

Performance			
Answer			
Decreasing the response time always improves performance			
Hence,			
In case a) both response time and throughput are improved			
In case b) no one task gets work done faster, so only throughput increases			
Lecture Slides on Computer Architecture ICS 233 @ Dr A R	7		

Maximize Performance	
To maximize performance, response time or execution time is to be minimized	
Hence, we relate Performance & Execution time for a machine X as	
Performance _x = <u>1</u> Execution Time _x	
Lecture Slides on Computer Architecture ICS 233 @ Dr A R	8

Measuring Performance	
Example:	
The breakdown of the elapsed time for a task is reflected in the UNIX ' time ' command which, for example, might return the following:	
90.7u 12.9s 2:39 65%	
User CPU time is 90.7 seconds,	
System CPU time is 12.9 seconds,	
Elapsed time is 2 minutes & 39 seconds(159 seconds)	
Percentage of CPU time is (90.7 + 12.9)x100/159 = 65%	
More than a third of the elapsed time in this example was spent waiting for I/O, running other programs or both.	
Lecture Slides on Computer Architecture ICS 233 @ Dr A R	13

(CPU Execution Time		
<u>Answer :</u>			
First, find the nur	nber of clock cycles required for the program on A		
CPU Time _A	= CPU Clock cycles _A		
	Clock rate _A		
CPU Clock cycle	$s_A = CPU Time_A X Clock rate_A$		
	= 10 seconds X 400 x 10 ⁶		
	= 4000 x 10 ⁶		
CPU time for ma	achine B can be written as		
CPU Time _B	= <u>1.2 x CPU Clock cycles_A</u> <u>Clock rate_B</u>		
Clock rate _B	$= 1.2 \times 4000 \times 10^{6}$		
	6 seconds = 800MHz		
Machine B must therefore have twice the clock rate of A to run the program in 6 seconds.			
	Lecture Slides on Computer Architecture ICS 233 @ Dr A R	17	

Ba	sic Perfo	rmance	Equat	ion	
 The basi of Instruct by the pro 	c performanc ion Count (th gram), CPI a	e equation ne number o nd Clock cyo	can be wi of instructi cle time as	itten in term ons execute follows:	d
CPU time	= Instructio	n Count x C	CPI x Cloc	k cycle time	e
CPU time	= <u>Instruc</u>	tion Count	<u>x CPI</u>		
	Cl	ock Rate			
CPU time	= Seconds =	Instructions x	Cycles x	Seconds	1
	Program	Program	Instruction	Cycle	J I
Program Program Instruction Cycle • Instruction Count (IC): Number of instructions/program • Cycles per instruction (CPI) • Sometimes the reciprocal is used: Instructions per cycle (IPC) • The number of seconds per cycle is the clock period - clock rate is the multiplicative inverse of the clock period Lecture Slides on Computer 22				_	
• Cycles – Some • The nui – clock	per instruction (Cl etimes the recipro mber of seconds p rate is the multip	PI) cal is used: Inst per cycle is the c licative inverse c	ructions per c clock period of the clock pe	ycle (IPC) eriod	22

Aspects of CPU Performance							
СР	PU time	= <u>Seconds</u> = Program	Inst Pro	tructions x <u>(</u> ogram Ia	Cycles x S astruction	econds Cycle	
• CF	PU perfor	mance is depend	dent up	on three char	acteristics :		
- (Clock cyc	le time (clock rat	te), Cyc	les per instru	ction, and Ins	truction cou	int
is her ara	difficult rs becau ac <u>teristic</u>	to change on se the basic t s are interdepe	e para techno ndent	imeter in co logies invol	omplete isola ved in chan	ation from ging each	
is her nara	difficult rs becau acteristic	to change on se the basic t <u>s are interdepe</u>	e para technol ndent	Instruction	omplete isola ved in chan	ation from ging each	rate
is her ara	difficult rs becau acteristic Progra	to change on se the basic t <u>s are interdepe</u> m	e para techno ndent	Instruction Count	omplete isola ved in chan	ation from ging each Clock	rate
is her nara	difficult rs becau acteristic Progra Compi	to change on se the basic f s are interdepe m er	e para techno ndent	Instruction Count X	omplete isola ved in chan CPI	ation from ging each Clock	rate
is ther hara	difficult rs becau acteristic Progra Compi Instruc	to change on se the basic t <u>s are interdepe</u> m er tion Set Architect	e para techno ndent ture	Instruction Count X X X X	mplete isola ved in chan CPI	ation from ging each Clock	rate
is ther nara	difficult rs becau ac <u>teristic</u> Progra Compi Instruc Organi	to change on se the basic f s are interdepe m er tion Set Architect zation	e para technol ndent	Instruction Count X X X X	CPI CPI X	ation from ging each Clock	rate

