-bits, one 
bit is used exclusively as a sign 
bit while the remaining (n-1) bits 
are used to represent the 
(magnitude). 
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�� The Sign Bit : 

o  = 0  Æ  +ive number 

o  = 1  Æ  -ive number. 

 
Example 

Show how the signed-magnitude representations 

of  +6, -6, +13 and –13 using a 4-Bit register and 

an 8-Bit register 

Solution 

�� For a 4-bit register, the leftmost bit is used 

as a sign bit, which leaves 3 bits only to 

represent the magnitude. 

For positive numbers, a zero is stored in 
the sign bit. 
For negative numbers, a one is stored in 
the sign bit. 

As an example, 
Let us see how to represent plus six, 
minus six, plus thirteen and minus 
thirteen in a signed magnitude 
representation using a 4-bit register and 
an 8-bit register. 

For a 4-bit register, the leftmost 
bit is used as a sign bit, which 
leaves 3 bits only to represent the 
magnitude 
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�� The largest magnitude representable in 3-bits 

is 7. Accordingly, we cannot use a 4-bit 

register to represent +13 or –13. 

 

01 10

Signed-Magnitude
Representation of +6

 

 

01 11

Signed-Magnitude
Representation of -6

 

 

 

The largest magnitude 
representable in 3-bits is 7.  
 
Accordingly, we cannot use a 4-bit 
register to represent  plus thirteen 
or  minus thirteen. 

Here is the representation of Plus 
Six with a zero in the sign bit 
representing the plus sign and 
binary 6 value representing the 
magnitude. 

The representation of Minus Six 
is the same as that of Plus six 
except for the sign bit which 
holds a one instead of a zero to 
represent the minus sign rather 
than the plus.. 
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�� For an 8-bit register, the leftmost bit is a 

sign bit, which leaves 7 bits to represent the 

magnitude. 

�� The largest magnitude representable in 7-bits 

is 127 (= 27-1). 

0000 0110

Signed-Magnitude
Representation of +6

 

0001 0110

Signed-Magnitude
Representation of -6

 

Here is the representation of Plus Six 
with a zero in the sign bit representing 
the plus sign and binary 6 value 
representing the magnitude. 

The representation of Minus Six is 
the same as that of Plus six except for 
the sign bit which holds a one instead 
of a zero to represent the minus rather 
than the plus sign. 

Now consider an eight-Bit register. 
 
The leftmost bit is dedicated for the 
sign, while the remaining 7 bits will 
represent the magnitude 

Thus the register can represent 
magnitudes up to 2 to the power of 
seven minus one or one hundred and 
twenty seven 
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0000 1011

Signed-Magnitude
Representation of +13

 

0001 1011

Signed-Magnitude
Representation of -13

 

 

PUT QUIZ SM1 here (See SM1_A04_Quiz.rtf) 

Here is the representation of Plus thirteen 
with a zero in the sign bit representing the 
plus sign and binary 6 value representing 
the magnitude. 

The representation of Minus thirteen is 
the same as that of Plus six except for 
the sign bit which stores a one instead 
of a zero to represent the minus sign. 
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Notes 

�� Signed magnitude method has Two 

representations for 0 Æ {+0 , -0} Æ nuisance 

for implementation 

��Harder to implement addition/subtraction 

��Multiplication & division less problematic 

�� Signed magnitude method has a symmetric 

range of representation {-(2
n-1

 -1) : +(2
n-1

 -1)} 

�

Here are some concluding notes. 
 
The signed magnitude method has Two 
representations for 0  a plus zero where the 
sign bit is zero and the magnitude is zero.  
(AND) a minus zero where the sign bit is 1 
but the magnitude is zero.  
 
Having two representations for zero is an 
implementation nuisance.  
 
