
1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

1

ICS 233 ICS 233
COMPUTER ARCHITECTURECOMPUTER ARCHITECTURE

Computer PerformanceComputer Performance

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

2

Lecture Outline

Performance Issues

Performance Metrics

2

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

3

ICS 233 ICS 233
COMPUTER ARCHITECTURECOMPUTER ARCHITECTURE

Computer PerformanceComputer Performance

Lecture 17Lecture 17

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

4

Performance
Two factors are to be taken into account
when considering the performance of a
computer system:

• Response Time -The time between the start
and completion of a task.
Also referred to as
Execution Time

• Throughput - Total amount of work done in
a given time

3

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

5

Performance

To improve performance

- reduce Response time

- increase Throughput

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

6

Performance

Question 1:

Do the following changes to a computer system
increase throughput, decrease response time, or
both

a) Replacing the processor in a computer with
a faster version

b) Adding additional processors to a system
that uses multiple processors for separate
tasks – for example, handling an airline
reservation system.

4

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

7

Performance

Answer

Decreasing the response time always
improves performance

Hence,

In case a) both response time and throughput
are improved

In case b) no one task gets work done faster,
so only throughput increases

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

8

Maximize Performance
To maximize performance, response time or
execution time is to be minimized

Hence, we relate Performance & Execution time
for a machine X as

Performancex = 1
Execution Timex

5

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

9

Maximize Performance
For two machines X & Y :

If performance of X is greater than performance of Y,

then PerformanceX > PerformanceY

1 1
Execution TimeX Execution TimeY

Or Execution TimeY > Execution TimeX

If X is ‘n’ times faster than Y, then
PerformanceX = n
PerformanceY

If X is ‘n’ times faster than Y, then the execution time on Y is ‘n’
times longer than X

PerformanceX = Execution TimeY = n
PerformanceY Execution TimeX

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

10

Maximize Performance
Question 2:
If machine A runs a program in 10 seconds and
machine B runs the same program in 15 seconds,
how much faster is A than B?
We say, machine A is ‘n’ times faster than B if

PerformanceA = n
PerformanceB

or Execution TimeB = n
Execution TimeA

The performance ratio is 15 = 1.5
10

and A is therefore 1.5 times faster than B.

We could also say that Machine B is 1.5 times slower than machine A,

PerformanceA = 1.5
PerformanceB

6

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

11

Measuring Performance
• Time is the measure of Computer performance

• The computer that performs the same amount of
work in the least time is the fastest

Program Execution Time

Measured in seconds per program
The most straightforward definition of time
is called Response time or Elapsed time.
This means the total time to complete a task,
including disk accesses, memory accesses,
I/O activities, operating system overhead
etc.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

12

Measuring Performance
CPU Execution Time

• CPU execution time is the time the CPU spends
computing for this task and does not include time
spent waiting for I/O or running other programs.

• CPU time can be further divided into the CPU time
spent in the program, called User CPU time and the
CPU time spent in the operating system performing
tasks on behalf of the program called System CPU
time.

7

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

13

Measuring Performance
Example:

The breakdown of the elapsed time for a task is
reflected in the UNIX ‘time’ command which, for
example, might return the following:

90.7u 12.9s 2:39 65%
User CPU time is 90.7 seconds,

System CPU time is 12.9 seconds,

Elapsed time is 2 minutes & 39 seconds(159 seconds)

Percentage of CPU time is (90.7 + 12.9)x100/159 = 65%

More than a third of the elapsed time in this
example was spent waiting for I/O, running other
programs or both.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

14

CPU Execution Time
• Computer designers may want to think about a
machine by using a measure that relates to how fast
the hardware can perform basic functions.

• Almost all computers are constructed using a clock
that runs at a constant rate and determines when
events take place in the hardware. These discrete
time intervals are called clock cycles.

• Designers refer to the length of a clock period both
as the time for a complete clock and as the clock rate
which is the inverse of the clock period.

Clock Cycle Time = 1
(Clock Period) Clock Rate

8

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

15

CPU Execution Time
A simple formula that relates the most basic

metrics (clock cycles & clock cycle time) to CPU
Execution Time is

CPU Execution Time = CPU Clock cycles x Clock Cycle time
for a program

= CPU clock cycles for a program
Clock rate

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

16

CPU Execution Time

Question 3:

A program runs in 10 seconds on computer A,
which has a 400 MHz clock. A computer designer
wants to build a machine B that will run this
program in 6 seconds. The designer has
determined that a substantial increase in the
clock rate is possible, but this increase will
affect the rest of the CPU design, causing
machine B to require 1.2 times as many clock
cycles as machine A for this program. What
clock rate should we tell the designer to target?