Basic Performance Equation

• Sometimes it is possible to compute the CPU clock cycles by looking at the different types of instructions and using their individual clock cycle counts.

n

In such cases, the following formula is useful:

CPU Clock Cycles =
$$\sum_{i=1}^{n}$$
 (CPI_i x C_i)

where C_i is the count of the number of instructions of class i executed,

 \mbox{CPI}_{i} is the average number of cycles per instruction for that instruction class, and

n is the number of instruction classes.

• Remember that overall CPI for a program will depend on both the number of cycles for each instruction type and the frequency of each instruction type in the program execution. Lecture Slides on Computer Architecture ICS 233 @ Dr A R

24

Questic	on 5: Perf	ormand	e		
A comp for a pa followin	biler designer is trying t articular machine. The l ng facts:	o decide betw hardware des	veen two code sequ igners have suppli	ences ed the	
	Instruction Class	CPI for t	his instruction Class		
	Α		1		
	В		2		
	С		3		
For a p conside instruc	articular high-level-lang ering two code sequenc ti on counts:	uage stateme	ent, the compiler wr re the following	iter is	
	Code Sequence	Instruction Counts for Instruction Cla		0	
		A	В	С	
	1	2	1	2	
	2	4	1	1	
Which of What is	code sequence executes the CPI for each code sequ	most instructi Jence	ons? Which will be	faster?	
	Le Arci	ecture Slides on Co hitecture ICS 233	omputer @ Dr A R	2	25

Answer:	
Code Sequence 1 executes 2+1+2 = 5 instructions	
Code sequence 2 executes 4+1+1 = 6 instructions	
So Sequence 1 executes fewer instructions.	
We can use the equation for CPU clock cycles based on instruction count and CPI to find the total number of clock cycles for each sequence:	
n	
CPU Clock Cycles = $\sum (CPI_i \times C_i)$	
i=1	
This yields	
CPU clock cycles ₁ = $(1x2) + (2x1) + (3x2) = 2+2+6 = 10$ cycles	
CPU clock cycles ₂ = $(1x4) + (2x1) + (3x1) = 4+2+3 = 9$ cycles	
So code sequence 2 is faster, even though it actually executes one extra instruction.	
Lecture Slides on Computer Architecture ICS 233 @ Dr A R	26

Quantitative Principles of Computer Design	
Make the Common Case Fast	
Most important and pervasive principle of Computer design	
One of the principles behind RISC: Reduced Instruction Set Computers	
 Identify most frequently-used instructions Implement them in hardware Emulate other instructions in software 	
Pretty much every technique used in current-day microprocessors	
 Is there a way of quantifying the gains one is likely to see by improving some portion of the design? – What is the best one can hope to do? 	
A fundamental law, called Amdahl's Law can be used to quantify this principle.	
Lecture Slides on Computer Architecture ICS 233 @ Dr A R	28

Amdohl'o Low	
Amuanis Law	
Amdahl's Law can be used to calculate performance gain that can be obtained by improving some portion of a computer	
 Amdahl's law states that the performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used. 	
 Amdahl's law defines the speedup that can be gained by using a particular feature. 	
Speedup = Performance for entire task using the enhancement when possible Performance for entire task without using the enhancement	
Alternatively,	
Speedup = Execution time for entire task without using the enhancement Execution time for entire task using the enhancement when possible	
Lecture Slides on Computer 29 Architecture ICS 233 @ Dr A R)

Amdahl's Law Speedup tells us how much faster a task will run using the machine with the enhancement as opposed to the original machine. Speedup depends on two factors > The fraction of the computation time in the original machine that can be converted to take advantage of the enhancement; this value is called Fraction_{enhanced} > The improvement gained by the enhanced execution mode; that is, how much faster the task would run if the enhanced mode were used for the entire program; this value is called **Speedup**enhanced Lecture Slides on Computer 30 Architecture ICS 233 @ Dr A R