It causes addition and subtraction to be 
Harder to implement  while it makes  
Multiplication & division less problematic 

The signed magnitude method has a 
symmetric range of representation 
between plus and minus   two to the 
power of minus one (minus) one 
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Complement Representation 

�� Positive Numbers (+N) Are Represented in 

Exactly the Same Way as in Signed 

Magnitude System 

 

�� Negative Numbers (-N) Are Represented by 

the Complement of N  (N’) 

 

Define the Complement of a number N  as:N’ = 

M -N where,  M = Some Constant 

�� The negation of  some  number  N, i.e –N, is 

represented by the Complement (N’) of that 

number.  

Important Property: 

In this method, Positive Numbers Are 
Represented in (Exactly the Same 
Way) as in Signed Magnitude System 

The Second signed number 
representation method is the 
(Complement) nethod 

Negative Numbers, however, Are 

Represented by the (Complement) of that 

number . 

 

The complement of some number N  will 

be referrd to as N-Prime 

The Complement of N, (N-Prime)  is 
defined as M minus N where M is some 
constant to be defined later 

The negation of  some  number  
(N), that is minus N, is 
represented by the (Complement) 
of that number (that is N-Prime). 

The following is a  very important 
property of Complements 
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�� The Complement of the Complement of 

some number N is the same number N. 

( N’ )’  = M- (M-N) = N  

�� This is a required property to match the 

negation process since negating any number 

twice  yields   the   original   number ,      i.e. 

- (-N) = N} 

Why Use the Complement Method ? 

Through the proper choice of the constant M, the 

complement operation can be fairly simple and 

quite fast. A simple complement process allows: 

�� Simplified arithmetic operations since. 

subtraction can be totally replaced by 

addition and complementing. 

The Complement of the 

Complement of some number N 

is the same number N. 
In other words, if N-Prime is the 
complement of N, (then) the 
complement of N-Prime is N. 

This is a required property to match 
the negation (process) since since 
negating any number twice yields 
the original number  
 
In other words, minus-minus-(N) 
equals N 

Now, an important question is – 
(Why) (Use) (the) (Complement) 
(method)? 
With the proper choice of the value 
of (M), complementing a number can 
be a very fast and efficient operation 

A simple complement operation would 
lead to simplified and (LOW)-(Cost) 
arithmetic operations. 
 
This is due to the fact that subtraction 
can be replaced by addition to the 
complement. 
This means we can perform both 
addition and subtraction using only an 
(ADDER) hardware.  In other words, 
no SUbtractor hardware is needed 
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�� Lower cost, since no subtractor circuitry will 

be required and only an adder is needed. 
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&RPSOHPHQW�$ULWKPHWLF�

%DVLF�5XOHV�

1. 1HJDWLRQ� � LV� � UHSODFHG� � � E\���

FRPSOHPHQWLQJ�� ��1 Æ�1’���

2. 6XEWUDFWLRQ�LV�UHSODFHG�E\�DGGLWLRQ�WR�WKH�

FRPSOHPHQW�

7KXV����;�<��LV�UHSODFHG�E\��;�<
��

�

&KRLFH�RI�0�

The following discussion sheds 
some light on the issues involved in 
the choice of a proper value for M 

Let us take a first look into 
computer arithmetic using the 
complement method 

1HJDWLRQ��LV��UHSODFHG���E\���

FRPSOHPHQWLQJ��,Q�RWKHU�ZRUGV��

PLQXV 1 LV UHSUHVHQWHG E\ WKH

Likewise, Subtraction is replaced by 
Addition to the complement. 
 
Thus X minus Y is replaced by X plus 
Y-Prime 
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�� &RQVLGHU�WKH�RSHUDWLRQ�=� �;�–�<��ZKHUH�

ERWK�;�DQG�<�DUH�SRVLWLYH�QXPEHUV�

�� ,Q�FRPSOHPHQW�DULWKPHWLF��=� LV�FRPSXWHG�

E\�DGGLQJ�;�WR�WKH�FRPSOHPHQW�RI�<�

=� �;���<’�

Consider the following two possible cases: 

 

First case  Y > X Æ (Negative Result)�

The result Z is –ive and is equal to –(Y-X), i.e. it 

should be in the complement form: 

 =� �;���<’ = X + (M-Y)  

To do that, we investigate the 
computation of the equation Z equals X 
minus Y, where both X and Y are 
Positive numbers  

To compute Z, using the complement 
method, the Subtraction operation is 
replaced by Addition to the complement. 
 