9

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

17

CPU Execution Time
Answer :
First, find the number of clock cycles required for the program on A

CPU TimeA = CPU Clock cyclesA

Clock rateA

CPU Clock cyclesA = CPU TimeA X Clock rateA

= 10 seconds X 400 x 106

= 4000 x 106

CPU time for machine B can be written as

CPU TimeB = 1.2 x CPU Clock cyclesA
Clock rateB

Clock rateB = 1.2 x 4000 x 106

6 seconds
= 800MHz

Machine B must therefore have twice the clock rate of A to run the
program in 6 seconds.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

18

CPI (Clock cycles Per Instruction)
• One way to think about execution time is that it equals the
number of instructions executed multiplied by the average time per
instruction.

• Therefore, the number of clock cycles required for a program can
be written as

CPU Clock Cycles = Instructions x Average clock cycles
for a program per instruction

• The term clock cycles per instruction, which is the average
number of clock cycles each instruction takes to execute, is
often abbreviated as CPI

10

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

19

CPI (Clock cycles Per Instruction)

CPU Clock Cycles = Instruction Count x CPI

CPI = CPU Clock Cycles
Instruction Count

• Since different instructions may take different amounts
of time depending on what they do, CPI is an average
of all the instructions executed in the program.

• CPU provides one way of comparing two different
implementations of the same instruction set
architecture, since the instruction count required for a
program will, of course, be the same.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

20

CPI (Clock cycles Per Instruction)

Question 4:

Suppose we have two implementations of the
same Instruction Set Architecture. Computer A
has a clock cycle time of 250 ps and a CPI of 2.0
for some program and computer B has a clock
cycle time of 500 ps and a CPI of 1.2 for the same
program. Which computer is faster for this
program, and by how much?

11

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

21

CPI (Clock cycles Per Instruction)
We know that each computer executes the same number of instructions for
the program, let us call this number N.

First, find the number of processor clock cycles for each computer:

CPU Clock CyclesA = N x 2.0

CPU Clock CyclesB = N x 1.2

Now we can compute the CPU time for each computer:

CPU TimeA = CPU Clock CyclesA x Clock Cycle TimeA

= N x 2.0 x 250 ps

= 500 x N ps

Similarly for B,
CPU TimeB = CPU Clock CyclesB x Clock Cycle TimeB

= N x 1.2 x 500 ps
= 600 x N ps

Clearly Computer A is faster.

The amount faster is given by the ratio of the execution times:
PerformanceA = Execution TimeB = 600 x N ps = 1.2
PerformanceB Execution TimeA 500 x N ps

We can conclude that computer A is 1.2 times faster than B for this program.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

22

Basic Performance Equation
• The basic performance equation can be written in terms
of Instruction Count (the number of instructions executed
by the program), CPI and Clock cycle time as follows:

CPU time = Instruction Count x CPI x Clock cycle time

CPU time = Instruction Count x CPI
Clock Rate

• Instruction Count (IC): Number of instructions/program
• Cycles per instruction (CPI)

– Sometimes the reciprocal is used: Instructions per cycle (IPC)
• The number of seconds per cycle is the clock period

– clock rate is the multiplicative inverse of the clock period

12

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

23

Aspects of CPU Performance

CPU performance is dependent upon three characteristics :

- Clock cycle time (clock rate), Cycles per instruction, and Instruction count

It is difficult to change one parameter in complete isolation from
others because the basic technologies involved in changing each
characteristics are interdependent

XHardware Technology

XXOrganization

XXInstruction Set Architecture

XCompiler

XProgram

Clock rateCPIInstruction
Count

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

24

Basic Performance Equation
• Sometimes it is possible to compute the CPU clock cycles by
looking at the different types of instructions and using their
individual clock cycle counts.

In such cases, the following formula is useful:

n

CPU Clock Cycles = ∑ (CPIi x Ci)
i=1

where Ci is the count of the number of instructions of class i
executed,

CPIi is the average number of cycles per instruction for that
instruction class, and

n is the number of instruction classes.

• Remember that overall CPI for a program will depend on both the
number of cycles for each instruction type and the frequency of
each instruction type in the program execution.

13

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

25

Question 5:

A compiler designer is trying to decide between two code sequences
for a particular machine. The hardware designers have supplied the
following facts:

For a particular high-level-language statement, the compiler writer is
considering two code sequences that require the following
instruction counts:

Which code sequence executes most instructions? Which will be faster?
What is the CPI for each code sequence

3C
2B
1A

CPI for this instruction ClassInstruction Class

Performance

1142

2121

CBA

Instruction Counts for Instruction ClassCode Sequence

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

26

Answer:

Code Sequence 1 executes 2+1+2 = 5 instructions

Code sequence 2 executes 4+1+1 = 6 instructions

So Sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on
instruction count and CPI to find the total number of clock cycles
for each sequence:

n
CPU Clock Cycles = ∑ (CPIi x Ci)

i=1

This yields

CPU clock cycles1 = (1x2) + (2x1) + (3x2) = 2+2+6 =10 cycles

CPU clock cycles2 = (1x4) + (2x1) + (3x1) = 4+2+3 = 9 cycles

So code sequence 2 is faster, even though it actually
executes one extra instruction.

14

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

27

Answer (continued):

Since code sequence 2 takes fewer overall clock cycles but has
more instructions , it must have a lower CPI.

The CPI values can be computed by

CPI = CPU Clock cycles
Instruction Count

CPI1 = CPU Clock cycles1 = 10 = 2
Instruction Count1 5

CPI2 = CPU Clock cycles2 = 9 = 1.5
Instruction Count2 6

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

28

Quantitative Principles of Computer Design

Make the Common Case Fast
Most important and pervasive principle of Computer

design

One of the principles behind RISC: Reduced Instruction Set
Computers

- Identify most frequently-used instructions
Implement them in hardware

- Emulate other instructions in software

Pretty much every technique used in current-day
microprocessors

Is there a way of quantifying the gains one is likely to see
by improving some portion of the design?

– What is the best one can hope to do?

A fundamental law, called Amdahl’s Law can be used to
quantify this principle.

15

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

29

Amdahl’s Law
Amdahl’s Law can be used to calculate performance gain that

can be obtained by improving some portion of a computer

Amdahl’s law states that the performance improvement to be
gained from using some faster mode of execution is limited by
the fraction of the time the faster mode can be used.

Amdahl’s law defines the speedup that can be gained by using a
particular feature.

Speedup = Performance for entire task using the enhancement when possible
Performance for entire task without using the enhancement

Alternatively,

Speedup = Execution time for entire task without using the enhancement
Execution time for entire task using the enhancement when possible

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

30

Amdahl’s Law
Speedup tells us how much faster a task will run

using the machine with the enhancement as
opposed to the original machine.

Speedup depends on two factors

The fraction of the computation time in the
original machine that can be converted to take
advantage of the enhancement; this value is
called Fractionenhanced

The improvement gained by the enhanced
execution mode; that is, how much faster the
task would run if the enhanced mode were used
for the entire program; this value is called
Speedupenhanced

16

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

31

Amdahl’s Law
The execution time using the original machine with

the enhanced mode will be the time spent using the
unenhanced portion of the machine plus the time
spent using the enhancement.

Execution timenew = Executiontimeold x (1 – Fractionenhanced)+ Fractionenhanced
Speedupenhanced

The overall speedup is the ratio of the execution times :

Speedupoverall = Execution timeold = 1
Execution timenew (1 – Fractionenhanced)+ Fractionenhanced

Speedupenhanced

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

32

Amdahl’s Law
Question :
Suppose that we are considering an enhancement to the
processor of a server system used for Web Serving. The new
CPU is 10 times faster on computation in the Web serving
application than the original processor. Assuming that the
original CPU is busy with computation 40% of the time and is
waiting for I/O 60% of the time, what is the overall speedup
gained by incorporating the enhancement?
Answer :

Fractionenhanced = 0.4

Speedupenhanced = 10

Speedupoverall = 1
(1 – Fractionenhanced) + Fractionenhanced

Speedupenhanced

= 1 = 1 = 1.56
0.6 + 0.4 0.64

10

17

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

33

Amdahl’s Law

• Expresses the law of diminishing returns

•The incremental improvement in speedup
gained by an additional improvement in
the performance of just a portion of the
computation diminishes as improvements
are added.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

34

Amdahl’s Law
Question :

A common transformation required in graphics engines is
square root. Implementations of floating-point (FP) square root
vary significantly in performance, especially among
processors designed for graphics.
i) Suppose FP square root (FPSQR) is responsible for 20% of
the execution time of a critical graphics benchmark. One
proposal is to enhance the FPSQR hardware and speed up
this operation by a factor of 10.
ii) The other alternative is just to try to make all FP instructions
in the graphics processor run faster by a factor of 1.6; FP
instructions are responsible for a total of 50% of the execution
time for the application. The design team believes that they
can make all FP instructions run 1.6 times faster with the
same effort as required for the fast square root.

Compare these two design alternatives.

18

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

35

Amdahl’s Law
Answer :

We can compare these two alternatives by comparing the
speedups:

1 1
SpeedupFPSQR = --------------------- = ------ = 1.22

(1 - 0.2) + 0.2 0.82
10

1 1
SpeedupFP = ------------------ = ---------- = 1.23

(1- 0.5) + 0.5 0.8125
1.6

• Improving the performance of the FP operations overall is
slightly better because of the higher frequency.