Thus X minus Y is replaced by X plus Y-
Prime 

We now consider two cases. The first is 
when Y is greater than X, or in other 
words, the result of subtraction, Zee, is 
negative. 
 

The second  is when Y is (less) than X, 
or in other words, the result of 
subtraction, Zee, is positive. 

Comsider The first is where Y is 
greater than X, yielding a negative 
result for, Zee which will equal minus 
the difference between Y and X. 

Using the complement method, Zee is 
computed as X plus Y-Prime. 
 
Replacing Y-prime with M minus Y, the 
resulting Zee Value is M minus the 
difference between Y and X. 
This is the correct complement method 
representation of the answer. Since the 
negative result should be expressed in the 
complement form. 
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    = M - (Y-X)  

    = Correct Answer in the 

Complement Form  

 

�� Thus, in the case of a negative result, any 

value of M is possible and the only criterion 

for choosing M is the simplicity of the 

complement operation 

 

Second case Y < X Æ (Positive Result) 

The result Z is +ive equal to +(X-Y). Using 

complement arithmetic we get: 

 =� �;���<’ = X + (M-Y)  

    = M + (X-Y)  

In this case, any value of M will yield 
the correct result. 
 
Accordingly, we can choose M to 
simplify the complement operation. 
In the second case, Y is less than X, 
yielding a positive result for, Zee which 
equals the difference between X and Y. 

Again, Using the complement method, Zee 
is computed as X plus Y-Prime. 
 
Replacing Y-prime with M minus Y, the 
resulting Zee Value is M plus the 
difference between X and Y, while it 
should be the difference between X and Y. 
Thus, before reporting the final answer a 
correction step is required. 
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different from the correct result +(X-Y) 

requires�

�� Thus, in the case of a positive result, a 

correction step is required for the final result. 

This places an additional constraint on the 

choice of M 

 

To summarize, there are two constraints on the 

choice of M 

1. Simple and fast complement operation. 

2. Elimination or simplification of the 

correction step 

 

Thus, in the case of a positive result, , 
irrespective of the value of M, a 
correction step is required for the final 
result.  
 
This places an additional constraint on 
the choice of M 

Thus, the choice of M should satisfy 
two conditions: 
 
First., The Value of M should yield a 
fast and efficient complement 
operation. 
 
Second., The value of M should 
simplify the correction step 

Now, Consider the number X, which has 
n integral digits and m fractional digits. 
 
Thus, X equals X N minus one X N 
minus two all the way to X two X 1 X 
zero (point) X minus one X minus two all 
the way to X minus M. 
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Consider the number X, with n integral digits and 

m fractional digits, where 

 

 

X = Xn-1 Xn-2  .... X1 X0 . X-1 X-2 .…. X-mTo 

obtain the complement of X, two methods are 

commonly used. The two methods differ in the 

choice of the value of M. 

1. Radix complement (R’s Complement) 
method:�

2. Diminished radix complement (R-1’s 
Complement) method: 

 
 
Radix Complement  (R’s Complement ):   

M= r n�

m Fractional Digits n Integral Digits 

To obtain the complement of X, two 
methods are commonly used.  
 
The two methods differ in the choice of 
the value of M 

First. The radix complement method, 
commonly called the R’s complement. 
 
Second. The diminished radix 
complement method, commonly called 
the R minus one’s complement 

In the R’s complement Method, M equals 
R to the power of n where n is the 
number of integral digits. 
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Note that = 1000….000  

 

 

 

 

 

 

n Positions 
(n+1)th  
Position 

Please note that r to the power of n is an 
integer number that consists of n zeros 
followed by a one in the n plus one’s 
position. 
 
This is true for any radix. 
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Diminished Radix Complement (R-1’s) 

Complement ): 

 

M= r n -  r –m 

 

where; r -m = 000…00 . 00…001 

 

Thus; r –m = 000…00 . 00…001 

 = Unit (one)  in Least Position (ulp) 

OR  M= r n -  ulp 

Notes:  

1. For integer numbers, m=0 

2. R's complement R-1's complement + ULP  

m Positionsn Positions 

Actually, the value of  r to the  power of 
minus (m) corresponds to a number where 
all digits are zeros except for the emth 
fractional position where it has a one.  That 
is a one in the least significant position 
only and zeros everywhere else. 
 
This is true for any radix value. 

r to the  power of minus (m) is, thus, 
referred to as Unit in the Least Position, or 
U L P.  
 
Note that for integer numbers, m equals 
zero. 

In the R minus one’s complement Method, 
M equals r to the  power of (n) minus r to 
the  power of minus (m) where n is the 
number of integral digits while where m is 
the number of fractional digits 

Please note the following 
One. For integer numbers, m equals zero 
 
Two. The R’s complement of a number  
equals its R minus one’s complement 
(PLUS) U L P. 
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3. (r n -  r –m) is the largest number that can 

be represented in n-integral digits and m-

fractional digits 

 

�

7KH� WDEOH� EHORZ� VXPPDUL]HV� WKH� UDGL[�

FRPSOHPHQW� FRPSXWDWLRQ� RI� ;� IRU� YDULRXV�

QXPEHU�V\VWHPV�

1XPEHU�

6\VWHP�

5’V�&RPSOHPHQW� &RPSOHPHQW�

RI�;��;’
U
��

'HFLPDO� ��’V�

&RPSOHPHQW�

;’
��
 ��

Q
��;�

The VKRZQ�WDEOH�VXPPDUL]HV�WKH�

5
V�FRPSOHPHQW�FRPSXWDWLRQ�RI�;�

IRU�YDULRXV�QXPEHU�V\VWHPV��

�

)RU�WKH�GHFLPDO�V\VWHP�LW�LV�WKH�

WHQ
V�FRPSOHPHQW��

�

)RU�WKH�ELQDU\�V\VWHP�LW�LV�WKH�WZR
V�

FRPSOHPHQW��

�

)RU WKH RFWDO V\VWHP LW LV WKH HLJKW
V

Three. Note that r to the n minus r to 
the minus m is the largest number that 
can be represented in n-integral digits 
and m-fractional digits. For example, in 
decimal systems it will be 9 filling all 
digits.  For binary system all digits are 
all one’s and so on. 
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%LQDU\� �’V�&RPSOHPHQW� ;’
��
 �

Q
��;�

2FWDO� �’V�&RPSOHPHQW� ;’
��
 �

Q
��;�

+H[DGHFLPDO� ��’V�

&RPSOHPHQW�

;’
��
 ��

Q
��;�

�
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7KH� VKRZQ� WDEOH� VXPPDUL]HV� WKH� �U���’V�

FRPSOHPHQW� FRPSXWDWLRQ� RI� ;� IRU� YDULRXV�

QXPEHU�V\VWHPV�

1XPEHU�

6\VWHP�

�5���’V�

&RPSOHPHQW�

&RPSOHPHQW�RI�;�

�;’
U
��

'HFLPDO� �’V�&RPSOHPHQW� ;’
�
 ���

Q
���

�P�
��;�

���� ���B���������;�

%LQDU\� �’V�&RPSOHPHQW� ;’
��
 ��

Q
���

�P�
���;�

���� ���B���������;�

2FWDO� �’V�&RPSOHPHQW� ;’
��
 ��

Q

���
�P�

���;�

���� ���B���������;�

The VKRZQ�WDEOH�VXPPDUL]HV�WKH�5�

PLQXV�RQH
V�FRPSOHPHQW�

FRPSXWDWLRQ�RI�;�IRU�YDULRXV�

QXPEHU�V\VWHPV 

�

)RU�WKH�GHFLPDO�V\VWHP�LW�LV�WKH�

QLQH
V�FRPSOHPHQW��

�

)RU�WKH�ELQDU\�V\VWHP�LW�LV�WKH�RQH
V�

FRPSOHPHQW��
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+H[DGHF

LPDO�

)’V�&RPSOHPHQW� ;’
)
 ���

Q
����

�P
�
�
��;�

���� �))��))��)�;�

�



 27 

([DPSOHV�

)LQG�WKH��’V�DQG�WKH���’V�FRPSOHPHQW�RI�WKH�

IROORZLQJ�GHFLPDO�QXPEHUV��

a- �����

b- ���������

6ROXWLRQ��

a- ;� �����Æ�Q ����

x� ;’� �����–8/3��–������

 ������–������ ������

Here are few examples for 
computing the complement 
in various bases 

This example deals with the 
decimal system and we are to 
compute the nine’s and ten’s 
complement of two numbers. One 
is an integer while the other is a 
real number. 

The first number is twenty three fifty 
seven. The number of digits (n) is four. 
 
Since the number has no fractional part 
(m) is zero and the nine’s complement 
is equal to 9999 minus twenty three 
fifty seven. 
 
The ten’s complement is computed as 
ten to the power of four minus twenty 
three fifty seven, or, alternatively 
computed by adding a U L P to the 
nine’s complement 
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x� ;’�� ����–����� �������

x� $OWHUQDWLYHO\�� ;’�� � ;’�� �� ���� �

�����

�

�

�

b- ;� ���������Æ�Q ���P ��

x� ;’� �����–8/3��–���������

The second number has 4 integral digits 
and three fractional ones. That is, n 
equals 4 and m equals 3. 
 
Thus, the nine’s complement is ninety 
nine ninety nine point nine nine nine 
minus the number. 
 
The ten’s complement is computed as 
ten to the power of four minus the 
number, or, alternatively computed by 
adding a U L P to the nine’s 
complement 
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 � ��������� –� �������� �

���������

x� ;’�� ����–��������� ����������

x� $OWHUQDWLYHO\��� � � �

� ;’��� �;’������������ ����������

�

 30 

([DPSOH�

)LQG� WKH��’V�DQG�WKH��’V�FRPSOHPHQW�RI�WKH�

IROORZLQJ�ELQDU\�QXPEHUV��

a- ����������

b- �����������

c- ���������

6ROXWLRQ��

a- ;� ����������Æ�Q ����

This example deals with the binary 
system and we are to compute the 
one’s and two’s complement of 
three numbers. Two are integer 
numbers and the third is a real 
number. 

The first number has nine bits, that is 
(n) equals 9. 
 
The one’s complement is computed by 
subtracting the number from nine 
one’s.. 
 
The two’s complement is computed as 
two to the power of nine minus the 
number, or, alternatively computed by 
adding a U L P to the one’s 
complement 
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x� ;’� ����–8/3��–�����������

� �����������–�������������

� �����������

x� ;’� ���–������������ �

� � ������������–�����������

� � �����������

x� $OWHUQDWLYHO\��;’� �;’����XOS�

�  �����������������������

�  �����������
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�

b- ;� ������������Æ�Q �����

x� ;’� �����–8/3��–����������

� ������������–�����������

� �����������

x� ;’� ����–����������� �

� � � � ������������ –�

���������� � � �����������
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x� $OWHUQDWLYHO\��;’� �;’����XOS�

�  �����������������������

�  �����������

c- ;� ���������Æ�Q ���P ��

x� ;’� ����–8/3��–����������

� ����������–�����������

� ����������
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x� ;’�� ����–���������� � �

� � ��������–���������� �

� � ����������

x� $OWHUQDWLYHO\��;’� �;’����XOS�

�  ���������������������

�  ����������

,PSRUWDQW�1RWHV��

1. 7KH��
V� FRPSOHPHQW� RI� D� QXPEHU� FDQ�

EH� GLUHFWO\� REWDLQHG� E\� ELWZLVH�

7KH�RQH
V�FRPSOHPHQW�RI�D�QXPEHU�

FDQ�EH�GLUHFWO\�REWDLQHG�E\�ELWZLVH�

FRPSOHPHQWLQJ�RI�HDFK�ELW��WKDW�LV���

HDFK RQH LV UHSODFHG E\ D ]HUR DQG
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FRPSOHPHQWLQJ�RI�HDFK�ELW�� L�H��HDFK���

LV� UHSODFHG� E\� D� �� DQG� HDFK� �� LV�

UHSODFHG�E\ D ���

x� ([DPSOH����;�� �������������������

��

x� �����������������;�
�� �������������������

��

�

Animation here is required where 

every bit of ;�
��is shown as 
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2. �7KH��
V�FRPSOHPHQW�RI�D�QXPEHU�FDQ�

EH�REWDLQHG�YLVXDOO\�DV�IROORZV��

x� 6FDQ� WKH� ELQDU\� QXPEHU� IURP� ULJKW�

WR�OHIW��

x� �
V�DUH�UHSODFHG�E\��
V�WLOO�WKH�ILUVW���

LV�HQFRXQWHUHG��

x� 7KH� ILUVW� �� LV� UHSODFHG� E\� D� �� EXW�

IURP� WKLV� SRLQW� RQZDUGV� HDFK� ELW� LV�
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FRPSOHPHQWHG� UHSODFLQJ� HDFK� �� E\�

D���DQG�HDFK���E\�D���

x� ([DPSOH����;�� ���������������

�����

x� �����������������;�
� � ���������������

�����

�

�

Animation here is required where 

every bit of ;�
��is scanned right to left 

and the corresponding ;�
��bit is 
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([DPSOH�

)LQG� WKH��’V�DQG�WKH��’V�FRPSOHPHQW�RI�WKH�

IROORZLQJ�RFWDO�QXPEHUV��

a- �����

b- ��������

6ROXWLRQ��

a- ;� �����Æ�Q ����
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x� ;’� �����–8/3��–����� �

� ������–������ � �

� ������

x� ;’� ����–������� � �

� � ������������–�������

� � ������

x� $OWHUQDWLYHO\��;’� �;’����XOS�

�  ������������ � �

�  ������
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�

b- ;� ��������Æ�Q ���Æ�P ��

x� ;’� ����–8/3��–�������� �

� ����������–��������� �

� ���������

x� ;’� ����–��������� � �

� � �������������–���������

� � ����������
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x� $OWHUQDWLYHO\��;’� �;’����XOS�

�  ����������������������

� �  ����������

([DPSOH�

)LQG�WKH�)’V�DQG�WKH���’V�FRPSOHPHQW�RI�WKH�

IROORZLQJ�+(;�QXPEHUV��

a- �)$��

b- �%��&���

6ROXWLRQ��
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a- ;� ��)$�Æ�Q ����

x� ;’) ������–8/3��–�)$�� �

� �))))�–��)$�� � �

� �&����

x� ;’�� �����–��)$�� � �

� � ������������–��)$���

� � �&����
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x� $OWHUQDWLYHO\��;’�� �;’)���XOS�

�  �&���������� � �

�  �&����

�

b- ;� ��%����&��Æ�Q ���Æ�P ��

x� ;’) �����–8/3��–�%����&���

��  � )))� �� )))� –� �%�� �� &��

�� �  ���(���)�
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x� ;’�� ����–��%����&��� �

� � � � ������������ –� �%�� ��

&��� � � ����(�������

x� $OWHUQDWLYHO\��;’�� �;’)���XOS�

�  ����(�����)�������������

� �  ����(�������

([DPSOH�

6KRZ� KRZ� WKH� QXPEHUV� ���� DQG� ���� DUH�

UHSUHVHQWHG� LQ� ��ELW� UHJLVWHUV� XVLQJ� VLJQHG�
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PDJQLWXGH�� �
V� FRPSOHPHQW� DQG� �
V�

FRPSOHPHQW�UHSUHVHQWDWLRQV��

�

� ���� ����

6LJQHG�0DJQLWXGH� ��������� ���������

�
V�&RPSOHPHQW� ��������� ���������

�
V�&RPSOHPHQW� ��������� ���������

�

$Q�LPSRUWDQW�SRLQW�WR�UHPHPEHU�LV�

WKDW�,Q�DOO�VLJQHG�QXPEHU�

UHSUHVHQWDWLRQ�PHWKRGV��WKH�VLJQ�

ELW�LQGLFDWHV�WKH�VLJQ�RI�WKH�

QXPEHU�ZLWK�RQH�UHSUHVHQWLQJ�

WL E G
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1RWH�� ,Q� DOO� VLJQHG� QXPEHU� UHSUHVHQWDWLRQ�

PHWKRGV�� WKH� VLJQ� ELW� LQGLFDWHV� WKH� VLJQ� RI�

WKH� QXPEHU� ZLWK� �� UHSUHVHQWLQJ� QHJDWLYH�

QXPEHUV� DQG� �� UHSUHVHQWLQJ� SRVLWLYH�

QXPEHUV��

�

4XL]��
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)RU�WKH�VKRZQ���ELW�UHSUHVHQWDWLRQV��LQGLFDWH�

WKH� FRUUHVSRQGLQJ� GHFLPDO� YDOXH� LQ� WKH�

VKRZQ�UHSUHVHQWDWLRQV��

�

 Unsigned Signed 

Magnitude 

1’s 

Complement 

2’s 

Complement 

0000     

0001     

0010     

0011     

0100     

0101     

0110     
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0111     

1000     

1001     

1010     

1011     

1100     

1101     

1110     

1111     

�
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&RUUHFW�$QVZHU�

 Unsigned Signed 

Magnitude 

1’s 

Complement 

2’s 

Complement 

0000 0 +0 +0 +0 

0001 1 +1 +1 +1 

0010 2 +2 +2 +2 

0011 3 +3 +3 +3 

0100 4 +4 +4 +4 

0101 5 +5 +5 +5 

0110 6 +6 +6 +6 

0111 7 +7 +7 +7 

1000 8 -0 -7 -8 

1001 9 -1 -6 -7 

1010 10 -2 -5 -6 

1011 11 -3 -4 -5 
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1100 12 -4 -3 -4 

1101 13 -5 -2 -3 

1110 14 -6 -1 -2 

1111 15 -7 -0 -1 

�
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&RPSDULVRQ��

�

� 6LJQHG�

0DJQLWXGH�

�
V�

&RPSOHPHQW�

�
V�

&RPSOHPHQW�

6\PPHWULF� \HV� \HV� QR�

1R�� RI�

=HURV�

��� �� ��

/DUJHVW�

9DOXH�

���Q������ ���Q������ ���Q���

6PDOOHVW� ���Q������ ����Q������ ����Q������
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9DOXH�

�
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(QG�RI�/HVVRQV�([HUFLVHV�

�

1. )LQG� WKH� ELQDU\� UHSUHVHQWDWLRQ� LQ�

VLJQHG� PDJQLWXGH�� �
V� FRPSOHPHQW��

DQG� �
V� FRPSOHPHQW� IRU� WKH� IROORZLQJ�

GHFLPDO� QXPEHUV�� ����� ����� ����� �����

���� ���� ���� DQG� ����� )RU� DOO� QXPEHUV��

VKRZ�WKH�UHTXLUHG�UHSUHVHQWDWLRQ�IRU���

ELW�DQG���ELW�UHJLVWHUV��
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2. ,QGLFDWH� WKH� GHFLPDO� YDOXH�

FRUUHVSRQGLQJ� WR� DOO� ��ELW� ELQDU\�

SDWWHUQV� LI� WKH� ELQDU\� SDWWHUQ� LV�

LQWHUSUHWHG� DV� D� QXPEHU� LQ� WKH�VLJQHG�

PDJQLWXGH�� �
V� FRPSOHPHQW�� DQG� �
V�

FRPSOHPHQW�UHSUHVHQWDWLRQV��


