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Question: 

 
 
 
Find ijP : the probability of having i packets in the buffer and j active sources.  
 
Solution: 
 
In order to find the probability distribution of the buffer occupancy, consider the 
following 2-D state diagram. 
 
 

Figure 2: state-space transition diagram of the problem 
 
We want to solve for ijP  using the 2-D state space, using algorithmic technique. 
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We can differentiate 2 parts in state-space transition diagram: 
- for i = 0 
- for i > 0, 

and for each row we have 3 different cases: j = 0, 1≤ j < N, j = N. 
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If we have infinite buffer size, for the rows 2, 3 … we have three conditions: 
 
First element (j=0) 
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However, if our buffer size is finite we have the following three conditions for the 
last row: 
 
First element (j=0) 
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We will solve for infinite buffer since it is simpler. 
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The row vector can be defined as follows: 
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Pi=Pi-1 A0+Pi Ai+Pi+1 A2 

Where: 
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Using Neuts’ general solution 
 

R=A0+R A1+R2 A2 
 
Where R is the minimum non-negative solution 
 
We can simply find any row vector by using  
 

P0= P0 (B0+R B1) 
 

Pi=P0Ri 
 
Now, the problem has been mapped to polynomial matrix equation that needs to 
be solved to find the matrix R. by minimum non-negative solution we mean that 
for any other non-negative solution R^, the matrix R is entry-wise less than the 
matrix R^. 
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The algorithmic method to solve for R 
 
 
1. Initialization:  
 
 
 
2. Compute the following: 
 
 
 
 
 
 
 
3. If we have a matrix M = (xi, j)i, j = 1, 2, …, n , let us define  
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Abstract
This paper provides an accurate model of the General

Packet Radio Service (GPRS). GPRS is modeled as a
single server queue in a Markovian environment. The
queueing performance of data packets is evaluated by
matrix geometric methods. The arrival process is assumed
to follow a two state Markov modulated Poisson process
(MMPP), and the service rate fluctuates based on voice
loading. The analytical results are confirmed by
simulation.

1. Introduction

The rapid growth of the Internet has prompted a need
for wireless data access to the Internet. Although Global
System for Mobile Communications (GSM) systems
provide a fixed rate data service, they result in inefficient
use of bandwidth for data users due to the bursty nature of
data traffic.

To carry data traffic more efficiently, the use of
dynamic channel allocation for data packets was
implemented in GSM, known as General Packet Radio
Service (GPRS) [1]. Fundamentally, GPRS is based on the
hybrid switching [2] principle with two types of traffic:
(i) voice calls and (ii) packet data. In practice, in
accordance with current design and traffic management
policies, voice calls have priority over data packets and
data packets which cannot immediately be transmitted are
queued at the source.

In modeling GPRS, we assume for simplicity that all
awaiting data packets in all remote sources are in a single
server queue (SSQ). The bandwidth available to these data
packets is dependent upon the number of voice calls in the
system.

To capture the bursty nature of data traffic, we model
the arrival process as a Markov Modulated Poisson
Process (MMPP). It is shown that MMPP can be used to
produce bursty traffic [3], and we further demonstrate the
fundamentally significant short range dependent property
of MMPP.

The single server queue is modeled as a queue in a
Markovian environment to reflect both the MMPP arrival
process and the effect of voice loading on the packet data
queueing performance. We use matrix analytic methods

[4] to obtain the numerical results of the delay of data
packets. To verify our analytic model, we develop a
simulation program that models the operation of GPRS
with more details. It includes the signaling time required
for data packets, and the non-exhaustive use of a time slot
of a GSM TDMA frame.

This paper is structured as follows. In Section 2, GPRS
is outlined. The analytic model is described in Section 3.
In Section 4, the performance evaluation of GPRS is
presented. Finally in Section 5, we verify the analytical
results with the simulation results.

2. General Packet Radio Service

GPRS is a GSM packet radio service. GSM shares the
radio spectrum resource by performing both frequency-
division multiple access (FDMA) and time-division
multiple access (TDMA). FDMA divides the 25Mhz
spectrum into 124 carrier frequencies spaced 200khz apart.
A certain number of these frequency bands is allocated to
a base station of a cell. Each of these frequency bands is
further divided in time. Eight channels are created by
dividing time into eight time slots. A TDMA frame is
formed by packing the eight time slots.

In the fixed rate data service of GSM, a data user is
permanently allocated two time slots from every TDMA.
One of the time slot is used for uplink and another for
downlink. Due to the bursty nature of data packets, the
fixed time slot allocation is inefficient.

GPRS employs the concept of capacity on demand by
dynamically allocating a certain number of time slots to a
data user whenever there are data packets waiting for
transmissions. Furthermore, uplink and downlink are
allocated separately so that more efficient bandwidth
usage can be reached for asymmetric data traffic. For a
cell that supports GPRS, all the radio resources are shared
by both GSM voice users and GPRS data users. The
unused time slots from voice traffic may be reallocated to
carry GPRS traffic.

There are four coding options available for GPRS: CS-
1, CS-2, CS-3 and CS-4 capable of transmitting 9.05k,
13.4k, 15.6k, and 21.4k bits in every second respectively.
They are tailored to suit different channel conditions.



Readers are referred to [1] for more details of GPRS
specifications.

3. Queueing Model

The packet data arrival traffic model

The arrival process is assumed to follow a two state
MMPP [3]. A two state MMPP is an alternating
Markovian process with two arrival states, where the
arrival process in arrival state m is a Poisson process with
rate: λm, m=0,1. The sojourn time in each arrival state is
exponentially distributed with the mean sojourn time in
arrival state 0 and 1 being r0

-1 and r1
-1 respectively. The

values of the mean and the variance of MMPP traffic are
given in [3]. Let Nt be the amount of work arriving during
time interval (0, t). For MMPP, the mean of Nt, denoted
E[Nt], is:
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It is well known that the autocorrelation of the arrival
process has significant effect on queueing performance. It
is also well known that real traffic (data and VBR video)
exhibits long range dependence (LRD) [5]. However,
since buffer size is limited so is the time period over which
autocorrelation has effect. The larger the buffer size, the

longer is the time period over which autocorrelation
affects queueing performance. If the buffer size is equal to
zero, autocorrelations has no effect on performance.

If we accept the view that for a given buffer size, the
shape of autocorrelation curve, from a certain point
onwards, does not affect queueing performance, we can
use the MMPP, which is a short range dependent (SRD)
process, to model LRD real traffic for the purpose of
queueing performance evaluation.

For that purpose, we will consider the variance time
curve of MMPP. In Fig. 1, we plot four variance time
curves with different parameter sets of MMPP traffic. By
comparing the four presented curves, the critical time
interval of the traffic and the slopes of the curve within the
critical interval can be controlled by the parameters of
MMPP. For curves (a), (b) and (c), we obtained SRD
traffic with different critical time intervals.

The voice traffic model

A Voice call is allocated a channel for the duration of
the call. Regardless of whether there is silence or activity a
slot is dedicated to the voice call for the duration of the
call. Therefore admission of a voice call decreases the
number of channels (servers) available for the data packets
and the departure of a call increases the number of
available channels (servers) available for the data packets.

The departure and arrival process of the voice traffic is
modeled as an M/M/k/k process, where k is the number of
voice channels present in the system. The voice arrival
process is Poisson with parameter λv and the voice call
holding time is assumed exponential with mean 1/µv .

4. Queueing Analysis
We have modeled GPRS as a queue in a Markovian

environment, and we follow Neuts’ analysis of such a
queueing model as described in [4] pages 254-264. The
infinitesimal generator is first introduced here to describe
the system, then, we review Neuts’ solution as applied to
our queueing problem, and finally we show how the rate
matrix R, required for Neuts’ solution, is computed.

Infinitesimal Generator

We will assume that there are c channels (c does not
include the channels allocated for signaling), out of total c
channels we assign d channels exclusively for data
packets. Therefore only c-d channels are available for
circuit switched voice traffic. The state of the system
under consideration is denoted by the three dimensional
vector (i,j,m) where i is the number of data packets in the
queue (including the one in service), j is the number of
channels available for data packets, m is the arrival state
(m takes the values 0 and 1). The service rate is always
equal to jµ, where µ is the service rate provided by one

Fig. 1. The Variance Time Curve of MMPP
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TABLE 1. Parameters of the MMPP traffic in Fig. 1
(a) (b) (c) (d)

λ0 0.01 0.01 0.01 0.01

λ1 1 0.1 0.05 0.05
r0 10-8 10-8 10-5 0.5
r1 2⋅10-9 2⋅10-9 10-6 0.005



data channel, and j = d, d+1, d+2, …, c. The packet data
arrival rate is λm, m = 0, 1. All the possible state transitions
are presented in Fig. 2. Hence, Fig. 2 defines the
infinitesimal generator matrix G.

The sum of the entries in each row of G is 0. Let 
mji

h
,,

ˆ

be the probability of being in state (i, j, m), then the vector

ĥ  is:

(
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ĥ ,
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ĥ ,
1,1,2

ĥ , …).

The state transition balance equation is then 0ˆ =Gh . The

steady state queue size distribution 
i

x  is related to ĥ  as

such ∑∑=
m j

mjii hx ,,
ˆ . We now obtain 

i
x  by another

approach, using Neuts’ analysis.

Neuts’ solution

The steady state queue size distribution vector x can be
solved analytically by considering the data packet SSQ’s
parameters being driven by a Markovian environment. The
Markovian environment is comprised of two processes,

the voice call arrivals and departures as well as the
transition between data arrival states 0 and 1. These
processes are independent, and determine the state of the
environment j and m. The transition probability matrix of
the Markovian environment is denoted Q and it is shown
in Fig. 3.

The Markovian random environment is the stochastic
process that determines the number of voice calls in the
system and the packet data arrival state. As discussed, the
packet data service rate fluctuates based on the voice calls
in the system. For each state of the environment, there is
an appropriate data service rate in vector µµ and packet data
arrival rate in vector λλ.

The packet data service rates in each state of the
environment (j, m) are:

µµj,m = µµj  = jµ ,       m=0,1 and  j=d, d+1, d+2, ..., c.
Let vector µµ be defined by

µµ = ( dµ, (d+1) µ,(d+2) µ, …, cµ).
The packet data arrival rates in each state of the
environment (j, m) are:

λλj,m = λm ,              m=0,1 and  j=d, d+1, d+2, ..., c.
Let vector λλ be defined by

λλ = (λ0, λ1, λ0, λ1, λ0, λ1, ….  λ1).
For example, if j=10 and m=1, with c=22 and d=1, there
are 22 channels with 1 reserved for data packets, and there
are 12 voice calls in the system as there are 10 packet data
channels available. The packet data arrival state is 1. The
data service process then has parameter 10µ (since 10
channels are allocated to serving data) and the data arrival
process has parameter λ1.

Assuming the queue is stable (mean arrival rate < mean
service rate), to determine the queueing performance of
the GPRS system, the stationary probability vector
x=(x0,x1,x2,…), which describes the probability
distribution of the queue size, needs to be determined.

Using Neuts’ formalisation of the M/M/1 queue in a
Markovian environment [4], this problem is translated into
finding the minimal solution for the matrix R, which
satisfies the matrix equation

( ) ( )( ) ( ) 02 =∆++∆−+∆ λµλµ QRR

where Q is the transition probability matrix of the
Markovian environment, and )(z∆ the diagonal matrix of
the vector z.

The matrix R can be evaluated using a cyclic reduction
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r1-m (c-j)µv

Where: i=0,1,2, …  j=d, d+1, d+2, …, c  m=0 ,1
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Fig. 2. State Transition Diagram
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…
c,1 -λv-r1

Fig. 3. The Matrix Q



algorithm described in the next subsection. The stationary
probability vector x of the stable queue is given by

( ) 0≥−= kforRRIx k

k
π

where π is the stationary probability vector of Q (Eq.
(6.2.5) from [4]). The vector π is given by solving

0=⋅Qπ  by, for example, successive relaxation.

The mean queue size is computed using the stationary
probability vector x. The mean data packet delay is found
using Little’s law. Packet delay is the time from the
generation of the packet to the time the last bit is sent. The
mean delay is thus obtained as follows:
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Computation of the rate matrix R

In this subsection we describe the algorithm for the
computation of the rate matrix R. The matrix R is the
minimal nonnegative solution of the matrix equation

02
210 =++ RARAA

where )(
0

µ∆=A , )(
1

µλ +∆−= QA , )(
2

λ∆=A . Here,
minimal nonnegative solution means that for any other
nonnegative solution R̂ , the matrix R is entrywise less

than the matrix R̂ .
This effective numerical method that works in the case

where the associated M/M/1 queue is transient or positive
recurrent [4]. The method is based on the use of cyclic
reduction and is extensively discussed in the early paper
[7] and later in [8, 6, 9]. Here we will recall the algorithm
and its convergence properties and we refer the reader to
[7, 6] for details and proofs.

This method has nice properties, namely it is
quadratically convergent, that is the approximation error ej

at the j-th step is such that 
j

cej

2σ≤  for suitable

constants c>0 and 0<σ<1, and has a very low
computational cost. Moreover all the computations
involved in this scheme are numerically stable, since they
consist of sums and products of nonnegative matrices and
inversions of M-matrices (see [7]).
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In [2, 1] it is shown that these sequences of matrices are
such that:

1. for any j≥0 it holds

                               0

12)(

2

)( ARARA
jjj −=+ +

�

;

2. if the associated M/M/1 queue is positive recurrent,
then the sequences { } 0

)(

0
≥j

jA  converges in norm to

zero as 
j2σ , where σ = max{|α|:det(A0+αA1+α2A2) =

0, α∈C, |α|<1} is the largest modulus eigenvalue of
R;

3. if the associated M/M/1 queue is transient, then the
sequence { } 0

)(

2
≥j

jA  converges in norm to zero as
j2σ , where σ = 1/min{|α|:det(A2+αA1+α2A0) = 0,

α∈C, |α|>1};

4. the sequence ( ){ } 0
12)(

2

1
)( ≥+−

j
j

RAA jj
�

 converges in

norm to zero as 
j2σ , where 0<σ<1 is one of the two

values defined above.

From these properties, an approximation of R is given by

( ) 0

1)( AA j
−

−
�

, for a moderately large value of j. Moreover,
in order to stop the computation, we check the minimum
value between the norms of )(

0

jA  and )(

2

jA : if this value is

smaller than a threshold value ε, then ( ) 0

1
)( AA j

−
−

�

 will be
an approximation of R.

The resulting algorithm can be synthesized by the
following scheme:
Algorithm: Cyclic reduction for computing R
Input The matrices A0, A1, A2 and an error bound ε > 0 for

the stopping condition.

Output An approximation R
~

 of R.
Computation

1. Set j = 0, 
0

)0(

0
AA = , 

1

)0(

1
AA = , 

2

)0(

2
AA = , 

1

)0( AA =
�

.

2. Compute )1(
0

+jA , )1(
1

+jA , )1(
2

+jA , )1( +jA
�

 by means of (1)

and r = min{ )1(
0

+jA , })1(
2

+jA , where, for a matrix

B = (bh,k)h,k=1,…,n, kh
bn

k
B nh ,1

max ,,1 ∑ == =
�

.

3. If r ≥ ε set j = j + 1 and go back to step 2; otherwise,

set ( )
0

1)1(~
AAR j

−+−=
�

.



5. Simulation Testing

The analysis was performed for a typical cell. In a
typical cell, there are 24 available channels, two of which
are often reserved for signaling and Short Message Service
(SMS). Of the 22 available, one is reserved exclusively for
packet data traffic, leaving 21 for voice traffic. The mean
packet length was set to 512 bytes, a typical TCP packet,
making the mean data service rate
µ=512*8/45.25=1/90.519 packets/burst period. The mean
voice call holding time was taken to be 36000 burst
periods long (3 minutes), and the call arrival rate was
chosen so that the cell is 30% utilized by voice calls
λv=0.3⋅(c-d)⋅µv. Table 2 lists all of the parameters used.
These parameters were used to obtain a result using the
analytical approach as well as by simulation.

TABLE 2. Model Parameters
Parameter Value Meaning
λ0 variable Packet arrival rate state 0
λ1 λ1=5λ0 Packet arrival rate state 1
r0 0.00001 State 0 to 1 transition rate
r1 0.000001 State 1 to 0 transition rate
µ 1/90.519 Mean service rate
c 22 Total channels
d 1 Data reserved channels
µv 1/36000 Voice call 1/(hold time)
λv 0.3⋅(c-d)⋅µv Voice call arrival rate

The simulation includes signaling delays not modeled
in the analysis. To account for resource allocation, each
data packet generated suffers a fixed delay of 1 GSM
TDMA frame. If a transmission (data or voice) ends
during a time slot, the remaining time of this time slot
cannot be used for further voice or data traffic.

Packet delay results obtained using the parameters in
Table 2 are shown in Fig. 4 for both the analysis and
simulation. The agreement between the analytical model
and simulation validates the analytical approach.

Interestingly, it appears that the additional overheads
that the simulation accounted for had an insignificant
impact on the mean queueing delay. Resource allocation
for a packet transmission is suffered only by the first
TDMA frame of the packet. For packets spanning many
frames, this results in insignificant additional delay. The
non exhaustive use of time slots also did not contribute to
any significant delays. This is also true as long as voice or
packet transmissions last over many time slots.

Fig. 4 indicates that in order to operate GPRS with
reasonable packet delays the utilization must be kept
below 60%.

6. Conclusion

The focus of this work was to present a simple and
accurate analytical model of the GPRS system. The use of
MMPP to obtain SRD traffic, captured the bursty nature of
packet data traffic. Matrix geometric techniques were used
to obtain queueing performance results. Simulation testing
agreed with the analytical model results.
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A shifted cyclic reduction algorithm for QBDs
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Abstract

The problem of the computation of the rate matrix G associated

with discrete-time QBD Markov chains is analyzed. We present a

shifted cyclic reduction algorithm and show that the speed of conver-

gence of the latter modi�ed algorithm is always faster than that of the

original cyclic reduction.

1 Introduction

The block tridiagonal and block Toeplitz structure of the probability tran-

sition matrix P associated with QBD problems, i.e.,

P =

2666664
B0 B1 0

A0 A1 A2

A0 A1
. . .

0
. . .

. . .

3777775 ;

allowed the design of fast and reliable methods for computation of the rate

matrix G [16, 11, 2, 3, 4, 12, 5]. Here, A0, A1, A2, B0, B1 are k� k nonneg-
ative matrices such that A0 + A1 + A2 is irreducible, and P is irreducible,

stochastic and positive recurrent. These fast methods rely on the property

that the matrix G, which solves the nonlinear matrix equation

G = A0 +A1G+A2G
2; (1)
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can be computed by solving the in�nite block tridiagonal, block Toeplitz

system 2666664
I �A1 �A2 0

�A0 I �A1 �A2

�A0 I �A1
. . .

0
. . .

. . .

3777775
266664
G

G2

G3

...

377775 =

266664
A0

0

0
...

377775 : (2)

Recently, in [2, 3, 4], Bini and Meini have devised a new quadratically

convergent and numerically stable algorithm for the computation of G, based

on a functional representation of cyclic reduction, which applies to general

M/G/1 type Markov chains [16] and which extends the method of Latouche

and Ramaswami [11].

The aim of this paper is to introduce a shifted cyclic reduction algorithm

for QBDs and to show that, under the nonrestrictive assumption that G has

only one eigenvalue of modulus one, the speed of convergence of a shifted

cyclic reduction algorithm is always faster than that of the original cyclic

reduction algorithm.

More precisely, since G has a known eigenvalue (equal to one) and a

known corresponding right eigenvector, we may apply a shifting technique,

that consists in moving the eigenvalue 1 to 0, and in maintaining the remain-

ing ones. This trick leads to a new quadratic matrix equation, having as

solution a singular matrix H, such that G = H+eu
T , where e is the vector

having all the entries equal to 1, and u is a known arbitrary vector, with

positive entries, such that uTe = 1. Thus the problem of the computation

of G is reduced to the problem of the computation of H, that shares with

G all the eigenvalues, except for the eigenvalue 1, that is moved to 0.

In order to compute H we apply the cyclic reduction algorithm, and

we show that the shifting leads to a faster convergence. More precisely, in

standard cyclic reduction, the error of the approximation to G, for j !1,

goes to zero as O
�
(1=�)2

j
�
, where � = minfj�j : j�j > 1; �(�) = 0g,

and �(�) = det(�A0 + (I � A1)� � A2�
2). With the shifting technique,

the error goes to zero as O
�
(�=�)2

j
�
, where � is any real number such that

maxfj�j : j�j < 1; �(�) = 0g < � < 1. Thus the convergence speed can be

much increased; in particular the improvement is more appreciated if � � 1

and � << 1.

Finally, we introduce a means to measure the conditioning of the quadratic

matrix equations, and we prove that the shifted equation is better condi-

tioned than the original one. Indeed, the shifting technique leads to a better

2



rate of convergence, but destroys the nonnegativity and the M-matrix prop-

erties of the blocks generated at each step of standard cyclic reduction, and

in principle this fact could lead to a loss of accuracy of the results.

We have performed several numerical experiments, which show that the

shifted cyclic reduction algorithm is fast and numerically accurate.

The paper is organized as follows. In Section 2 we recall the cyclic reduc-

tion algorithm for QBDs. In Section 3 we apply the shifting technique, and

we show how the solutions of the shifted matrix equation are related to the

solution of the original one. In Section 4 we analyze the convergence proper-

ties of the cyclic reduction algorithm applied to the shifted matrix equation.

In Section 5 we study the conditioning of the two matrix equations. In

Section 6 we present some numerical results.

2 The cyclic reduction algorithm

In this section we recall the cyclic reduction algorithm for QBDs, described

in [3].

Let us consider the system (2). By recursively applying block cyclic

reduction, i.e., an odd-even permutation of block rows and block columns,

followed by one step of Gaussian elimination, the following sequence of in�-

nite block tridiagonal systems is generated:2666664
I � bA(j)

1 �A(j)
2 0

�A(j)
0 I �A

(j)
1 �A(j)

2

�A(j)
0 I �A

(j)
1

. . .

0
. . .

. . .

3777775
266664

G

G2j+1

G2�2j+1

...

377775 =

266664
A0

0

0
...

377775 ; j � 0;

(3)

where A
(0)
0 = A0, bA(0)

1 = A
(0)
1 = A1, A

(0)
2 = A2, and the blocks bA(j)

1 , A
(j)
i ,

i = 0; 1; 2, j � 1, are de�ned by the recurrences:

A
(j+1)
0 = A

(j)
0

�
I �A

(j)
1

�
�1
A
(j)
0

A
(j+1)
1 = A

(j)
1 +A

(j)
0

�
I �A

(j)
1

��1
A
(j)
2 +A

(j)
2

�
I �A

(j)
1

��1
A
(j)
0

A
(j+1)
2 = A

(j)
2

�
I �A

(j)
1

�
�1
A
(j)
2bA(j+1)

1 = bA(j)
1 +A

(j)
2

�
I �A

(j)
1

�
�1
A
(j)
0 :

(4)

The sequences of matrices generated by the above relations allow the fast

computation of the matrix G. Indeed, from (3) it follows that

(I � bA(j)
1 )G�A

(j)
2 G2j+1 = A0: (5)
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On the other hand, if we denote by R the minimal nonnegative solution of

the matrix equation R = A2 + RA1 +R2A0, then the following equation is

veri�ed (see [3, 11])

�A(j)
2 +R2j (I �A

(j)
1 )�R2�2jA

(j)
0 = 0:

Moreover, the maximum modulus eigenvalue of R is real, simple and unique,

and it is equal to 1=� (see [8]), where � = minfj�j : j�j > 1; �(�) = 0g,
and �(�) = det(�A0 + (I � A1)� � A2�

2). Thus, there exists an operator

norm jj � jj such that jjRjj = �(R), where �(R) denotes the spectral radius of

R; hence, we obtain

jjA(j)
2 jj � �(R)2

j

(jjI �A
(j)
1 jj+ �(R)2

j jjA(j)
0 jj):

Since the matrices A
(j)
1 and A

(j)
0 are bounded in norm [3], it follows that

jjA(j)
2 jj = O

�
�(R)2

j
�
and from (5), since G2j+1 is bounded, that

(I � bA(j)
1 )G�A0 = O

 �
1

�

�2j!
: (6)

Hence an approximation of the matrix G is given by
�
I � bA(j)

1

�
�1
A0, for a

suÆciently large value of j.

Due to the double exponential convergence to zero of the sequence A
(j)
2 ,

just a small number of steps can be suÆcient to reach a good approximation

of G.

The rate of convergence is given by 1=�, and it is therefore related to

the closeness to the unit circle of the smallest zero of �(�) of modulus larger

than one.

In the next section we present a trick to improve the rate of convergence;

indeed, we show that by applying a de
ating technique, that consists in

removing the zero � = 1 of �(�), the rate of convergence can be reduced to

�=�, where � is any real number such that maxfj�j : j�j < 1; �(�) = 0g <
� < 1.

3 A shifted matrix equation

In the sequel we assume, without loss of generality, that � = 1 is the only

zero of the function det(�A0+ (I �A1)��A2�
2) = 0 on the unit circle [7].

Since G has a known eigenvalue 1 and a known eigenvector e where e

is the k-dimensional vector having all the entries equal to 1, we can modify
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G so that the eigenvalue 1 is shifted to 0. This shifting technique improves

the convergence speed of the cyclic reduction algorithm.

Set H = G�euT , where u is any vector whose elements are positive and

such that uTe = 1. Then the eigenvalues of H are those of G except that

in H the eigenvalue 1 of G is replaced by 0. Moreover, e is an eigenvector

of H corresponding to the eigenvalue 0, and hence He = 0. So we have

G = H + eu
T and G2 = (H + eu

T )2 = H2 + eu
TH + eu

T :

By replacing G by H in (1) we obtain that H solves the following shifted

equation

B0 +B1H +B2H
2 = H; (7)

where
B0 = A0 + (A1 +A2 � I)euT = A0(I � eu

T )

B1 = A1 +A2eu
T

B2 = A2:

(8)

So the computation of the matrix G can be reduced to the computation of

the matrix H = G� eu
T , that solves the nonlinear matrix equation (7).

3.1 Spectral properties of the shifted matrix polynomial

The rank one corrections of the matrices A0 and A1 have the e�ect to keep

unchanged all the zeros of the polynomial �(�) = detA(�), A(�) = �A0 +

(I�A1)��A2�
2, except for the zero � = 1, that is moved to � = 0. Indeed,

the following result holds:

Theorem 1 The zeros of the polynomial  (�) = detB(�), B(�) = �B0 +

(I �B1)��B2�
2, are

f� : detA(�) = 0; � 6= 1g [ f0g:

To prove the above theorem we need to introduce some notations and

some results on pairs of matrices (see, for example, [9]).

De�nition 1 Let A and B be n� n complex matrices. We de�ne �(A;B)

by

�(A;B) = f� 2 C : det(A� �B) = 0g:
If � 2 �(A;B), � is called an eigenvalue of the pair (A;B). If � is an

eigenvalue of the pair (A;B), then there exists a nonzero vector x such

that Ax = �Bx, and such an x is called an eigenvector of the pair (A;B)

corresponding to the eigenvalue �.
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Theorem 2 If A and B are n�n complex matrices, then there exist unitary

matrices U and V such that UHAV = R and UHBV = ~R where R and ~R are

upper triangular. If for some i, rii and ~rii are both zero, then �(A;B) = C.

Otherwise

�(A;B) = frii=~rii : ~rii 6= 0; i = 1; : : : ; ng:

Note that v1, the �rst column of V , is an eigenvector of the pair (A;B)

corresponding to the eigenvalue r11=~r11.

De�nition 2 Two pairs of matrices (A;B) and (C;D) are said to be equiv-

alent if there exist nonsingular matrices L and M such that C = LAM and

D = LBM . It is easy to verify that if (A;B) and (C;D) are equivalent

pairs, then �(A;B) = �(C;D).

Let us now prove Theorem 1:

Proof of Theorem 1. Let

�(A) = f� 2 C : detA(�) = 0g; �(B) = f� 2 C : detB(�) = 0g:

If we set

S =

"
I �A1 �A0

I 0

#
and T =

"
A2 0

0 I

#

it is easy to verify that �(A) = �(S; T ). Similarly, if we set

~S =

"
I �B1 �B0

I 0

#

then �(B) = �( ~S; T ).

Now if we let

L =

"
I �A2eu

T

0 I

#
and M =

"
I eu

T

0 I

#

then by direct computation one can verify that

~S = L(S � T

"
e

e

#
[0;uT ])M and T = LTM:

So

�(B) = �( ~S; T ) = �(S � T

"
e

e

#
[0;uT ]; T ):
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Note that the vector [eT ;eT ]T is an eigenvector of the pair (S; T ) corre-

sponding to the eigenvalue 1. So there exist unitary matrices U and V such

that

UHSV = R and UHTV = ~R

with

v1 =
1p
2k

"
e

e

#
:

Since v1 is an eigenvector of the pair (S; T ) corresponding to the eigenvalue

1, we have r11=~r11 = 1. By Theorem 2 we know that

�(A) = �(S; T )

= f r11
~r11
; r22
~r22
; : : : ;

rl;l
~rl;l
g

= f1; r22
~r22
; : : : ;

rl;l
~rl;l
g:

(9)

Here we assumed that ~ri;i = 0 for i = l + 1; : : : ; 2k.

Since UHT [eT ; eT ]T = ~RV H(
p
2kv1) =

p
2k~r11e1, where e1 is the �rst

standard unit vector of length 2k, and the �rst component of the row vector

[0;uT ]V is 1=
p
2k, it follows that the matrix

UH

(
S � T

"
e

e

#
[0;uT ]

)
V = R� UHT

"
e

e

#
[0;uT ]V

is upper triangular and has r11� ~r11, r22, : : :, r2k;2k as its diagonal elements.

Hence by Theorem 2 we have

�(B) = �( ~S; T )

= �(S � T

"
e

e

#
[0;uT ]; T )

= f r11�~r11
~r11

; r22
~r22
; : : : ;

rl;l
~rl;l
g

= f0; r22
~r22
; : : : ;

rl;l
~rl;l
g:

(10)

From (9) and (10) we see that �(B) is the same as �(A) except that in �(B)

1 2 �(A) is replaced by 0.

3.2 Solutions of the shifted matrix equation

The blocks B0, B1, B2 are such that H = G � eu
T solves the nonlinear

matrix equation (7). The following theorem shows how the minimal non-

negative solutions of the nonlinear matrix equations (11) are transformed

by the shifting:

7



Theorem 3 Let u be positive, and let G, R, S and F be the minimal non-

negative solutions of the matrix equations

G = A0 +A1G+A2G
2

S = A0S
2 +A1S +A2

R = R2A0 +RA1 +A2

F = A0 + FA1 + F 2A2;

(11)

respectively. Then H = G � eu
T , K = (I � eu

TS)S(I � eu
TS)�1, T = R

and V = F �wu
T (I �A1 �A0S)

�1, where w = (1� u
TSe)�1A0(I � S)e,

solve the matrix equations:

H = B0 +B1H +B2H
2

K = B0K
2 +B1K +B2

T = T 2B0 + TB1 +B2

V = B0 + V B1 + V 2B2:

(12)

Proof. First observe that if u is positive then u
TSe < 1, since Se � e

and S is substochastic [10, 14], hence I � eu
TS is nonsingular.

The matrix H solves the �rst equation of (12) by construction. For the

matrix K we have:

B0K
2 +B1K +B2 =

B0(I � eu
TS)S2(I � eu

TS)�1 +B1(I � eu
TS)S(I � eu

TS)�1 +B2 =�
A0(I � eu

T )S2 +
�
A1 + (A0e� e)uTS +A2eu

T
�
S+

+A2(I � eu
TS)

�
(I � eu

TS)�1 =

(S � eu
TS2)(I � eu

TS)�1 = K:

For the matrix T = R, since [10] R = A2(I �A1 �A2G)
�1 and

A2e = R(I �A1 �RA0)e = R
�
I �A1 �A2(I �A1 �A2G)

�1A0

�
e =

R(I �A1 �A2)e = RA0e;

we obtain

B2 +RB1 +R2B0 = A2 +R(A1 +A2eu
T ) +R2A0(I � eu

T ) =

A2 +RA1 +R2A0 +RA2eu
T �R2A0eu

T =

R+R(A2e�RA0e)u
T = R:

Concerning the matrix V , observe that I �B1 �B0K is nonsingular, since

I � A1 � A0S � B2G is nonsingular [10, 14], and I � A1 � A0S � B2G =
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(I �B1 �B0K �B2H)(I � eu
TS) = (I �B1 �B0K)(I �KH)(I � eu

TS).

It can be shown by direct substitution that V = B0(I�B1�B0K)�1 solves

the last matrix equation in (12). By rewriting the matrix V in terms of the

blocks A0, A1, A2 we obtain that:

V = A0(I � eu
T )(I �A1 �A0S �A2eu

T )�1:

On the other hand it holds:

(I �A1 �A0S �A2eu
T )�1 =

(I �A1 �A0S)
�1 +

(1� u
T (I �A1 �A0S)

�1A2e)
�1(I �A1 �A0S)

�1A2eu
T (I �A1 �A0S)

�1 =

(I �A1 �A0S)
�1 + (1� u

TSe)�1SeuT (I �A1 �A0S)
�1 =�

I � (1� u
TSe)�1SeuT

�
(I �A1 �A0S)

�1:

From the latter equation and from the relation F = A0(I � A1 � A0S)
�1

[10], we obtain:

V = F + (1� u
TSe)�1A0Seu

T (I �A1 �A0S)
�1 �

�
�
A0e+ (uTSe)(1 � u

TSe)�1A0e

�
u
T (I �A1 �A0S)

�1 =

F �wu
T (I �A1 �A0S)

�1;

where w = (1� u
TSe)�1A0(I � S)e.

The spectral properties of the solutions of the shifted matrix equations

allow us to prove that the rate of convergence is improved, with respect to

standard cyclic reduction. Let us de�ne

�� = maxfj�j : j�j < 1; �(�) = 0g
� = minfj�j : j�j > 1; �(�) = 0g: (13)

The convergence properties that will be proved in the next section rely on

the fact that �� < 1, � = 1=�(R) > 1, S and R have the same eigenvalues

(see [14]), and thus also K and R, and �(K) = 1=� < 1.

4 A shifted cyclic reduction algorithm

In this section we apply the cyclic reduction algorithm to solve the shifted

matrix equation (7), and we show that the rate of convergence is improved,

with respect to the same algorithm applied to the original matrix equation

(1).

9



By following the approach described in section 2, we generate by means

of cyclic reduction the sequence of in�nite block tridiagonal systems2666664
I � bB(j)

1 �B(j)
2 0

�B(j)
0 I �B

(j)
1 �B(j)

2

�B(j)
0 I �B

(j)
1

. . .

0
. . .

. . .

3777775
266664

H

H2j+1

H2�2j+1

...

377775 =

266664
B0

0

0
...

377775 ; j � 0;

(14)

where B
(0)
0 = B0, bB(0)

1 = B
(0)
1 = B1, B

(0)
2 = B2, and the blocks bB(j)

1 , B
(j)
i ,

i = 0; 1; 2, j � 1, are de�ned by the recurrences:

B
(j+1)
0 = B

(j)
0

�
I �B

(j)
1

�
�1
B
(j)
0

B
(j+1)
1 = B

(j)
1 +B

(j)
0

�
I �B

(j)
1

�
�1
B
(j)
2 +B

(j)
2

�
I �B

(j)
1

�
�1
B
(j)
0

B
(j+1)
2 = B

(j)
2

�
I �B

(j)
1

��1
B
(j)
2bB(j+1)

1 = bB(j)
1 +B

(j)
2

�
I �B

(j)
1

��1
B
(j)
0 :

(15)

In the shifted case, the problem of the nonsingularity of the blocks I �
B
(j)
1 must be considered. In fact, in the original case, the matrices I �A

(j)
1

are nonsingular M-matrices for any j, since I � A
(j)
1 can be viewed as a

Schur complement of the block (2j+1 � 1) � (2j+1 � 1) matrix obtained by

truncating the in�nite matrix (2) at the block size 2j+1 � 1 (see [1, 6]),

and this �nite matrix is a nonsingular M-matrix. Analogously, the matrix

I�B(j)
1 can be viewed as a Schur complement of the matrix Q2j+1�2, where

Qn is the (n+ 1)� (n+ 1) block matrix

Qn =

2666664
I �B1 �B2 0

�B0
. . .

. . .

. . .
. . . �B2

0 �B0 I �B1

3777775 : (16)

Thus, the (j+1)-st step of cyclic reduction can be performed, i.e., I�B(j)
1 is

nonsingular, if and only if Q2j+1�2 is nonsingular [1]. Based on this property,

we prove the following result:

Theorem 4 Let u be any positive vector such that uTe = 1 and let H =

G�ue
T , K = (I � eu

TS)S(I � eu
TS)�1, where G and S are the minimal

nonnegative solutions of the matrix equations G = A0 + A1G + A2G
2, S =

10



A0S
2 + A1S + A2. Let B

(j)
0 , B

(j)
1 , B

(j)
2 , bB(j)

1 be the blocks generated at

the j-th step of cyclic reduction, j � 1. Then, the following conditions are

equivalent:

1. I � (HK2j+1�1)(KH2j+1�1) is nonsingular;

2. I � (KH2j+1�1)(HK2j+1�1) is nonsingular;

3. I �B
(j)
1 is nonsingular.

Proof. The matrix I�B(j)
1 is nonsingular if and only if Q2j+1�2 is singu-

lar, where Qn is de�ned in (16). For simplicity of notations, set n = 2j+1�2.
Observe that the matrix W = I � B1 � B0K � B2H is nonsingular, since

W = (I � A1 � A0S � A2G)(I � eu
TS) and I � A1 � A0S � B2G is non-

singular (see [10, 14]). Let x = (xi)i=0;:::;n such that Qnx = 0. Therefore,

since I �B1 �B0K �B2H is nonsingular, then

xi = Hi
r +Kn�i

s; i = 0; : : : ; n

where r and s are suitable vectors, such that the boundary conditions

(I �B1)x0 �B2x1 = 0

�B0xn�1 + (I �B1)xn = 0
(17)

are satis�ed (see [15]). By imposing the above equalities, we obtain that r

and s must solve the following homogeneous linear system:"
I �B1 �B2H ((I �B1)K �B2)K

n�1

((I �B1)H �B0)H
n�1 I �B1 �B0K

# "
r

s

#
= 0;

that can be written as"
I �B1 �B2H B0K

n+1

B2H
n+1 I �B1 �B0K

# "
r

s

#
= 0; (18)

since H and K solve the matrix equations (1), (7). Hence, x = 0 if and

only if r = s = 0. Now, the block diagonal entries in the matrix of (18)

are nonsingular since I �B1 �B0K �B2H = (I �B1 �B2H)(I �HK) =

(I � B1 � B0K)(I �KH), and I � B1 � B0K � B2H is nonsingular. By

computing the Schur complement of I � B1 � B2H in I � B1 � B0K we

obtain the matrix

S1 = I �B1 �B0K �B2H
n+1(I �B1 �B2H)�1B0K

n+1 =

I �B1 �B0K �B2H
n+2Kn+1:

11



Thus, S1 (and hence Qn) is singular if and only if (I � B1 � B0K)�1S1 =

I �KHn+2Kn+1 is nonsingular. By taking the Schur complement of I �
B1 �B0K in I �B1 �B0K we complete the proof of the theorem.

The above theorem gives necessary and suÆcient conditions for the ap-

plicability of cyclic reduction. Since �(H) < 1 and �(K) < 1, the matrix

Zj = I � (HK2j+1�1)(KH2j+1�1) is nonsingular for suÆciently large values

of j. From the numerical experiments that we have performed, and from

the fact that I � (GS2
j+1

�1)(SG2j+1�1) is nonsingular for any value of j,

we conjecture that also Zj is nonsingular for any value of j. However, if it

were not, the cyclic reduction algorithm can be still applied, by performing

a di�erent permutation of block rows and columns, that allows one to skip

the steps that cannot be performed for the singularity of the blocks I�B(j)
1

(we refer to the paper [1] for details of this subject).

Here and hereafter we assume that the matrices I�B(j)
1 are nonsingular

for any j.

The nice convergence properties stated by the next theorem enable us

to eÆciently compute the matrix H:

Theorem 5 Let B
(j)
0 , B

(j)
1 , B

(j)
2 be the blocks generated at the j-th step of

cyclic reduction. Then B
(j)
1 , (I �B(j)

1 )�1 are bounded, and for any operator

norm it holds jjB(j)
2 jj = O

�
(1=�)2

j
�
and jjB(j)

0 jj = O
�
�2

j
�
, for any �� < � <

1, where �� and � are de�ned in (13).

Proof. From (14), at each step j the following equations hold:

H2j = B
(j)
0 +B

(j)
1 H2j +B

(j)
2 H2�2j ; (19)

K2j = B
(j)
0 K2�2j +B

(j)
1 K2j +B

(j)
2 ; (20)

and therefore

(I �B
(j)
1 )�1B

(j)
0 +H2j + (I �B

(j)
1 )�1B

(j)
2 H2�2j = 0; (21)

(I �B
(j)
1 )�1B

(j)
2 +K2j + (I �B

(j)
1 )�1B

(j)
0 K2�2j = 0: (22)

We �rst prove that the matrices C
(j)
0 = (I � B

(j)
1 )�1B

(j)
0 and C

(j)
2 =

(I �B
(j)
1 )�1B

(j)
2 are bounded in norm.

Since the maximum modulus eigenvalue of R, and thus of K, is real,

simple and unique [8] then there exists an operator norm jj � jjK such that

jjKjjK = �(K). Moreover, let � > 0 such that �(H) + � < 1, and let jj � jjH;�
be an operator norm such that jjHjjH;� � �(H) + � (see [9]).

12



Let �j = jjC(j)
0 jjH;�. If �j is not bounded, then there exists a subsequence

�jh such that �jh diverges to in�nity. From (21) we have

�jh � jjC(jh)
2 jjH;�jjH2�2jh jjH;� + jjH2jh jjH;� �

(�(H) + �)2
jh
�
(�(H) + �)2

jh jjC(jh)
2 jjH;� + 1

�
:

Thus,

jjC(jh)
2 jjH;� �

 
�jh

(�(H) + �)2
jh
� 1

!
1

(�(H) + �)2
jh

and, since �jh diverges to in�nity, there exists a constant c > 0 such that

jjC(jh)
2 jjH;� � c

�jh

(�(H) + �)2
jh
:

For the equivalence of the operator norms, there exist constants c0 > 0 and

c00 > 0 such that

jjC(jh)
2 jjK � c0

�jh

(�(H) + �)2
jh
; (23)

jjC(j)
0 jjK � c00jjC(j)

0 jjH;� = c00�j: (24)

On the other hand, from (22) we have

jjC(jh)
2 jjK � jjC(jh)

0 jjK jjK2�2jh jjK + jjK2jh jjK :

Thus, from the latter inequality and (24) we have

jjC(jh)
2 jjK � c00�jh�(K)2�2

jh
+ �(K)2

jh
:

Hence, from (23), we obtain

c0
�jh

(�(H) + �)2
jh
� c00�jh�(K)2�2

jh
+ �(K)2

jh
;

that contradicts the assumption that �jh goes to in�nity. By using a similar

argument we can prove that also C
(j)
2 is bounded in norm. From (21), we

obtain

jjC(j)
0 jjH;� � (�(H) + �)2

j

+ jjC(j)
2 jjH;�(�(H) + �)2�2

j

:

Hence, since jjC(j)
2 jjH;� is bounded, then there exists a constant 
 > 0 such

that

jjC(j)
0 jjH;� � 
(�(H) + �)2

j

:

13



Thus, for the equivalence of the operator norms, for any operator norm jj � jj
there exists a constant 
 such that

jjC(j)
0 jj � 
(�(H) + �)2

j

: (25)

Similarly, for any operator norm jj � jj there exists a constant 
0 such that

jjC(j)
2 jj � 
0�(K)2

j

: (26)

From (25) and (26), since

I �B
(j+1)
1 = (I �B

(j)
1 )(I � C

(j)
0 C

(j)
2 + C

(j)
2 C

(j)
0 );

we have

jjI �B
(j+1)
1 jj � jjI �B

(j)
1 jj(1 + �j)

where �j = O
�
(�(H) + �)2

j
�(K)2

j
�
. Thus the matrices I �B(j)

1 , and hence

the matrices B
(j)
1 , are bounded in norm. Similarly, it holds

jj(I �B
(j+1)
1 )�1jj � 1

1� �j
jj(I �B

(j)
1 )�1jj;

thus jj(I �B
(j)
1 )�1jj is bounded.

Now, from the boundness of jjI �B
(j)
1 jj, and from the relations

�B(j)
0 + (I �B

(j)
1 )H2j �B

(j)
2 H2�2j = 0;

�B(j)
2 + (I �B

(j)
1 )K2j �B

(j)
0 K2�2j = 0;

derived from (19) and (20), by applying the same argument used to derive

(25) and (26), we can show that jjB(j)
2 jj and jjB(j)

0 jj are bounded, and thus

that jjB(j)
0 jj = O

�
(�(H) + �)2

j
�
, jjB(j)

2 jj = O
�
�(K)2

j
�
.

The matrix G can be directly recovered, without computing the matrix

H, according to the following result:

Theorem 6 For any operator norm jj � jj and for any �� < � < 1 it holds

A0 � (I � bB(j)
1 )G = O

 �
�

�

�2j!
: (27)
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Proof. From the relation

(I � bB(j)
1 )H �B

(j)
2 H2j+1 �B0 = 0

and from Theorem 5 it follows that for any operator norm jj � jj and for any
�� < � < 1 it holds

B0 � (I � bB(j)
1 )H = O

 �
�

�

�2j!
:

On the other hand, it can be easily proved by induction that (I � bB(j)
1 )e =

A0e for any j � 0. Thus, by replacing H with G � eu
T and B0 with

A0 �A0eu
T , we arrive at (27).

From the above result, compared with (6), it follows that the shifted

cyclic reduction can be much faster than the original one. Indeed, if the

second largest modulus eigenvalue �� of G is far from the unit circle, then

the rate of convergence is much improved.

Thus, the de
ating technique leads to a better rate of convergence, but

destroys the nonnegativity and M-matrix properties of the blocks generated

at each step. Indeed, in general neither I � B
(j)
1 is an M-matrix, nor B

(j)
0 ,

B
(j)
2 are nonnegative matrices (from the numerical experiments it seems that

I � bB(j)
1 is an M-matrix for j = 0; 1; : : :). In principle this fact could lead

to a loss of accuracy of the results obtained with the shifting technique.

In practice, we have not observed any di�erences, in terms of accuracy,

between the results obtained with the two algorithms. Furthermore, as we

will prove in the next section, the shifted equation is better conditioned than

the original one.

5 Conditioning of the shifted matrix equation

In this section we introduce a measure of the conditioning of the matrix

equation, and we show that the shifted equation is better conditioned than

the original one.

Consider the matrix equation (1) and a perturbed equation

G+4G = (A0+4A0)+(A1+4A1)(G+4G)+(A2+4A2)(G+4G)2: (28)

Using (1) this perturbed equation simpli�es up to the �rst oder in 4G

(I �A1 �A2G)4G�A2(4G)G = 4A; (29)

15



where

4A = 4A0 + (4A1)G+ (4A2)G
2:

Note that (29) can be written

Wvec(4G) = vec(4A); (30)

where

W = I 
 (I �A1 �A2G) +GT 
 (�A2)

and vec(A) is the k2-dimensional vector obtained by column-wise arranging

the entries of the matrix A.

Let �(M) denote the set of all eigenvalues of any square matrix M .

Theorem 7 The k2 � k2 matrix W is nonsingular. Furthermore

minfj�j : � 2 �(W )g = 1� �(A1 +A2G+A2):

Proof. Let S be the Schur canonical form of GT . Then the matrix W is

similar to
~W = I 
 (I �A1 �A2G) + S 
 (�A2):

Due to the upper triangular structure of S and the fact that �(S) = �(G)

it is easy to see that

�(W ) = �( ~W ) =
[

�2�(G)

�(I �A1 �A2G� �A2):

Note that whenever � 2 �(G)

�(A1 +A2G+ �A2) � �(jA1 +A2G+ �A2j)
� �(A1 +A2G+ j�jA2)

� �(A1 +A2G+A2)

< 1:

In the last step we used the fact that since A0 +A1 +A2 is irreducible and

positive recurrent the matrix A1 + A2G + A2 has spectral radius less than

1. It follows that 0 does not belong to �(W ), and hence W is nonsingular.

Clearly

minfj�j : � 2 �(W )g = 1� �(A1 +A2G+A2)

16



Since W is nonsingular

vec(4G) =W�1vec(4A):

Hence

k4GkF = kvec(4G)k2
� kW�1k2kvec(4A)k2
=

1

�min(W )
k4A0 + (4A1)G+ (4A2)G

2kF

�
p
k

�min(W )
(k4A0kF + k4A1kF + k4A2kF ):

Here �min(W ) is the minimum singular value of the matrix W . So we may

view 1=�min(W ) as a condition number of the equation (1). Even though

1=minfj�j : � 2 �(W )g � 1=�min(W ), we may consider

1

minfj�j : � 2 �(W )g =
1

1� �(A1 +A2G+A2)

as a number which re
ects the conditioning of the equation (1).

Consider now the shifted matrix equation (7) and the perturbed equation

H +4H = (B0+4B0) + (B1+4B1)(H +4H) + (B2+4B2)(H +4H)2:

As before this perturbed equation simpli�es up to the �rst oder in 4H

(I �B1 �B2H)4H �B2(4H)H = 4B; (31)

where

4B = 4B0 + (4B1)H + (4B2)H
2:

Note that (31) can be written

Qvec(4H) = vec(4B);

where

Q = I 
 (I �B1 �B2H) +HT 
 (�B2):

Note that

B1 +B2H = A1 +A2eu
T +A2(G � eu

T ) = A1 +A2G:

Hence

Q = I 
 (I �A1 �A2G) +HT 
 (�A2):
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Note that if we denote �(G) by

�(G) = f�1; �2; : : : ; �kg

with

1 = �1 > j�2j � : : : � j�kj

then

�(H) = f�2; �3; : : : ; �k; 0g

and j�2j = ��.

Theorem 8 The k2 � k2 matrix Q is nonsingular. Furthermore

minfj�j : � 2 �(Q)g � 1� �(A1 +A2G+ ��A2)

and the equality holds if �2 is a positive real number.

Proof. As in the proof of Theorem 7 it is easy to see that

�(Q) = �( ~Q) =
[

�2�(H)

�(I �A1 �A2G� �A2):

Note that since �(H) = �� = j�2j whenever � 2 �(H)

�(A1 +A2G+ �A2) � �(jA1 +A2G+ �A2j)
� �(A1 +A2G+ j�jA2)

� �(A1 +A2G+ j�2jA2)

< 1:

In the last step we used the fact that

�(A1 +A2G+ j�2jA2) < �(A1 +A2G+A2) < 1:

It follows that 0 does not belong to �(Q), and hence Q is nonsingular.

Clearly

minfj�j : � 2 �(Q)g � 1� �(A1 +A2G+ j�2jA2)

and the equality holds if �2 is a positive real number.

Since Q is nonsingular

vec(4H) = Q�1vec(4B):
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Hence

k4HkF = kvec(4H)k2
� kQ�1k2kvec(4B)k2
=

1

�min(Q)
k4B0 + (4B1)H + (4B2)H

2kF

� 2
p
k

�min(Q)
(k4B0kF + k4B1kF + k4B2kF ):

Here �min(Q) is the minimum singular value of the matrix Q. So we may

view 1=�min(Q) as a condition number of the shifted equation (7). Even

though 1=minfj�j : � 2 �(Q)g � 1=�min(Q), we may consider 1=minfj�j :
� 2 �(Q)g as a number which re
ects the conditioning of the shifted equa-

tion (7). Since 1=minfj�j : � 2 �(Q)g � 1=(1 � �(A1 +A2G+ ��A2)),

1

1� �(A1 +A2G+ ��A2)

is a number which re
ects the conditioning of the shifted equation (7). The

inequality

1

1� �(A1 +A2G+ ��A2)
<

1

1� �(A1 +A2G+A2)
;

suggests that the shifted equation (7) has a better conditioning than the

original equation (1).

6 Numerical results

We have tested the cyclic reduction algorithm and the shifted cyclic reduc-

tion algorithm on the examples in [13] using Matlab. In the case of the

cyclic reduction algorithm we stopped when

k bA(j)
1 � bA(j�1)

1 k1 � 10�12

and we accepted

~G =
�
I � bA(j)

1

�
�1
A0

as an approximation of G. Similarly, in the case of a shifted cyclic reduction

we stopped when

k bB(j)
1 � bB(j�1)

1 k1 � 10�12
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Cyclic Reduction Shifted Cyclic Reduction

p

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

10�10

Iter. Res. Stoc.

9 0:0 6:7 � 10�16
13 0:0 7:9 � 10�15
16 0:0 6:0 � 10�15
20 1:1 � 10�16 3:4 � 10�13
23 2:2 � 10�16 1:3 � 10�11
26 2:2 � 10�16 4:9 � 10�11
30 2:2 � 10�16 3:1 � 10�10
33 0:0 7:9 � 10�9
36 1:1 � 10�16 3:0 � 10�8
39 0:0 2:8 � 10�7

Iter. Res. Stoc.

2 0:0 2:2 � 10�16
2 0:0 1:1 � 10�16
2 0:0 0:0

2 0:0 0:0

2 2:2 � 10�16 0:0

2 2:2 � 10�16 1:1 � 10�16
2 5:6 � 10�17 2:2 � 10�16
2 0:0 0:0

2 5:6 � 10�17 1:1 � 10�16
2 0:0 0:0

Table 1: Example 1

and we accepted

~G =
�
I � bB(j)

1

�
�1
A0

as an approximation of G. For each example we have reported tables

with the number of iterations, the residual error, Res., which is de�ned

by k ~G � A0 � A1
~G � A2

~G2k1, and the closeness to stochasticity, Stoc.,

which is de�ned by k ~Ge � ek1, for standard and shifted cyclic reduction.

For particular examples we have also reported tables with the values of ��, of

�, 1=� and ��=�, to show the reduction of the rate of convergence, and tables

with 1��(A1+A2G+A2), 1��(A1+A2G+ ��A2), �min(W ), �min(Q), that

show the conditioning of the original and shifted matrix equations.

Example 1 Here the blocks, having dimension 2, depend on a parameter

p > 0, and are de�ned as

A0 =

"
1� p 0

0 0

#
; A1 =

"
0 p

2p 0

#
; A2 =

"
0 0

0 1� 2p

#

We have tested with ten di�erent p values and obtained the following results

summarized in Tables 1, 2, and 3.

Example 2 In this example, A0, A1, and A2 are de�ned as follows. First

we de�ne 24� 24 matrices A0
0, A

0
1, and A

0
2 as follows:

�
A0

0

�
=

(
192(1 � i=24); i = j

0; i 6= j

�
A0

2

�
=

(
192�d; i = j

0; i 6= j
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p �� � 1=� ��=�

10�1 0 1:125 0:8889 0

10�2 0 1:0102 0:9899 0

10�3 0 1:001 0:9990 0

10�4 0 1:0001 0:9999 0

10�5 0 1:00001 0:99999 0

Table 2: Example 1

p 1� �(A1 +A2G+A2) 1� �(A1 +A2G+ ��A2) �min(W ) �min(Q)

10�1 0:09 0:68 0:05 0:35

10�6 1:0 � 10�6 0:999 5:0 � 10�7 0:30

10�10 1:0 � 10�10 1:0 5:0 � 10�11 0:44

Table 3: Example 1

and �
A0

1

�
=

8><>:
ar(M � i)=M; i� j = �1
ir; i� j = 1

0; elsewhere

Here i and j are integers between 0 and 23, and a, r, M , and �d are pa-

rameters. Now A0, A1, and A2 are de�ned such that A0 = sA0
0, A1 = sA0

1,

and A2 = sA0
2 where s is a scalar which makes A0 + A1 + A2 stochastic.

Tables 4, 5, and 6 report the results obtained by choosing di�erent values

of M while we �x r = 1=300, a = 18:244, and �d = 0:280. Tables 7, 8, and

9 report the results obtained by choosing di�erent values of �d while we �x

r = 1=100, a = 18:244, and M = 512.

Example 3 In this example we construct a QBD problem de�ned by the

k� k matrices A0 = R+ ÆI, A1 = A2 = R, where R is a matrix having null

diagonal entries and constant o�-diagonal entries, and 0 < Æ < 1. As was

observed in [13], the rate � = pT (A1+2A2)e, where p
T (A0+A1+A2) = pT ,

pT e = 1, is exactly 1�Æ. We have tested with eight di�erent Æ values. Tables

10, 11, and 12 report the results obtained with k = 16 and Tables 13 and

14 report the results obtained with sizes k = 32 and k = 64, respectively.
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Cyclic Reduction Shifted Cyclic Reduction

M

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

Iter. Res. Stoc.

19 1:6 � 10�16 3:2 � 10�12
20 2:2 � 10�16 8:4 � 10�13
21 3:0 � 10�16 5:9 � 10�12
22 2:2 � 10�16 1:4 � 10�12
23 2:4 � 10�16 2:1 � 10�11
24 3:0 � 10�16 6:1 � 10�11
25 2:6 � 10�16 5:4 � 10�11
26 3:1 � 10�16 3:9 � 10�10
27 2:2 � 10�16 2:0 � 10�11
29 1:3 � 10�16 1:1 � 10�9
34 2:2 � 10�16 5:5 � 10�8

Iter. Res. Stoc.

18 5:1 � 10�16 4:4 � 10�16
19 6:9 � 10�16 4:4 � 10�16
19 4:6 � 10�16 4:4 � 10�16
19 4:7 � 10�16 4:4 � 10�16
19 5:3 � 10�16 5:6 � 10�16
19 5:0 � 10�16 4:4 � 10�16
19 5:0 � 10�17 6:7 � 10�16
19 4:8 � 10�16 6:7 � 10�16
19 5:9 � 10�17 6:7 � 10�16
19 3:5 � 10�16 4:4 � 10�16
19 5:0 � 10�16 6:7 � 10�16

Table 4: Example 2: r = 1=300, a = 18:244, �d = 0:280

M �� � 1=� ��=�

64 0:9999 1:0002 0:9998 0:9997

128 0:9999 1:0001 0:9999 0:9998

256 0:9999 1:000039 0:999961 0:9998

512 0:9999 1:000019 0:999981 0:9998

1024 0:9999 1:000009 0:999991 0:9998

2048 0:9999 1:000004 0:999996 0:9998

4096 0:9999 1:000002 0:999998 0:9999

8192 0:9999 1:000001 0:999999 0:9999

16384 0:9999 1:0000004 0:9999996 0:9999

32768 0:9999 1:0000001 0:9999999 0:9999

65536 0:9999 1:000000002 0:999999998 0:9999

Table 5: Example 2: r = 1=300, a = 18:244, �d = 0:280

M 1� �(A1 +A2G+A2) 1� �(A1 +A2G+ ��A2) �min(W ) �min(Q)

64 1:4 � 10�4 2:2 � 10�4 2:7 � 10�5 3:8 � 10�5
8192 7:1 � 10�7 1:1 � 10�4 1:5 � 10�7 1:5 � 10�5
65536 1:6 � 10�9 1:0 � 10�4 3:5 � 10�10 1:5 � 10�5

Table 6: Example 2: r = 1=300, a = 18:244, �d = 0:280
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Cyclic Reduction Shifted Cyclic Reduction

�d
0:01

0:025

0:05

0:075

0:1

0:12

0:14

0:16

0:18

0:2

0:22

0:24

0:26

0:28

0:29

:29568

Iter. Res. Stoc.

6 2:2 � 10�16 4:4 � 10�16
7 3:3 � 10�16 6:6 � 10�16
10 1:5 � 10�16 8:9 � 10�16
12 2:2 � 10�16 9:0 � 10�15
14 2:2 � 10�16 2:2 � 10�15
14 2:2 � 10�16 2:8 � 10�14
15 2:2 � 10�16 2:1 � 10�13
16 2:2 � 10�16 1:5 � 10�14
16 2:2 � 10�16 5:9 � 10�14
17 2:2 � 10�16 1:0 � 10�14
18 2:2 � 10�16 4:3 � 10�13
18 2:3 � 10�16 7:8 � 10�13
19 1:9 � 10�16 8:6 � 10�13
20 2:3 � 10�16 3:5 � 10�12
22 2:6 � 10�16 1:8 � 10�11
31 2:6 � 10�16 1:9 � 10�8

Iter. Res. Stoc.

6 3:9 � 10�16 2:2 � 10�16
7 5:7 � 10�16 4:4 � 10�16
10 3:0 � 10�16 4:4 � 10�16
12 6:1 � 10�16 4:4 � 10�16
14 4:2 � 10�16 4:4 � 10�16
14 3:9 � 10�16 4:4 � 10�16
15 5:1 � 10�17 4:4 � 10�16
16 5:3 � 10�16 4:4 � 10�16
16 4:7 � 10�17 3:3 � 10�16
16 4:5 � 10�16 6:7 � 10�16
17 6:0 � 10�16 3:3 � 10�16
17 3:7 � 10�16 6:7 � 10�16
17 5:0 � 10�16 4:4 � 10�16
17 5:1 � 10�16 3:3 � 10�16
17 3:7 � 10�16 2:2 � 10�16
17 6:0 � 10�16 4:4 � 10�16

Table 7: Example 2: r = 1=100, a = 18:244, M = 512

�d �� � 1=� ��=�

0:01 0:9998 4:3182 0:2316 0:2315

0:025 0:9998 1:7714 0:5645 0:5644

0:05 0:9998 1:0814 0:9248 0:9246

0:075 0:9998 1:0170 0:9833 0:9831

0:1 0:9998 1:0063 0:9938 0:9936

0:12 0:9998 1:0034 0:9966 0:9964

0:14 0:9997 1:0021 0:9979 0:9977

0:16 0:9997 1:0013 0:9987 0:9984

0:18 0:9997 1:0009 0:9991 0:9988

0:2 0:9997 1:0006 0:9994 0:9991

0:22 0:9997 1:0004 0:9996 0:9993

0:24 0:9996 1:0002 0:9998 0:9994

0:26 0:9996 1:0001 0:9999 0:9995

0:28 0:9996 1:0001 0:9999 0:9995

0:29 0:9996 1:000019 0:99998 0:9995

0:29568 0:9995 1:00000003 0:99999997 0:9995

Table 8: Example 2: r = 1=100, a = 18:244, M = 512
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p 1� �(A1 +A2G+A2) 1� �(A1 +A2G+ ��A2) �min(W ) �min(Q)

0:01 0:6265 0:6265 0:6259 0:6175

0:28 4:0 � 10�5 3:4 � 10�4 8:7 � 10�6 5:3 � 10�5
0:29568 1:9 � 10�8 3:2 � 10�4 3:6 � 10�9 4:4 � 10�5

Table 9: Example 2: r = 1=100, a = 18:244, M = 512

Cyclic Reduction Shifted Cyclic Reduction

Æ

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

Iter. Res. Stoc.

8 5:7 � 10�16 1:3 � 10�15
11 6:5 � 10�16 7:2 � 10�15
14 6:7 � 10�16 9:7 � 10�14
17 6:4 � 10�16 8:8 � 10�13
21 1:1 � 10�15 1:2 � 10�11
24 6:5 � 10�16 5:8 � 10�11
27 6:3 � 10�16 1:4 � 10�9
29 7:0 � 10�16 3:5 � 10�9

Iter. Res. Stoc.

5 2:8 � 10�16 3:3 � 10�16
4 3:7 � 10�16 0:0

4 1:9 � 10�16 2:2 � 10�16
4 4:5 � 10�16 2:2 � 10�16
4 3:5 � 10�16 4:4 � 10�16
4 2:5 � 10�16 8:9 � 10�16
4 2:5 � 10�16 6:7 � 10�16
4 2:5 � 10�16 4:4 � 10�16

Table 10: Example 3: k = 16

Æ �� � 1=� ��=�

10�1 0:0783 1:3333 0:75 0:0587

10�2 0:0174 1:0303 0:9706 0:0140

10�3 0:0207 1:0030 0:9970 0:0207

10�4 0:0216 1:0003 0:9997 0:0216

10�5 0:0217 1:00003 0:99997 0:0217

Table 11: Example 3: k = 16

Æ 1� �(A1 +A2G+A2) 1� �(A1 +A2G+ ��A2) �min(W ) �min(Q)

10�1 0:1 0:3765 0:1 0:3234

10�5 1:0 � 10�5 0:3261 1:0 � 10�5 0:2310

10�8 1:0 � 10�8 0:3261 1:0 � 10�8 0:2721

Table 12: Example 3: k = 16
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Cyclic Reduction Shifted Cyclic Reduction

Æ

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

Iter. Res. Stoc.

8 1:3 � 10�15 1:1 � 10�15
11 9:5 � 10�16 1:1 � 10�14
14 1:4 � 10�15 8:0 � 10�14
17 1:6 � 10�15 3:7 � 10�12
21 1:1 � 10�15 1:0 � 10�11
24 1:2 � 10�15 2:1 � 10�10
27 1:1 � 10�15 7:9 � 10�10
29 8:2 � 10�16 1:4 � 10�8

Iter. Res. Stoc.

5 1:2 � 10�15 8:9 � 10�16
4 4:1 � 10�16 7:8 � 10�16
4 5:4 � 10�16 1:1 � 10�15
4 6:8 � 10�16 1:8 � 10�15
4 5:1 � 10�16 6:6 � 10�16
4 5:5 � 10�16 8:9 � 10�16
4 6:5 � 10�16 1:0 � 10�15
4 7:1 � 10�16 7:8 � 10�16

Table 13: Example 3: k = 32

Cyclic Reduction Shifted Cyclic Reduction

Æ

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

Iter. Res. Stoc.

8 2:8 � 10�15 4:9 � 10�15
11 3:1 � 10�15 1:1 � 10�14
14 3:1 � 10�15 1:8 � 10�13
17 2:4 � 10�15 4:6 � 10�12
21 2:3 � 10�15 2:9 � 10�11
24 3:3 � 10�15 2:8 � 10�10
27 2:4 � 10�15 1:9 � 10�10
29 2:6 � 10�15 1:7 � 10�8

Iter. Res. Stoc.

5 2:0 � 10�15 1:8 � 10�15
4 1:4 � 10�15 2:7 � 10�15
4 1:3 � 10�15 1:1 � 10�15
4 1:2 � 10�15 2:9 � 10�15
4 1:6 � 10�15 4:4 � 10�16
4 1:4 � 10�15 2:4 � 10�15
4 1:3 � 10�15 3:8 � 10�15
4 1:2 � 10�15 3:3 � 10�15

Table 14: Example 3: k = 64
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Solving certain queueing problems by means of regular

splittings

Paola Favati
�

Beatrice Meini
y

Abstract

We analyze the problem of the computation of the solution of the nonlinear matrix equation

X =
P

+1

i=0
X

i
Ai, arising in queueing models. We propose a technique based on regular

splittings, that one hand leads to a new method for computing the solution, on the other hand

it may be used to construct nonlinear matrix equations equivalent to starting one, that can

be possibly solved by applying di�erent algorithms.

Key Words. Regular splitting, Markov chain, M/G/1 type matrices.

1 Introduction.

Let P be the in�nite column stochastic matrix

P =

2
664
B1 A0 

B2 A1 A0

B3 A2 A1 A0

...
...

. . .
. . .

. . .

3
775 ; (1)

de�ned by the k � k blocks Bi+1, Ai, i � 0. A nonnegative matrix M (denoted with M � O),

possibly in�nite, is called column stochastic if eTM = eT , where e is the vector having all the

entries equal to 1. Matrices of the structure (1) are known in literature as stochastic matrices

of M/G/1 type [5] and arise in a wide variety of queueing problems modeled by a Markov chain

M, where P T is the transition matrix associated with M. One of the major problems related to

Markov chains is the computation of the nonnegative vector � such that

� = P�; eT� = 1: (2)

If system (2) has a unique solution, P is called positive recurrent and � is called the probability

invariant vector associated with P . In the case where P has the structure (1) the computation of

�Istituto di Matematica Computazionale del C.N.R., via S.Maria 46, 56127 Pisa, Italy. E-mail:

favati@imc.pi.cnr.it
yDip. Matematica, via Buonarroti 2, 56127 Pisa, Italy. E-mail: meini@dm.unipi.it

1



� can be reduced (compare [5]) to the computation of the minimal nonnegative solution G of the

nonlinear matrix equation

X =

+1X
i=0

X iAi; (3)

where X is a k � k matrix. If the matrix P is irreducible and positive recurrent [2], equation (3)

has a unique nonnegative solution, which is column stochastic [5].

Once the matrix G is known, an arbitrary number of components of the vector � can be

recovered by means of a recursive numerically stable formula, called Ramaswami's formula [6],

which involves the block entries Ai, Bi of the matrix P in (1), and G.

In this paper we derive a new method for solving the matrix equation (3), that consists in

rewriting equation (3) in terms of a linear system and in applying an iterative method, based on

regular splittings, for its solution. More precisely, the equation (3) can be rewritten as the following

block Toeplitz block Hessenberg in�nite system:

�
G;G2; G3; : : :

�
2
6664
I �A1 �A0 

�A2 I �A1 �A0

�A3 �A2 I �A1 �A0

...
. . .

. . .
. . .

. . .

3
7775 = [A0; O;O; : : :] : (4)

In order to solve the above system we generate, by means of regular splittings, a sequence of

equivalent systems having block Toeplitz block Hessenberg matrices. We prove that the sequence

of transformed systems converges to the system:

�
G;G2; G3; : : :

�
2
64

I �A�0 

I �A�0



. . .

. . .

3
75 = [A�0; O;O; : : :] ; (5)

from which we obtain G = A�0. In this way we generate a sequence of nonlinear matrix equations

X =
P
1

i=0X
iA

(n)
i , n � 0, whose solution is still G, that converges to the linear matrix equation

X = A�0, that is immediately solved.

This approach one hand leads to a new method for computing the solution G of (3), on the other

hand it may be used to construct nonlinear matrix equations equivalent to (3), that can be possibly

solved by applying di�erent algorithms. Indeed, we prove that functional iterations applied to the

matrix equation obtained after few steps of the method, converge faster than functional iterations

applied to (3), when the initial approximation is the null matrix.

The paper is organized as follows. In Section 2 we analyze the convergence properties of the

proposed method, considering also the case where the matrix power series
P
1

i=0 Aiz
i is rational.

In Section 3 we relate the regular splittings method with functional iterations, and show some

numerical results.

2



2 The regular splitting method and its convergence prop-

erties.

In this section we explain the idea which the method is based on and analyze its convergence

properties.

Denoted by H , C and X the coe�cient matrix, the right hand side and the unknown of system

(4) respectively, we consider the following splitting: H =M �N where

M =

2
6664
I �A1 

�A2 I �A1

�A3 �A2 I �A1

...
. . .

. . .
. . .

3
7775 ; N =

2
64

O A0 

O A0



. . .

. . .

3
75

obtaining the equivalent system

X(I �NM�1) = CM�1: (6)

M is a nonsingular matrix such thatM�1 is nonnegative and N is a nonnegative matrix. Splittings

with these properties are called regular splittings in [8] and are encountered in the numerical solution

of �nite Markov chains by means iterative methods (see [7]).

Since M and N are block triangular block Toeplitz matrices, the coe�cient matrix H(1) and

the right hand side C(1) of the resulting system have the same structure of the initial ones; namely

H(1) = I �NM�1 =

2
66664
I � A

(1)
1 �A

(1)
0 


�A
(1)
2 I �A

(1)
1 �A

(1)
0

�A
(1)
3 �A

(1)
2 I �A

(1)
1 �A

(1)
0

...
. . .

. . .
. . .

. . .

3
77775

and

C(1) = CM�1 =
h
A
(1)
0 ; O;O; : : :

i
;

where A
(1)
i = A0Bi+1; i = 0; 1; : : :, and B1 = (I �A1)

�1, Bi = (I �A1)
�1
Pi�1

h=1Ai+1�hBh , i � 2,

are the block entries of the �rst block column of M�1. Moreover, it can be easily veri�ed that

A
(1)
i � 0; i = 0; 1; : : : and that

P+1

i=0 A
(1)
i is a column stochastic matrix.

So we may iterate this transformation process obtaining a sequence of equivalent systems

�
G;G2; G3; : : :

�
H(j) =

h
A
(j)
0 ; O;O; : : :

i
; j � 1; (7)

with

H(j) =

2
66664
I �A

(j)
1 �A

(j)
0 


�A
(j)
2 I �A

(j)
1 �A

(j)
0

�A
(j)
3 �A

(j)
2 I �A

(j)
1 �A

(j)
0

...
. . .

. . .
. . .

. . .

3
77775 ; (8)
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where the blocks A
(j)
i are de�ned by the recursions:

A
(j+1)
i = A

(j)
0 B

(j)
i+1; i = 0; 1; : : : ; j � 1; (9)

and

B
(j)
1 = (I �A

(j)
1 )�1; B

(j)
i = (I �A

(j)
1 )�1

i�1X
h=1

A
(j)

i+1�hB
(j)

h ; i � 2; j � 1; (10)

From (7) and (8) it follows that G =
P
1

i=0G
iA

(j)
i ; in this way at each step of our method we

construct a new nonlinear matrix equation having the same nonnegative solution G.

The formulae (9{10) relating the blocks fA
(j)

i gi obtained at two subsequent steps can be ex-

pressed in functional form in terms of formal matrix power series. Indeed, if we associate with the

sequence fA
(j)
i gi, at step j the formal matrix power series '(j)(z) =

P
1

i=0A
(j)
i zi we obtain that,

for j � 0,:

'(j+1)(z) = '(j)(0)(I �

1X
i=1

A
(j)
i zi�1)�1 = '(j)(0)

�
I �

'(j)(z)� '(j)(0)

z

��1
: (11)

We prove that, if the matrix A0 is nonsingular, the generated sequence of systems converges to a

system that is easy to solve. More precisely, we prove that the sequences fH(j)gj converges to the

matrix 2
64

I �A�0 

I �A�0



. . .

. . .

3
75

where A�0 = limj!1 A
(j)
0 . From (7) we conclude that G = limj!1 A

(j)
0 . This result is expressed

in functional form by the following theorem.

Theorem 1 Let fAigi be a sequence of k � k nonnegative matrices, such that
P+1

i=0 Ai is col-

umn stochastic and detA0 6= 0. Let '(j)(z) =
P
1

i=0 A
(j)
i zi; j = 1; 2; : : : be de�ned according to

(11),where '(0)(z) =
P
1

i=0 Aiz
i
, then limj!1 '(j)(z) = limj!1 A

(j)
0 = A�0 and A�0 = G.

Proof. First we prove that the limj!1 A
(j)
0 exists. Since the following inequalities hold

A
(j+1)
0 = A

(j)
0 (I �A

(j)
1 )�1 � A

(j)
0 ; eTA

(j)
0 � eT ;8j

the sequence fAj
0g is nondecreasing, bounded and hence convergent. Denote with A�0 the limit

matrix.

Then we prove by induction on i that limj!1 A
(j)
i = 0; i � 1:

� Step 1: limj!1 A
(j)
1 = 0. Indeed

A
(j)
0 = A

(0)
0 (I �A

(0)
1 )�1(I �A

(1)
1 )�1 : : : (I �A

(j�1)
1 )�1

4



implies

A�0 = A0

1Y
j=0

(I �A
(j)
1 )�1:

If detA0 6= 0 then
Q
1

j=0(I �A
(j)
1 )�1 = A�10 A�0 is a convergent product. On the other hand,

it is easy to see that

8n � 0;

nY
j=0

(I �A
(j)
1 )�1 � I +

nX
j=0

A
(j)
1 ;

hence also the series
P
1

j=0 A
(j)
1 is convergent, implying limj!1 A

(j)
1 = 0:

� Inductive step: assuming that limj!1 A
(j)

k
= 0; k = 1; : : : ; i we prove that limj!1 A

(j)

i+1 = 0:

From relations (9) and (10) we have

A
(j+1)
i = A

(j)
0 B

(j)
i+1 = A

(j)
0 (I �A

(j)
1 )�1

iX
h=1

A
(j)

i+2�hB
(j)

h :

We isolate in the sum the term containing the matrix A
(j)
i+1, obtaining

A
(j+1)
i = A

(j+1)
0 A

(j)
i+1B

(j)
1 +A

(j+1)
0

iX
h=2

A
(j)

i+2�hB
(j)

h : (12)

For j going to 1, the left hand side of (12) goes to 0, by inductive hypotheses; since A
(j+1)
0

is bounded and
Pi

h=2A
(j)

i+2�hB
(j)

h contains matrices A
(j)

k with k � i the second term in the

right hand side of (12) goes to 0, too. Hence

lim
j!1

A
(j+1)
0 A

(j)

i+1B
(j)
1 = 0: (13)

If, by contradiction, A
(j)

i+1 does not converge to the null matrix, a subsequence fA
(jh)

i+1 gh and a

nonnegative matrix R, R 6= 0 exist such that A
(jh)

i+1 � R, for any h. Then A
(jh+1)
0 A

(jh)

i+1B
(jh)
1 �

A0A
(jh)
i+1 � A0R; 8h; that is the subsequence fA

(jh+1)
0 A

(jh)
i+1B

(jh)
1 gh is bounded away from zero,

being detA0 6= 0, and this contradicts (13). 2

In the rational case, that is when '(0)(z) is written as a fraction of two polynomial matrices

'(0)(z) = P (z)Q(z)�1;

the sequence f'(j)(z)gj is expressed in the same way

'(j)(z) = P (j)(z)Q(j)(z)�1:

5



It is easy to prove that the polynomial matrices associated with '(j+1)(z) and with '(j)(z) are

related by the following formulae:

P (j+1)(z) = P (j)(0)Q(j)(0)�1Q(j)(z);

Q(j+1)(z) = Q(j)(z)�
P (j)(z)�P (j+1)(z)

z
; j � 0:

(14)

Moreover if P (z) and Q(z) are polynomials of degree p0 and q0 respectively, the degrees of the two

sequences fP (j)(z)gj and fQ
(j)(z)gj do not increase:

pj = deg(P (j)(z)) � max(p0; q0);

qj = deg(Q(j)(z)) � max(p0; q0):

Hence in the rational case, it is more convenient to use formulae (14), rather than (11), since the

degree of '(j)(z) could increase.

3 Regular splittings and functional iteration methods.

In this section we point out some relations between regular splitting method and functional iteration

methods. These considerations, together with the results of numerical experimentations, suggest

us to apply a few steps of the method, and then to solve the nonlinear matrix equation obtained

in this way by functional iteration methods.

The most commonly used functional iteration method are based on the recursion:

Xn+1 = F (Xn); n � 0; (15)

where X0 is a nonnegative matrix and F (�) is given by:

F (X) =

+1X
i=0

X iAi (16)

or

F (X) =

 
A0 +

+1X
i=2

X iAi

!
(I �A1)

�1 (17)

or

F (X) = A0

 
I �

+1X
i=1

X i�1Ai

!�1
: (18)

In [3] and [4] it is proved that in the case where X0 = 0 the method based on (18) is faster than

the method based on (17) and that the method based on (17) is faster than the method based on

(16). This property results experimentally true also when X0 is a stochastic matrix.

We observe that method based on (17) coincides with method based on (16), applied to solve

the matrix equation X =
P+1

i=0;i 6=1X
i �Ai where �Ai = Ai(I �A1)

�1, i = 0; 2; 3; : : :, are obtained by

writing (4) as �
G;G2; G3; : : :

�
(I � �N �M�1) = [A0; O;O; : : :] �M

�1;

6



where

�M =

2
64
I �A1 


I �A1



. . .

3
75 ; �N =

2
66664

O A0 

A2 O A0

A3 A2 O
. . .

...
. . .

. . .
. . .

3
77775 :

This splitting cannot be iterated since the blocks on the main diagonal of �H(1) = I � �N �M�1 are

identity matrices.

Consider now the matrix equation

X =

1X
i=0

X iA
(1)
i ; (19)

where the blocks A
(1)
i are obtained after one step of the regular splitting method described in the

previous section. From (11), it follows that the method based on (16), applied to solve (19) is the

functional iteration method based on (18), that is the fastest one. Thus, if we apply functional

iteration (16) to the matrix equation X =
P
1

i=0X
iA

(2)
i , obtained by applying one more step

of regular splitting, we have a further improvement of the rate of convergence. This observation

suggests us to apply a few steps of regular splittings, and then to apply functional iteration method

(16).

We have tested this idea to solve a problem arising in telecommunication modeling, where the

size of the blocks Ai is 16, and the number of nonzero blocks is 241 (we refer to [1] for more details).

We have applied h = 1, 5, 10 regular splittings, and then functional iteration (16), with X0 = 0 and

X0 = I . In the following �gures we report the logarithm of the residual error jjXn�
P
1

i=0X
i
nA

(h)
i jj1

of Xn, versus the number of iterations n, for the di�erent values of h.

From the �gures we observe that the asymptotic convergence is improved, as h grows, also in

the case X0 = I .
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Abstract

The problem of the computation of the rate matrix G associated with

discrete-time QBD Markov chains is analyzed. We present theoretical and

numerical comparisons between the cyclic reduction algorithm of [7, 2, 3, 4]

and the method based on invariant subspaces of [1].

1 Introduction

The block tridiagonal and block Toeplitz structure of the probability transition

matrix P associated with QBD problems, i.e.,

P =

2666664
B0 B1 0

A0 A1 A2

A0 A1
. . .

0
. . .

. . .

3777775 ;

allowed the design of fast and reliable methods for the computation of the rate

matrix G. Here, A0, A1, A2, B0, B1 are k � k nonnegative matrices such that

A0+A1+A2 is irreducible, and P is irreducible, stochastic and positive recurrent

[8, 9]. These fast methods rely on the property that the matrix G, which solves

the nonlinear matrix equation

G = A0 +A1G+A2G
2; (1)

1



can be computed by solving the in�nite block tridiagonal, block Toeplitz system

2666664
I �A1 �A2 0

�A0 I �A1 �A2

�A0 I �A1
. . .

0
. . .

. . .

3777775
266664

G

G2

G3

...

377775 =

266664
A0

0

0
...

377775 : (2)

The pioneering method that exploits the Toeplitz structure of the above

matrix is the one devised by Latouche and Ramaswami in [7]. In this paper the

authors apply a cyclic reduction based method to solve system (2) and derive a

quadratically convergent and numerically stable algorithm for the computation

of the matrix G. More recently, in [2, 3, 4], Bini and Meini have devised a new

quadratically convergent and numerically stable algorithm for the computation

of G, based on a functional representation of cyclic reduction, which applies to

general M/G/1 type Markov chains [9] and which, in the QBD case, reduces to

the method of Latouche and Ramaswami.

A di�erent approach, which apply to M/G/1 type Markov chains having

rational generating function (thus in particular to QBD problems), is proposed

by Akar and Sohraby in [1]. Here the authors compute the matrix G by �nding,

by means of matrix sign function iterations, an invariant subspace of a suitable

matrix.

The aim of this paper is to compare the cyclic reduction based algorithm of

[7, 2, 3, 4] with the approach of [1], in terms of computational cost, numerical

stability and convergence rate. Several numerical results show di�erences in the

performance of the two approaches. The cyclic reduction algorithm appears to

be more accurate, more robust and faster than the invariant subspace approach.

2 Overview of the two algorithms

Let us �rst recall the method based on cyclic reduction. For more details we

refer to the papers [7, 2, 3, 4].

Let us consider system (2). By recursively applying one step of block cyclic

reduction, i.e, an odd-even permutation of block rows and block columns, fol-

lowed by one step of Gaussian elimination, we generate the sequence of in�nite



block tridiagonal systems2666664
I � bA(j)

1 �A
(j)
2 0

�A
(j)
0 I �A

(j)
1 �A

(j)
2

�A
(j)
0 I �A

(j)
1

. . .

0
. . .

. . .

3777775
266664

G

G2j+1

G2�2j+1

...

377775 =

266664
A0

0

0
...

377775 ; j � 0; (3)

where A
(0)
0 = A0, bA(0)

1 = A
(0)
1 = A1, A

(0)
2 = A2. The blocks bA(j)

1 , A
(j)
i , i = 0; 1; 2,

j � 1, are de�ned by the recurrences:

A
(j+1)
0 = A

(j)
0

�
I �A

(j)
1

�
�1
A
(j)
0

A
(j+1)
1 = A

(j)
1 +A

(j)
0

�
I �A

(j)
1

�
�1
A
(j)
2 +A

(j)
2

�
I �A

(j)
1

�
�1

A
(j)
0

A
(j+1)
2 = A

(j)
2

�
I �A

(j)
1

�
�1
A
(j)
2bA(j+1)

1 = bA(j)
1 +A

(j)
2

�
I �A

(j)
1

�
�1
A
(j)
0 ;

(4)

and are such that A
(j)
0 +A

(j)
1 +A

(j)
2 and A0+ bA(j)

1 +A
(j)
2 are stochastic. On the

other hand, it is proved (see [7, 3]) that the sequence A
(j)
2 , j � 0, converges in

norm to zero as �2
j

, where 0 < � < 1 is given by

� = max
n
j�j : det

�
A2 + �A1 + �2A0 � �I

�
= 0; j�j < 1

o
: (5)

Thus, from (3), an approximation of the matrix G is given by
�
I � bA(j)

1

�
�1
A0,

for a su�ciently large value of j.

Let � > 0 be a �xed error bound and denote with e the k-dimensional vector

having all the entries equal to 1. The stopping criterion is the stochasticity

condition of
�
I � bA(j)

1

�
�1
A0, i.e.,�
I �

�
I � bA(j)

1

�
�1
A0

�
e < �e: (6)

Before describing the method presented in [1], we recall the de�nition of

matrix sign and the de�nition of left invariant subspace:

De�nition 1 Let M be an m �m real matrix, with no pure imaginary eigen-

values. Let M = S(D + N)S�1 be the Jordan decomposition of M, where

D = Diag(�1; �2; : : : ; �m) and N is nilpotent and commutes with D. Then the

matrix sign of M is given by

Z = sgn(M) = S Diag(sgn(�1); sgn(�2); : : : ; sgn(�m))S
�1;



where, for any complex number z with re z 6= 0,

sgn(z) =

(
1 if re z > 0

�1 if re z < 0:

De�nition 2 Let A be an m�m real matrix. Let S be a k-dimensional subspace

of Rm such that Ax 2 S, for any x 2 S. Let S be an m � k matrix, whose

columns are a basis of S. Denote with A1 a k � k matrix such that AS = SA1.

Then the subspace S is called the (closed) left invariant subspace of A if the

eigenvalues of A1 are contained in the (closed) left half-plane of the complex

plane, and there is no larger subspace for which this inclusion holds.

Let us now recall the approach proposed in [1], here adapted to the case of

QBD problems. For more details we refer to [1].

De�ne the matrix polynomial

H(z) =
P2

i=0Hiz
i = (1� z)2(tI �A0 �A1t�A2t

2)jt= 1+z

1�z

=

�A0(1 � z)2 + (I �A1)(1� z)(1 + z)�A2(1 + z)2;

such that detH(z) = 0 has exactly k � 1 roots with imaginary part less than

zero, and a simple root at z = 0.

De�ne the matrices bH0 = H�1
2 H0, bH1 = H�1

2 H1 and consider the 2�2 block

companion matrix

E =

"
0 I

� bH0 � bH1

#
:

Let T be a 2k � k matrix whose columns are a basis of the closed left invariant

subspace of the matrix E, and partition the matrix T as T =

"
T1
T2

#
, where T1,

T2 are k � k matrices. Then the matrix G is given by

G = (T1 + T2)(T1 � T2)
�1: (7)

The authors observe that the closed left invariant subspace of E coincides with

the left invariant subspace of the matrix

bE = E �
yx

T

xTy
;

where

x
T =

h
x
T
0
bH1 x

T
0

i
y =

"
y0

0

#



and x0, y0 are two vectors such that xT
0
bH0 = 0, bH0y0 = 0. Now, a basis of the

left invariant subspace of bE, forming the columns of the matrix T , is given by

k linearly independent columns of I � Z, where Z is the matrix sign of bE. In

order to compute the matrix sign Z the authors use the scaled Newton iteration

(matrix sign function iteration)(
Z0 = bE
Zn+1 =

1
2

�

nZn + 
nZ

�1
n

�
; 
n = jdetZnj

�1=k; n � 0;
(8)

with the stopping criterion

jjZn+1 � Znjj1 < �jjZnjj1;

for a �xed small error bound �. The above sequence quadratically converges to

Z. Once Z is known, the matrix T is computed by means of the rank revealing

QR decomposition of the matrix I � Z.

3 Theoretical and numerical comparisons

Both the algorithms consist of generating a sequence of matrices that quadrat-

ically converge to a limit, which provides the solution G. However the role of

the two sequences is quite di�erent.

In the cyclic reduction algorithm, a sequence of nonlinear matrix equations

X = A0 + bA(j)
1 X +A

(j)
2 X2j+1; j � 0; (9)

is generated such that its solution is the matrix G. That is, the initial problem

(1) is transformed in the equivalent problems (9). Since the sequence A
(j)
2 , j � 0,

converges to zero, we have

G =
�
I � bA�

1

�
�1
A0;

where bA�

1 = limj
bA(j)
1 .

In the invariant subspace approach, the authors prove that the matrix G can

be recovered, by means of formula (7), after computing the matrix sign Z of bE.
In order to compute Z the quadratically convergent sequence (8) is generated.

Concerning the speed of convergence of the two algorithms, it is proved

that the sequences A
(j)
2 and bA(j)

1 of cyclic reduction converge to zero and bA�

1,

respectively, as �2
j

, where 0 < � < 1 is de�ned in (5). For the sequence Zn of

(8), the authors only claim that the convergence is quadratic, and do not relate

it with the blocks A0, A1, A2, de�ning the solution G.



From (4), each step of cyclic reduction requires six k � k matrix multipli-

cations and one matrix inversion, and thus the computational cost of one step

is about 14k3 arithmetic operations. A matrix sign function iteration, i.e., the

computation of Zn, requires one inversion of a 2k�2k matrix, that is performed

by means of LU factorization with 16k3 arithmetic operations.

Concerning numerical stability, the operations involved in (4) consist of mul-

tiplications and additions of nonnegative matrices and inversions of M-matrices

[10], i.e., matrices having non-positive o�-diagonal entries and nonnegative in-

verse. These computations, if the diagonal adjustment technique [6] is used, can

be reduced to performing additions of positive numbers, multiplications and di-

visions. This avoids cancellation errors. Moreover, the matrices
�
I � bA(j)

1

�
�1

A0

form a sequence of sub-stochastic matrices, that monotonically converges to G.

If the stopping criterion (6) is satis�ed, and if eG =
�
I � bA(j)

1

�
�1
A0 is the cor-

responding approximation of G, then, from (6), we have

jjG� eGjj
1
= jj(G� eG)ejj

1
= jj(I � eG)ejj

1
< �:

Thus condition (6) is a good stopping criterion for cyclic reduction.

An analysis of the numerical stability of the invariant subspace approach

is not presented by the authors. The e�ect of the round-o� errors generated

in the computation of the matrices Zn, in particular in the case where Zn is

close to a singular matrix, is not clear. In practice, it may happen that the

sequence Zn converges to a matrix eZ which is not the matrix sign of bE. In

this case it is not clear what the error of the approximation eG of the matrix

G would be. In the extensive numerical results presented in [1], the authors

report the error of the matrix eG as jje � eGejj
1
. This error does not give any

information on the accuracy of the computed solution, unless eG is sub-stochastic.

Note that according to this de�nition of error, the identity matrix would be an

approximation of the solution of any matrix equation (1) with error zero.

We have tested the cyclic reduction algorithm and the invariant subspace

method on some examples. The cyclic reduction algorithm for QBD prob-

lems has been implemented in Fortran90 (the code can be obtained at the

URL http://www.dm.unipi.it/pages/meini/public html). For the invariant sub-

space method we have used the C implementation provided by the authors

of [1] in the TELPACK package. This package can be taken at the URL

http://www.cstp.umkc.edu/org/tn/telpack/home.html). The programs have run

on an alpha workstation, with the IEEE standard double precision arithmetic.

For the stopping conditions of both the algorithms we have chosen � = 10�12. In

the tables of results we have reported, for the two algorithms, the CPU time (in

seconds) needed to compute an approximation eG of the matrix G, the residual



Cyclic Reduction Invariant Subspace

p Iter. Time Error Iter. Time Error

10�1 8 0.00 4:4 � 10�15 7 0.00 6:6 � 10�16

10�2 12 0.00 0.0 8 0.00 8:0 � 10�16

10�3 15 0.00 0.0 8 0.00 1:5 � 10�15

10�4 19 0.00 0.0 9 0.00 2:2 � 10�16

10�5 22 0.00 0.0 9 0.00 0.0

10�6 25 0.00 0.0 9 0.00 6:7 � 10�16

10�7 29 0.00 0.0 10 0.02 9:4 � 10�16

10�8 32 0.00 0.0 10 0.02 1:3 � 10�15

10�9 35 0.00 0.0 10 0.00 1:8 � 10�15

10�10 38 0.00 0.0 10 0.00 1:9 � 10�16

Table 1: Example 1

error of the computed approximation (as err = jj eG�A0�A1
eG�A2

eG2jj
1
) and

the number of iterations.

Example 1 The �rst problem we have tested is Example 1 of [1]. Here the

blocks, having dimension 2, depend on a parameter p > 0, and are de�ned as

A0 =

"
1� p 0

0 0

#
; A1 =

"
0 p

2p 0

#
; A2 =

"
0 0

0 1� 2p

#
:

The authors of [1] claim that their method \appears to be slightly faster than

the logarithmic reduction algorithm of Latouche and Ramaswami" and that

the accuracy of the latter algorithm \appears to deteriorate as the parameter

p decreases". We have tested the same values of the parameter p of [1]. From

Table 1 it follows that the performances of both the algorithms are insensitive to

the parameter p. The execution times and the residual errors are negligible, for

any value of p, for the cyclic reduction algorithm and for the invariant subspace

method.

Example 2 The problem we now consider, already tested in [1], is the teletra�c

system of [5], modeled as a continuous time QBD process, whose in�nitesimal



generator is de�ned by the 24� 24 blocks

(A0

0)i;j =

(
192�d if i = j

0 if i 6= j
; (A0

2)i;j =

(
192(1 � i=24) if i = j

0 if i 6= j
;

(A0

1)i;j =

8><>:
ar(M � i)=M if i� j = �1

ir if i� j = 1

0 elsewhere

; i; j = 0; 1; : : : ; 23:

Here a, r, M , �d are parameters of the teletra�c model. We reduce the above

process to a discrete-time QBD Markov chain, de�ned by the 24 � 24 blocks

A0, A1, A2, and we apply the algorithms for the computation of the matrix G.

Tables 2 and 3 report the results obtained with the parameters tested in [1].

From Table 2 we observe that the cyclic reduction outperforms the invariant

Cyclic Reduction Invariant Subspace

M Iter. Time Error Iter. Time Error

64 18 0.09 7:8 � 10�16 9 0.23 3:0 � 10�15

128 19 0.09 9:9 � 10�16 10 0.23 1:6 � 10�15

256 20 0.10 1:0 � 10�15 11 0.23 4:0 � 10�15

512 21 0.10 8:0 � 10�16 12 0.27 1:4 � 10�14

1024 22 0.11 7:9 � 10�16 13 0.28 4:5 � 10�14

2048 23 0.11 8:9 � 10�16 13 0.28 1:8 � 10�13

4096 24 0.12 8:9 � 10�16 14 0.30 6:7 � 10�13

8192 25 0.12 9:1 � 10�16 15 0.32 2:9 � 10�12

16384 26 0.13 8:9 � 10�16 16 0.35 2:5 � 10�11

32768 28 0.14 7:8 � 10�16 43 0.85 2:1 � 10�10

65536 33 0.16 8:9 � 10�16 * * *

Table 2: Example 2: r = 1=300, a = 18:244, �d = 0:280

subspace method, both for the execution time, and for the accuracy of the result.

Concerning the accuracy, we observe that cyclic reduction is insensitive to the

parameter M , while the results obtained with the invariant subspace approach

deteriorate, as M grows. In the case M = 65536 the TELPACK program has

an abnormal termination, with the segmentation fault signal. By increasing to

� = 10�8 the threshold value for the stopping condition, the program terminates

after 133 iterations, in 258 seconds, with the residual error 7:0 � 10�7.

Analogous results are obtained in Table 3, where r, a and M are �xed. Also

in this case the cyclic reduction outperforms the invariant subspace approach.



Indeed, the accuracy of the results of the latter method deteriorates, as �d
grows, while cyclic reduction seems more robust. Moreover, in the case �d =

0:29568, which is close to �d = 0:296, that yields an unstable queuing system,

the TELPACK program has an abnormal termination, with the segmentation

fault signal. By increasing to � = 10�8 the threshold value for the stopping

condition, the program terminates after 83 iterations, in 1.63 seconds, with the

residual error 3:6 � 10�8.

Cyclic Reduction Invariant Subspace

�d Iter. Time Error Iter. Time Error

0.01 5 0.03 8:9 � 10�16 10 0.25 5:3 � 10�16

0.025 6 0.03 9:5 � 10�16 10 0.23 8:4 � 10�16

0.05 9 0.05 8:9 � 10�16 10 0.23 3:0 � 10�15

0.075 11 0.06 1:2 � 10�15 10 0.23 1:7 � 10�15

0.1 13 0.07 9:0 � 10�16 10 0.23 1:3 � 10�15

0.12 13 0.06 1:0 � 10�15 10 0.23 6:5 � 10�16

0.14 14 0.07 7:8 � 10�16 10 0.23 1:5 � 10�15

0.16 15 0.07 9:0 � 10�16 9 0.20 9:0 � 10�16

0.18 15 0.07 1:0 � 10�15 9 0.22 8:5 � 10�16

0.2 16 0.08 8:9 � 10�16 9 0.20 1:0 � 10�15

0.22 17 0.08 8:1 � 10�16 9 0.22 3:0 � 10�15

0.24 17 0.08 1:0 � 10�15 10 0.25 2:4 � 10�15

0.26 18 0.09 8:9 � 10�16 10 0.23 4:0 � 10�15

0.28 19 0.09 8:1 � 10�16 12 0.27 2:8 � 10�14

0.29 21 0.10 6:7 � 10�16 13 0.28 1:0 � 10�13

0.29568 30 0.12 6:8 � 10�16 * * *

Table 3: Example 2: r = 1=100, a = 18:244, M = 512

Example 3 In this example we construct a QBD problem de�ned by the k� k

blocks A0 = R + �I, A1 = A2 = R, where R is a matrix having null diagonal

entries and constant o�-diagonal entries, and 0 < � < 1. We observe that, in this

case, the rate � = a
T (A1 + 2A2)e, where a

T (A0 +A1 + A2) = a
T , aTe = 1, is

exactly � = 1� �. Thus, as � approaches zero, the Markov chain becomes more

unstable. Here we test the two algorithms for di�erent values of the parameter

�. Tables 4, 5, 6 report the results obtained with size k = 16, k = 32, k = 64.

In the last column of each table we also report the closeness to stochasticity of

the matrix eG obtained with the invariant subspace approach, i.e., jje � eGejj
1
.



Cyclic Reduction Invariant Subspace

� Iter. Time Error Iter. Time Error Stoc.

10�1 7 0.01 4:8 � 10�16 8 0.07 6:1 � 10�15 1:3 � 10�15

10�2 10 0.02 5:6 � 10�16 11 0.08 8:1 � 10�14 4:7 � 10�15

10�3 13 0.02 5:1 � 10�16 13 0.10 8:0 � 10�12 2:9 � 10�15

10�4 16 0.03 6:5 � 10�16 16 0.12 6:7 � 10�10 1:3 � 10�15

10�5 20 0.03 5:3 � 10�16 18 0.12 5:9 � 10�8 3:1 � 10�15

10�6 23 0.04 7:1 � 10�16 25 0.15 4:4 � 10�6 3:2 � 10�15

10�7 26 0.05 6:7 � 10�16 69 0.45 4:3 � 10�4 1:8 � 10�15

10�8 29 0.05 6:3 � 10�16 25 0.17 1:4 � 10�2 1:3 � 10�15

Table 4: Example 3: k = 16

Cyclic Reduction Invariant Subspace

� Iter. Time Error Iter. Time Error Stoc.

10�1 7 0.08 9:9 � 10�16 8 0.45 7:8 � 10�15 3:1 � 10�15

10�2 10 0.11 1:2 � 10�15 11 0.58 1:1 � 10�13 7:8 � 10�15

10�3 13 0.14 9:8 � 10�16 14 0.72 9:4 � 10�12 4:2 � 10�15

10�4 16 0.19 8:9 � 10�16 17 0.85 1:0 � 10�9 4:0 � 10�15

10�5 20 0.22 8:5 � 10�16 24 1.17 6:6 � 10�8 1:7 � 10�14

10�6 23 0.27 1:2 � 10�15 93 4.43 6:3 � 10�6 8:2 � 10�15

10�7 26 0.30 1:3 � 10�15 31 1.52 8:1 � 10�4 2:0 � 10�15

10�8 29 0.33 6:2 � 10�16 55 2.65 4:9 � 10�2 2:4 � 10�15

Table 5: Example 3: k = 32

Cyclic Reduction Invariant Subspace

� Iter. Time Error Iter. Time Error Stoc.

10�1 7 0.76 2:8 � 10�15 8 3.87 2:5 � 10�14 2:4 � 10�14

10�2 10 1.07 1:9 � 10�15 11 5.05 2:6 � 10�13 2:1 � 10�14

10�3 13 1.38 2:5 � 10�15 14 6.30 1:7 � 10�11 3:5 � 10�14

10�4 16 1.69 2:0 � 10�15 17 7.50 2:0 � 10�8 1:1 � 10�14

10�5 20 2.10 2:4 � 10�15 20 8.70 1:8 � 10�7 7:1 � 10�15

10�6 23 2.46 2:3 � 10�15 59 24.90 2:3 � 10�5 3:5 � 10�14

10�7 26 2.79 3:3 � 10�15 43 18.30 2:1 � 10�3 4:4 � 10�11

10�8 29 3.04 1:7 � 10�15 78 32.70 1:8 � 10�2 5:9 � 10�15

Table 6: Example 3: k = 64



This value is reported by the TELPACK package as an estimate of the accuracy

of the output. It is worth pointing out that, even though this value is small,

the corresponding approximation error may be large. In fact, for small values

of �, the invariant subspace algorithm delivers an output matrix that, though

stochastic, is a very poor approximation of the solution of (1). On the other

hand, as shown by tables 4{6, the cyclic reduction algorithm shows its robustness

and e�ectiveness for any value of �.
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5 N-Burst Processes as Models of Self-similar

Tra�c in Telecommunication Systems {

I. Introduction and LAQT Background�

Lester Lipskyy & Hans-Peter Schwefelz

Abstract

A short history of what we call \Linear Algebraic Queueing Theory (LAQT)" is
presented, including the basic formulas for matrix representations of Phase (or `Ma-
trix Exponential') Distributions. Semi-Markov (or Markov Renewal) Processes are
then described in this formulation, with particular emphasis on `Markov Modulated
Poisson Processes (MMPP)'. The MMPP process is then modi�ed to represent ON-
OFF models with non-exponential holding times (the 1-Burst model). A `Truncated
Power-Tail' (TPT) Distribution with a Phase representation is then described. It is
the combination of ON-OFF Processes with TPT ON-times that allows telecommu-
nication systems with self-similar and long-range dependent tra�c to be modeled
analytically.

5.1 Introduction

Research of telecommunications tra�c over the last decade has led to the realization
that standard models of performance have to be modi�ed or expanded to include long-
range autocorrelation of interarrival times of data packets, and large 
uctuations in the
number of arrivals for any time intervals, the so-called self-similarity property. Analytic
models can use Markov Arrival Processes (MAP) to include autocorrelation, but long-
range correlation and self-similarity require that Power-tail distributions be included in
some way. Our goal in this paper is to introduce Power-Tail distributions into the matrix-
algebraic solution techniques. Therefore, a considerable amount of background material is
included for those who are not very familiar with, what we call, Linear Algebraic Queueing
Theory (LAQT).

After a short history of how non-exponential distributions have come to �t into Markov
chain theory, and then some basic de�nitions, we describe Matrix Exponential (ME) dis-
tributions and their properties. In Section 5.3.3 we give the solution to M/G/1 queues

� Research (partly) funded by Deutsche Telekom AG.
y Department of Computer Science and Engineering, University of Connecticut, Storrs, U.S.A.

E-mail: lester@brc.uconn.edu
z Institut f�ur Informatik, Technische Universit�at M�unchen, Germany

E-mail: schwefel@in.tum.de
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in terms of ME functions. In Section 5.4 we introduce Semi-Markov (SM) processes in
terms of the generators of ME distributions, showing how they can be used to compute
the autocorrelation coe�cients lag-k, and how to solve SM/M/1 queues, the basis for our
model of the performance of telecommunication servers (routers or packet switches). We
then present the most-used type of SM process, Markov Modulated Poisson Processes
(MMPP), and how to embed non-exponential distributions into them. We discuss the
simplest non-trivial example of a 1-Burst, ON-OFF model.

Section 5.5 contains a brief discussion of how to build matrix representations of a partic-
ular class of Truncated Power Tail (TPT) distributions and their properties. Finally, we
combine the TPT's with our form of MMPP and give some preliminary results for the
1-Burst model. The companion paper, [Lipsky & Schwefel, 1999] (hereafter referred
to as Part II ), will go into detail of how to extend the model to various types of N -Burst
models which are better suited for analyzing busy telecommunication systems.

5.2 A Short History of LAQT

K. Erlang (1900's): Erlangian Distributions and Method of Stages;
Erlang started modern queueing theory, and even then tried to build non-exponential
service times by having identical exponential stages in tandem.

D. R. Cox (1950's): Coxian Servers; Completeness;
Looked at Tandem stages with unequal service times, and �nally showed that if complex
service times, and jump-forward probabilities are allowed, then any distribution can be
approximated arbitrarily closely.

D. G. Kendall (1950's): Coxian Servers Have Rational Laplace Transforms (RLT);
The set of RLT distributions (also called Kendall distributions) is complete in the above
sense, and therefore transform methods are useful (analytic expressions for inverse
transforms are known only for RLT functions).

V. Wallace (1960's): Quasi-Birth-Death (QBD) Processes and Matrix-Geometric
Solutions;
Examined Markov chains where the generator is block tri-diagonal, and solved them in
the same way that one solves birth-death processes. He showed that in�nite, repeating
QBD processes have a matrix geometric solution.

M. Neuts (1975): Phase Distributions;
Showed that sub-stochastic processes (Markov chains with an absorbing state) whose
states can have unequal service times, have general service times that can be made
to approach any distribution with the increase of number of states (now called phases
because they are not necessarily physical), while strictly adhering to Markovian properties
(real service times, etc).
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M. Neuts, L. Lipsky, and others (1980's): Explicit Matrix Algebraic Solutions of
M/G/1, GI/M/C, GI/G/1//N, M/G/C Queues, etc.;
Explicit matrix analytic solutions of various steady-state queueing systems were derived
formally using Phase (or more generally, Matrix Exponential) distributions.

L. Lipsky (1990's): Linear Algebraic Queueing Theory (LAQT);
Matrices are considered as linear operators which change the state of a system in cor-
respondence with actual dynamic changes of a system, with the potential for solving
transient, as well as steady-state systems.

5.3 Matrix Exponential (ME) Distributions

The material in this section is described fully in [Lipsky, 1992], Chapters III and IV.
After stating some elementary de�nitions, we derive the properties of ME distributions
based on a token's travel through a black box. They are then used to state some properties
of M/G/1 queues.

5.3.1 Distribution Functions { De�nitions

� Probability Distribution Function (PDF):

F (x) := Pr(X � x) = Probability that service will be completed by x

� Reliability Function and probability density function (pdf):

R(x) := 1� F (x); f(x) :=
d

dx
F (x) = � d

dx
R(x)

� Expected Values (Averages):

E(X) :=

Z 1

0

x f(x) dx (Mean); E(X`) :=

Z 1

0

x` f(x) dx (`thMoment)

� Variance:

�2 := E[(X � E(X))2] = E(X2)� [E(X)]2

� Standard Deviation and Coe�cient of Variation:

� :=
p
�2; C2 := �2=E (x)2
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Figure 5.1: A Black Box containing m phases: a token enters and goes to phase i with
probability pi. After spending an exponential time with mean 1=�i, it goes to phase j
with probability Pij , or leaves with probability qi. The box is black because an outside
observer cannot "see" where the token is once it enters.

5.3.2 Properties of ME Distributions

Consider Figure 5.1. There are m phases (also, for now, stages or states) in the box. Let a
customer or token enter the box and go to phase i with probability pi. Call p the entrance
vector, where

p := [p1; p2; ::: ; pm]; and � := [1; 1; ::: ; 1]:

Then p�0 =
Pm

j=1 pj = 1, where �0 is the transpose of �, i.e., a column vector of all 1's. Pij
is the probability that the token will go to phase j, given that it has completed service at
i. Then (P)ij := Pij is a sub-stochastic matrix. That is, (P�0)i =

Pm
j=1 Pij < 1 for at least

one i (i.e., the token can get out of the box). Let qi be the probability that the token can
leave the box directly from phase i. Then

q0 = (I�P)�0 (5.1)

Let M be a diagonal matrix with (M)ii = �i, the (exponential) service rate of phase i.
Clearly, (M�0)i = �i. Next de�ne

�i := Mean time for token to leave box, given that it started at phase i.

The token spends a mean time of 1=�i at phase i, and then either leaves the box or goes
to phase j with probability Pij, and then takes a time �j to eventually leave. That is,

�i =
1

�i
+

mX
j=1

Pij�j:

This can be written in matrix form as:

� 0 =M�1�0 +P� 0:

Solve algebraically for � 0 to get

� 0 = (I�P)�1M�1�0:



N-Burst Processes as Models of Self-similar Tra�c in Telecommunication Systems, Part I 47

Let

B :=M(I�P) and V = B�1: (5.2)

[For future reference, (5.2) and (5.1) imply that Mq0 = B�.] Then � 0 = V�0: Now, pi is
the probability that the token, upon entering the box, goes directly to phase i. Let X be
the random variable representing the time the token spends in the box. Therefore, the
mean time the token spends in the box is given by

E(X) =
mX
i=1

pi�i = p� 0 = pV �0 =: 	[V]:

More generally, de�ne

ri(t) := Pr(`token is at phase i at time t').

with probability vector, r(t) := [r1(t); r2(t); � � � ; rm(t) ]: Then

r(t)�0 =
P

i ri(t) = Pr(`token is still in the box at time t').

Consider the system a small time � later. The probability that the token will be at phase
i at time t+� is equal to the probability, (1��i�), that it was there at time t and nothing
happened in the interval of length �, plus the probability, (�j � Pji), that it was at some
other phase, j, left there in the interval �, and then went to i, plus other multiple events
of order �2. The equation for this is:

ri(t+ �) = ri(t)(1� �i�) +
X
j

rj(t)�j�Pji +O(�2):

Rearrange terms, divide by �, let � ! 0, then

dr(t)

dt
= �r(t)B:

The solution of this matrix di�erential equation is

r(t) = r(0) exp(�tB)
where the matrix, exp(X), is de�ned by its Taylor series expansion (ex = 1+ x+ x2=2! +
x3=3! + � � � ). If the token enters the box at time t = 0, then r(0) = p, and the reliability
function for the time spent in the box is given by

R(t) = Pr(X > t) = p exp(�tB) �0 = 	[ exp(�tB)]: (5.3)

So, the vector-matrix pair, < p; B >, generates a Matrix Exponential (ME) representa-
tion of R(t). It can be shown that as long as all the eigenvalues of B have positive real
parts, the matrix function, exp(�tB) has the same properties as its scalar counterpart.
Some of these properties are:

f(t) = �d
dt
R(t) = 	[exp(�tB)B]
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Gλ

Figure 5.2: Open M/G/1 system: G is a black box, and number of customers waiting
in the queue can become unboundedly large.

and

E(X`) = p

�Z 1

0

t` exp(�tB)B dt

�
�0 = `! 	[V`]: (5.4)

The Laplace Transform also adheres to this, namely

F �(s) :=

Z 1

0

e�st f(t) dt = 	[(I+ sV)�1]: (5.5)

It is easy to show that if Dim(V) is �nite, then F �(s) is a ratio of polynomials in s. That
is, F �(�) is the Rational Laplace Transform (RLT) of f(�). We mention here that f(�) is
RLT and �nite ME i� it can be written as a sum of terms of the form

ftk e��t j k � 0; <(�) > 0g :
Erlangian distributions (but not fractional Gamma functions), hyper-exponential distribu-
tions, hypo-exponential (or generalized Erlangian) distributions, and linear combinations
of them, are all RLT and special examples of ME distributions. Coxian servers form an
equivalent class, while Phase distributions form a proper subset of ME distributions.

5.3.3 Steady-state M/G/1 Queue

If one considers a black box to be the general server in an M/G/1 queue (see Figure
5.2) then the resultant balance equations can be written down and solved explicitly.
The solutions match the Pollaczek-Khinchin formulas, and even yield the system time
distributions. We summarize the solutions here. Let � be the arrival rate of the customers,
and

A := I+
1

�
B� �0p; with U := A�1:

The steady-state solution vector, r(n), is given by

r(n) = (1� �)pUn

where its ith component, ri(n), is the probability that a random observer will �nd n
customers at the general queue, and the token for the active customer is at phase i. The
utilization is � = �	[V]. The associated scalar probability is given by

r(n) = r(n)�0 = (1� �)	[Un]:

In comparing with the simple M/M/1 queue, we note that the exponential distribution has
a 1-dimensional representation, so B! � (a scalar), p! 1, �0 ! 1, and U! �=� = �.
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5.4 Semi-Markov Processes (SMP)
Markov Renewal (MRP), Markov Arrival (MAP)

Much of the material in this section is described in detail in [Fiorini et al., 1995]. If the
general server in the previous section is so busy that the probability it will be idle goes to
zero, then the times between departures are distributed according to < p;B >. After each
departure, the next token starts in vector state p. Therefore, the inter-departure times
are independent (all start with the same probability vector) and identically distributed
(same B). Thus when � � 1, the queue becomes unboundedly large, but departures from
the box constitute a renewal process to whatever is downstream.

Suppose instead that each departure process starts with a di�erent initial vector depending
on the previous departure. Then the inter-departure times may be di�erently distributed,
and correlated. Let

pi = [(pi)1; (pi)2; � � � ; ; (pi)m]
with pi�0 = 1 for 1 � i � m, be the starting vector for an inter-departure time, given
that the previous event started in state i. Then

Y :=

2
664

(p1)1 (p1)2 � � � (p1)m
(p2)1 (p2)2 � � � (p2)m
� � � � � � � � � � � �

(pm)1 (pm)2 � � � (pm)m

3
775 :

Each row is an m-dimensional starting vector, and thus, Y is a Markov matrix, since
Y"0 = "0.

Next let B be the generator of the inter-departure times. (Here we assume that we have
the same B for all the pi's. A more general assumption is unnecessary.) Then

[exp(�tB)BY]ij�
is the probability that a departure occurred in some interval, �, around t and the next
epoch will start in phase j, given that the token was in phase i at time t = 0. From this
it can be seen that

L := BY

is the in�nitesimal generator of the next departure. First note that

L"0 = B"0:

Then it can be shown that �[L]ij is the probability that a departure will occur in the
next time-interval, �, and the next epoch will start in phase j, given that the token is in
state i.

5.4.1 Joint Distributions

From the de�nitions of Y and L, we can write down the joint probabilities of successive
inter-departure times. Let fX�j� = 0; 1; � � � g be the random variables denoting the inter-
departure times. Let }0 be the vector state of the system at time t = 0. Then,

fX0���X`
(t0; � � � ; t`) = }0[exp(�t0B)L][exp(�t1B)L] � � � [exp(�t`B)L]"0:
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The joint density function for any two interarrival times, say � and � + k can be found
by integrating over all other variables, getting

fX�X�+k
(x; t) = }0Y

�[exp(�xB)L]Yk[exp(�tB)L]"0: (5.6)

This formula shows that if }0 is given, then the �th arrival begins with vector state
}� := }0Y

�. We also see that the joint distribution is not the scalar product of two
separate functions. Instead, the representations of X� and X�+k are coupled together by
the matrix, Yk. Only if Y is of rank 1 (i.e., Y = "0}) can fX�X�+k

(x; t) be written as
f1(x)f2(t), in which case the process reduces to a pure renewal process.

5.4.2 Auto-Correlation

From probability theory, the covariance of two random variables is given by

Cov(X; Y ) =

Z
A

[x� E(X)][y � E(Y )]fXY (x; y)dxdy = E(XY )� E(X)E(Y )

The normalized correlation coe�cient is de�ned as

%(X; Y ) =
Cov(X; Y )p

�2
X �2

Y

and has the property, �1 � %(X; Y ) � 1. Let X = X�, and Y = X�+k, and use (5.6) to
get the auto-covariance lag-k

Cov(X�X�+k) = }�[VY
kV ]"0 � [}�V"

0][}�Y
k V"0];

where V = B�1 analog to formula (5.2). In general, }0 (and thus }�) is not known, but if
a system has been running for a long time then � is large, and }� ! }, where } satis�es
the eigenvector equation }Y = }. Then the covariance becomes independent of �, and
the auto-correlation function lag-k, %(k), is given by:

%(k) :=
Cov(X;X+k)

�2
X

=
}V [Yk � "0}]V"0
2}V2"0 � (}V"0)2

� (5.7)

It is easy to show that if m is �nite, then %(k) should go to 0 geometrically as �k, where �
is the second largest eigenvalue of Y in magnitude (j�j < 1, since the largest eigenvalue of
Y is 1). The signi�cance here is to note that many measurements of telecommunications
tra�c have indicated that the covariance of packet interarrival times drops o� much more
slowly, as 1=k��1. This tells us that any matrix representation that hopes to show such
behavior must be in�nite dimensional, or at least, m must be very large. We will present
such a function in Section 5.5.2.

5.4.3 SM/M/1 Queues

The discussions of the previous sections are useful for more than computing correlation.
SM processes are used to model arrival patterns to exponential and even more general
servers. See [Fiorini, 1997], [Schwefel, 1997], and [Neuts, 1981]. Neuts has shown
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that a matrix geometric solution for the steady state can be found for SM/M/1 (and
numerous other) queues by �nding an appropriate matrix, R, that satis�es the matrix-
quadratic equation

�R2 �R(B + �I) +L = 0:

The matrices, L and B were discussed in the previous section, and � is the service rate
of the exponential server downstream from the semi-Markov generator/box. The steady-
state solution is given by

r(n) = � (I �R)Rn "0;

where }V"0 is the mean interarrival time, and

� :=
}V

}V"0
�

Note that (since Y"0 = "0)

�L"0 =
}VL"0

}V"0
=
}Y"0

}V"0
=

1

}V"0
�

Part II will discuss this in detail.

5.4.4 Markov Modulated Poisson Process (MMPP)

The most widely used semi-Markov process is the MMPP. In particular, it has been used
to model voice tra�c for many years. It also seems to be quite appropriate for describing
so-called ON-OFF models. First we give a general description of MMPP's, and then we
describe the particular class of interest to us.

Let P be a transition matrix for some Markov chain, and let (�i)�1 be the mean time a
token spends in state i. Note that here we are dealing with a token which can never leave
its box (P"0 = "0). Then M = Diag(�1; �2; � � � ; �m) and

Q =M(I �P) with Q"0 = o0:

is the generator of the token's travels in the box.

Suppose that while the token is at state i, cells (packets) are emitted from the box at
Poisson rate �i. Then it can be shown this constitutes a MMPP where

L = Diag(�1; �2; � � � ; �m); and B =Q+L: (5.8)

It turns out that � with �Q = o is the steady-state vector for the token's travels in the
box. Then, with Y = VL,

} =
�L

�L"0
(5.9)

is the unit eigenvector satisfying }Y = }.

In summary, cells leave the system with exponential interdeparture times (Poisson Pro-
cess), but the departure rate is modulated (changed) according to the Markov chain
describing the token's travels. Hence the name, MMPP.
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5.4.5 `Generalized' MMPP

The assumption that the length of time for a �xed cell rate be exponentially distributed
is restrictive. We can let the token spend a non-exponential amount of time emitting cells
at rate �i in the following way. Let < pi; Bi > (together with the associated matrices,
Pi;Mi;Vi;q0i) be the mi�dimensional generator of the time the token spends in stage i
before moving to the next stage with probability (P )ij.

Before going on, a brief discussion of the notation used here is called for. What we previ-
ously called a state of a Markov chain becomes a stage which itself contains a collection
of phases that generate a non-exponential distribution. The token wanders from stage to
stage governed by the Italic matrix, P . As long as the token is in stage i, cells leave the
system at rate �i, while the token visits the phases in stage i, spending a mean time of
1=(Mi)kk in each phase, k, and then traveling to another phase with probability deter-
mined by Bold-faced matrix, Pi. The overall process describing the departure of cells
(which, remember, forms the arrival process to a router or packet switch which services
cells at the rate �) is denoted by Caligraphic matrices, L; B; P, etc.

Let m be the number of stages. The transition matrix for the generalized Markov chain is

P =

2
664
P1 + q01 P11 p1 q01 P12 p2 � � � q01 P1m pm

q02 P21 p1 P2 + q02 P22 p2 � � � q02 P2m pm

� � � � � � � � � � � �
q0m Pm1 p1 q0m Pm2 p2 � � � Pm + q0m Pmm pm

3
775 (5.10)

where a component P ij is itself a matrix of dimension mi � mj. All square matrices of
this type, have dimension K �K, where

K =
mX
i=1

mi

Next, de�ne the auxiliary matrices,

M =

2
664
M1 0 � � � O

O M2 � � � O

� � � � � � � � � � � �
O O � � � Mm

3
775 ; B0 =

2
664
B1 O � � � O

O B2 � � � O

� � � � � � � � � � � �
O O � � � Bm

3
775 � (5.11)

As a direct generalization of (5.8),

L =

2
664
�1I1 O � � � O

O �2I2 � � � O

� � � � � � � � � � � �
O O � � � �mIm

3
775 : (5.12)

The generator of the generalized Markov chain can be calculated from

Q =M(I �P);

and the generator of the interdeparture times of the cells is

B =Q+L:
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Although it was our intention to generalize the MMPP, since P"0 = "0, this process
satis�es the properties of an MMPP. So, considered as an m-dimensional process, we can
think of this as a generalization. But as a K�dimensional process it is a restrictedMMPP.
So much for de�nitions.

By direct manipulation, it can be shown that Q = B0 �B0hP i; and thus

B = B0 +L� B0hP i;

where for any m�m matrixW , hW i is an K �K matrix of the form

hW i :=

2
664

W11 �
0
1 p1 W12 �

0
1 p2 � � � W1m �

0
1 pm

W21 �
0
2 p1 W22 �

0
2 p2 � � � W2m �

0
2 pm

� � � � � � � � � � � �
Wm1 �

0
m p1 Wm2 �

0
m p2 � � � Wmm �

0
m pm

3
775 ; with "0 =

2
664
�01
�02
� � �
�0m

3
775 � (5.13)

�0i is a column vector of mi 1's. Since P�0 = �0, it follows that hP i"0 = "0. This algebraic
procedure of embedding m�m matrices into K �K matrices has special properties. For
instance, letW 1 and W 2 be any two m�m matrices. Then

hW 1 ihW 2 i = hW1W2 i;

and in general
hW in = hW n i:

This can be taken further. Let X be any K �K matrix, written in block form:

X =

2
664
X11 X12 X13 � � � X1m

X21 X22 X23 � � � X2m

� � � � � � � � � � � � � � �
Xm1 Xm2 Xm3 � � � Xmm

3
775

where Xij is an mi �mj matrix. Then it follows by direct substitution that

hW1 iXhW2 i = hW1XW2 i

where X is an m�m matrix with scalar elements

(X)ij = piXij �
0
j =

miX
k=1

mjX
l=1

(pi)k(Xij)kl:

In other words, the product of three matrices of dimension K [hW1 iXhW2 i], can be
carried out by multiplying three matrices of dimensionm [W1XW2] and then embedding
the product [hW1XW2 i]. Two other algebraic properties are worth mentioning. If

hW1 ihW2 i = hW2 ihW1 i; then hW1W2 i = hW2W1 i:

Also,
hW1 i+ hW2 i = hW1 +W2 i:

This allows for a computationally simpler expression of V and Y. It can be shown that

V = B�1 =
�
I +D0h (I � PD0)

�1P i
�
V0D0; (5.14)
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where D0; V0 = B
�1
0 , and L are all block diagonal, and commute with each other, D0

being

D0 := (I +LV0)
�1

=

2
664
(I1 + �1V1)�1 O � � � O

O (I2 + �2V2)�1 � � � O

� � � � � � � � � � � �
O O � � � (Im + �mVm)�1

3
775 � (5.15)

Also,

D0 =

2
664

d1 0 � � � 0
0 d2 � � � 0
� � � � � � � � � � � �
0 0 � � � dm

3
775 (5.16)

where
di = 	i[(Ii + �iVi)

�1] = pi[(Ii + �iVi)
�1] �i

0:

But V0D0L = I �D0; so (5.14) leads to

Y = VL =
�
I +D0h (I � PD0)

�1P i
�
(I �D0):

It follows from (5.5) that di is F �(�i), the Laplace transform of the distribution function
represented by < pi; Bi > evaluated at s = �i. It also has a physical meaning. It is the
probability that the token will enter and leave stage i without any cell leaving the system.

The K vector } can be found directly from the m vector, u = [u1; u2; � � � ; um ], satisfying
uP = u. First de�ne

hui := [u1p1; u2p2; :::; umpm] :

Then, using (5.9), it can be veri�ed that

} = c huiLV0; where c�1 =
mX
i=1

�i ui E (Xi) ;

satis�es }Y = }, with }"0 = 1. Also,

hui hP i = hui:

5.4.6 Burst Processes - ON-OFF Model

In this section we begin to discuss a concrete application. More general models are given
in Part II. Consider a single data source which intermittently puts data onto a telecom-
munications line leading to a switch, or some such communications node. Suppose for
de�niteness that data-�les are the objects being sent, and that they are sent one �le at a
time. The source prepares a �le for sending, then sends it, and then prepares another �le
for sending. The preparation entails retrieving a �le from local storage and breaking the



N-Burst Processes as Models of Self-similar Tra�c in Telecommunication Systems, Part I 55

Line
Switch

ν

1 2

Source

Figure 5.3: Figure of source, line, and switch: Token alternately visits two stages (each
stage is a black box) in the source, which puts cells on the line at rate �p whenever
the token is at the ON stage. The cells then queue up at the switch. In this paper it is
assumed that the switch is exponential, with service rate �.

�le into cells. Let the mean time for this preparation be Z. The cells are transmitted at
rate �p. Assuming no background tra�c, the data rate while the source prepares the next
�le is �b = 0. This constitutes an ON-OFF process. The collection of cells is a burst. Let
Sf be the random variable denoting the size of a �le, sc be the size of a cell, and np be
the average number of cells in a burst, then

np = E

��
Sf
sc

��
�

The mean time, xp, for a burst is

xp =
np
�p
�

If the distribution of �le-size lengths is known, then a model can be set up. For then the
ON-time distribution can be calculated. If FSf (x) is the distribution of �le sizes (in bytes,
say), and FX(t) is the distribution of the time length of a burst (in seconds), then the two
are related by

FX(t) = FSf (sc �p t):

There are 2 stages (m = 2), with �1 = 0 (OFF-time), and �2 = �p. The mean throughput
(overall number of cells per second that arrive at the switch) is � where

� =
np

Z + xp
=

np�p
Z�p + np

�

Given the service rate, � for the switch, its utilization parameter is

� =
�

�
�

For the calculations presented here, we have assumed that the OFF-time is exponentially
distributed (m1 = 1) with a mean OFF-time of Z, but that assumption can easily be
changed. We have made another assumption that is not so easy (but still possible) to
modify, namely that the time between cells is exponentially distributed (at rate �p).

The question remains as to what ON-time distribution to pick. For instance, if one picks it
to be exponential, then the process reduces to a renewal process, whatever the OFF-time
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distribution is. For if m2 = 1 then L (and therefore, Y) is of rank one, and from (5.6)
and the discussion following it, the cell interdeparture times are independent. Let FX(�)
be represented by < p2;B2 >, with m2 = Dim(B2). Then we have a one-burst, ON-OFF
analytic model with parameters �p, Z, �, np (or xp), � (or �), etc.

5.5 Distribution of ON-Times

As mentioned in the Introduction, the usual collection of test functions will not do to
model telecommunication tra�c. In this section we discuss this in more detail, and then
present a class of functions, the TPT distributions, that have been used successfully by
our group in analytically modeling these systems.

5.5.1 Experimental Measurements

[Leland et al., 1994] reported measurements of Ethernet tra�c in a now-famous pa-
per. They showed that the number of packets in a given time interval varied greatly from
one interval to the next, no matter how big or little the intervals were, from 10 millisec-
onds to 100 seconds. The variability of the data looked the same over a range of 5 orders
of magnitude (the full range of their data). They called it self-similar tra�c. The classic
MMPP models failed to simulate that behavior. In fact, the data resembled sub-Gaussian
noise, normally generated by �-stable distributions. They later calculated the autocorre-
lation functions, %(k) [see (5.7) and surrounding material], and indeed, it was closer to
1=kc than to �k. Those measurements have been reproduced many times by those, and
other, researchers (although albeit, not all the time).

[Lipsky et al., 1992] and [Hatem, 1997] looked at UNIX �le-size distributions at the
University of Connecticut, and found that the largest �les satis�ed a power law for 5
orders of magnitude. That is,

RX(x) = Pr(X > x) �! c

x�

with � � 1:5. Note that if this behavior extended to 1 the distribution would have
in�nite variance! In general, E(X`) is �nite for ` < �, and is in�nite for ` � �. They also
showed that a renewal process with power-tail interarrival times can simulate self-similar
data, but with a di�erent appearance.

More recently [Crovella & Bestavros, 1997] in measuring web tra�c at Boston Uni-
versity have seen this behavior in WWW document sizes, UNIX �le sizes, �les requested,
transmitted �les, and unique transfers. They also separated out audio, video, image and
text �les. Although these all have very large variances, only the text �les had power-tail
behavior.

The conclusion one must come to based on these measurements is that any model of
telecommunications tra�c that includes transfer of text and/or data �les must in some
way use distributions that generate self-similar behavior. On the other hand, a model
focusing on video tra�c only, should use some other distribution. Given that we are
interested in �le transfers, our obvious choice was to assume that ON-times have power-
tail [or at least truncated power-tail (TPT)] distributions.
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5.5.2 A Matrix Representation of a PT Distribution

Except for some numerical di�culties, it is not much more di�cult to carry out discrete
event simulations of PT (or TPT) distributions than for distributions with variance. But
PT distributions are not well suited for analytic modeling, since the Laplace transform
of such functions are not known, except by numerical integration. However, Greiner,
Jobmann and Lipsky have introduced a family of ME distributions that approach PT with
increase of dimension (or Truncation parameter, T ). One can �nd a detailed description
of these functions in [Greiner et al., 1999]. We only summarize their results here.

Let XT , and < pT; BT > as given below, be the random variable and T�dimensional
representation of a Truncated Power-tail reliability function, RT (x).

0 < � < 1; 
 > 1

pT =
1� �

1� �T
[1; �; �2; � � � : �T�1]

MT = BT = �

2
66664

1 0 0 � � � 0
0 1=
 0 � � � 0
0 0 1=
2 � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � 1=
T�1

3
77775 ;

where � is a positive constant that can be chosen to set the mean of the distribution
according to (5.19). Then

VT =
1

�

2
66664

1 0 0 � � � 0
0 
 0 � � � 0
0 0 
2 � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � 
T�1

3
77775 �

Since BT is diagonal, it is easy to show from (5.3) that

RT (x) =
1� �

1� �T

T�1X
j=0

�j e��x=

j

: (5.17)

Its pointwise limit exists, giving

R(x) := lim
T!1

RT (x) = (1� �)
1X
j=0

�j e��x=

j

: (5.18)

The expectation value follows directly from (5.4)

E(XT ) = pTVT �
0
T =

1

�

1� �

1� �T

T�1X
j=0

(
�)j =
1

�

1� �

1� �T
1� (
�)T

1� 
�
�! 1

�

1� �

1� 
�
; (5.19)

and the higher moments are given by

E(X`
T ) = `!pTV

`
T �

0
T =

`!

�`
1� �

1� �T

T�1X
j=0

(
`�)j:
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Figure 5.4: RT (x) versus x on log-log scale: RT (x) is taken from (5.17), with T = 1,
3; 5; 7; 20; and 30. The linear portion grows ever longer with increasing T .

De�ne � to be the number that satis�es 
� � = 1 (or � := � ln(�)= ln(
)). As long as
` < � (i.e., 
`� < 1), the limit T �!1, can be taken to give

lim
T�!1

E(X`
T ) =

`!

�`
1� �

1� 
`�
(
`� < 1):

But if ` � � (
`� � 1) then the sum diverges and

lim
T�!1

E(X`
T ) =1 (
`� � 1):

That is, R(x) from (5.18) satis�es the moment property for power-tail distributions. In
Figure 5.4 log(RT ( � )) is plotted versus log(x) for various values of T . Clearly, the straight
line characteristic for true PT distributions appears over an ever wider range with in-
creasing T .

5.6 1-Burst Example with TPT ON-Times

Even without doing any calculations, certain properties can be ascertained for the 1-
Burst/M/1 system. Consider a class of systems in which �p and Z are varied together so
as to keep the load on the switch �xed (�, �, and � are held constant). As �p increases
unboundedly (and Z approaches np=�), the last cell in any given burst arrives at the
queue before the �rst cell of the burst has been processed. Thus the system approaches
the M/M/1 queue with bulk arrivals. The problem can also be translated into an M/G/1
queue where \G" is the distribution of the time it would take to process all the cells in a
burst, and the computed response time is that for the time until the last cell in the burst
is processed. The bu�er problem (i.e., the probability that an arriving cell will see a full
bu�er) is somewhat more complicated to compare since the M/G/1 model assumes that
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Figure 5.5: Log of Mean Queue Length at Switch Versus Cell Burst Rate: �p and Z
(mean OFF-time) are varied together so that mean arrival rate to switch, �, and its
utilization, �, are �xed at 1.0 and 0.2 respectively.

all cells from a burst remain in the queue until the last one is processed. In any case, this
is the worst case scenario.

At the other extreme, consider what happens as �p becomes smaller. It's minimum value
occurs when Z = 0 (below that value, the average arrival rate, � can no longer be main-
tained). Then there is no time elapsed between bursts. Therefore a continuous Poisson
stream of rate � occurs, reducing the system to a simple M/M/1 queue. This would be
the best case scenario.

For low �p, performance of the switch is independent of burst-size distribution. But for
large �p, it is highly dependent, certainly on the distribution's second moment. In the
intermediate region, knowledge of the PDF is critical.

We have carried out mean queue length calculations for TPT(T ) ON-times, where T = 1,
5; 10; 20; and 50. The results are displayed in Figure 5.5. Note that it is the log of the
queue length that is plotted versus �p. We have chosen a rather small � = 0:2 and small
mean burstsize of np = 10. Every point on every curve is for the same � and np. This
means that in all cases the switch is idle 80% of the time, and queue lengths as large
as 20 would imply that more than 2 bursts are waiting to be served. As surmised in the
preceding paragraphs, if the rate at which cells are sent to the switch is low, then queue
lengths are negligible, and are insensitive to the ON-time distribution. But as the rate
increases, the mean queue length literally blows up if T > 10 at �p = 5. This corresponds
to an ON-time arrival rate that saturates the switch during a burst. Clearly, the system
cannot recover during the OFF-times when T is large. Part II will discuss this in more
detail, and show curves for over
ow probabilities for the same family of TPT's as well as
other distributions with the same mean and variance.
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6 N-Burst Processes as Models of Self-similar

Tra�c in Telecommunication Systems {

II. Speci�c System Models and Analytic

Results�

Lester Lipskyy & Hans-Peter Schwefelz

Abstract

The pure ON/OFF-Process of the 1-Burst Model is extended to the N -Burst
model that allows up to N sources to transmit simultaneously. The start- and end-
points of these transmissions (bursts) can be described by embedded closed queueing
systems of M/G/N//K-type. The 
exibility of that concept allows to model a large
variety of physical systems especially when introducing load-dependent servers in
the embedded queueing system.

In the second part, the self-similar N -Burst variant is used as the arrival
process to analyze the performance of network components that are modeled by
N -Burst/M/1-Queues. The analytic results for mean Cell Delay and Cell Loss Prob-
ability reveal distinct critical utilization-values (blow-up points) at which the mean
queue-length and the bu�er-over
ow probabilities radically increase. A second para-
metric study varies the cell-rate within individual bursts: If the intra-burst rate is
very low, the model approaches an M/M/1 system. With very high intra-burst rate,
the model approaches a bulk-arrival system. Network components are expected to
operate in the intermediate region, where the blow-up points are contained. In that
region, modeling on cell-level, as done in the N -Burst model, is shown to be essen-
tial. Furthermore, experiments with other high-variance distributions clearly indi-
cate that the knowledge of only a few moments of the burst-length distribution is
not su�cient for an analysis of the performance characteristics of the tra�c model.

6.1 N-Burst Models

The 1-Burst process as introduced in [Lipsky & Schwefel, 1999] (referred to as Part I
hereafter) is a pure ON/OFF Process as shown in Figure 6.1. It is a reasonable model
for the physical scenario of a network line which is used by a single source. For multiple

� A major part of this research was funded by Deutsche Telekom AG.
y Department of Computer Science and Engineering, University of Connecticut, Storrs, U.S.A.

E-mail: lester@brc.uconn.edu
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Figure 6.1: ON/OFF Process of 1-Burst Model: Generally distributed ON-times with
cell-rate, �p, followed by exponentially distributed OFF-times.

sources, various scenarios are possible, depending on the network topology and the type
of network: First, the network line can be exclusive, in which case any additional bursts
have to wait to get on the line (1-Burst with waiting bursts). The resulting process is still
of ON/OFF type, however, two or more ON-periods can occur without any OFF-periods
in between.
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Figure 6.2: Overlapping Bursts of N -Burst Model: Up to N bursts can contribute their
individual cell rate, �p, to the aggregated cell-stream. There are various possibilities for
the process that describes the burst-starts. However, a large class of physical meaningful
scenarios can be described uniformly. See text.

The second scenario is a network line that is shared by up to N bursts all of which
contribute packets/cells1 with rate �p, shown in Figure 6.2. In that case, the aggregated
cell stream is a modulated Poisson Process with rates (i � �p), i = 0; :::; N . Hereafter, the
pure ON-OFF model will be referred to as 1-Burst while the N potentially overlapping
bursts are captured by the N-Burst model. The accurate description of the start- and end-
points of the individual bursts will be done uniformly for both models by the following:

The modulating processes in both scenarios can be described by closed queuing systems of
M/G/N//K-type which is shown in Figure 6.3: The K customers in the closed system are
the potential bursts. The number of active bursts on the line corresponds to the number of
active servers in subsystem S1. The distribution of the burst-length (holding-time) thereby
is the general (matrix-exponential) distribution of the service times of the N servers at
S1.

1 The tra�c models are not speci�cly designed for a particular network architecture or transmission
protocol. However, we use the ATM-terminology (i.e. cells) hereafter.



N-Burst Processes as Models of Self-similar Tra�c in Telecommunication Systems, Part II 63

*
*
* N

K

n

K-n

2

1S

S

M/G/N//K System 

G

G

M

Figure 6.3: Closed Queueing system of type M/G/N//K as Modulating Process of N -
Burst Model: N parallel identical servers at S1. K potential bursts in the system. The
Poisson Cell-Rate of the N -Burst model is modulated by the number of active servers
at S1.

Hereafter, the notation [M=G=N==K]�p will be used for the N -Burst process which is the
modulated Poisson Process that later on describes the inter-arrival times of cells to some
network component downstream. The system in square brackets is the modulator, the
cell-rate during bursts, �p, can be omitted.

Subsystem S2 of Figure 6.3 is the burst-arrival generating stage. It is de�ned to be a
load-dependent exponential delay-stage. The 
exibility of the load-dependence factors,

(k), where k = K � n is the number of customers at subsystem S2 given that there are
n customers at S1, extends the range of potential physical models. Two particular choices
of 
(�) have signi�cant physical meanings:

1. In case of a �nite number of K sources, a so-called in�nite server stage (also called
time-sharing stage) with 
(k) = k has to be used for the burst generating subsys-
tem S2: The higher the number n of active sources is, the lower the burst-start
rate becomes, because less idle sources are left that can initiate new bursts. Us-
ing Kendall's notation, that special embedded system will be called IS/G/N//K,
where 'IS' stands for Independent Sources. The resulting rate of the delay-stage at
S2 is 
(k)=Z = k=Z when k customers are at S2, i.e. k of the K sources are not
transmitting cells. Z is the mean think-time of the individual source.

In the special case of no bursts ever waiting in the queue at S1 (N = K), the
resulting cell-stream is the superposition of K independent ON/OFF streams of the
kind as produced by the 1-Burst [M/G/1//1] system (Fig. 6.1). The mean rate of
that speci�c model follows:

�[IS=G=N==N ] =
N np
Z + x

=
N

Z �p
np

+ 1
� �p ; (6.1)

where np is the mean number of cells per burst, x = np=�p is the mean burst-length,
and Z is the mean length of the OFF-periods of the individual sources, as already
introduced in Part I.
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2. For a WAN-like situation with a large pool of potential sources (� K; now, K is not
the number of sources but the maximum number of bursts in the system), the rate
of burst-starts is not a�ected by the number of active sources. In that scenario, no
load-dependence applies (
(�) � 1) and the burst-start process is a Poisson process
with constant rate, �M . If more than K sources try to be active simultaneously, the
additional bursts are lost. The mean cell rate in case of no waiting bursts (N = K)
follows from the solution of the M/M/N//N queue (see e.g. [Kleinrock, 1975]):

�[M=G=N==N ] =
H(a;N � 1)

H(a;N)
a �p ; (6.2)

with2 a := �Mx; and H(a;N) :=
NX
i=0

ai

i!
�

Note that (6.2) is based on the steady-state mean queue-length of the M/M/N//N
queue. The mean queue-length of the M/G/N//N system in fact only depends on
the mean of the service-time, not on its distribution (see [Lipsky, 1992]). Thus, the
general server can be replaced by an exponential server for the purpose of calculating
mean queue-lengths in the modulator.

The [M/G/1//1] and the [IS/G/1//1] system are identical for �M = 1=Z, since the load
dependence in S2 only matters for K > 1.

Note that the N -Burst Process uses a closed queueing system to describe the burst-arrivals
and their duration. There is no modeling of network components yet. If bursts are waiting
for the line, which can happen for K > N , then they are waiting at the sources. Actual
queueing of individual cells will be done in the next section by an SM/M/1-queue that uses
the modulated Poisson arrivals of cells generated by the N -Burst [x/G/N//K] process as
input.

Introducing Load-Dependent Holding-Times: Finally, the range of possible physical
scenarios can be further extended by introducing load-dependence in the holding-time
of the bursts at S1. Thereby, back-o� behavior which e.g. is a consequence of several
congestion control mechanisms can be modeled: As soon as an additional burst starts, the
individual rate of the currently active bursts reduces to (�(n) � �p), where n is the new
number of active bursts. In the LAQT model, this reduction of the individual cell-rates
requires a modi�cation of the cell-rate matrixL (see Part I for its de�nition). Furthermore,
since the number of cells in the burst (which has mean np) must not change, the reduction
of the cell-rate by the factor �(n) must be compensated for by modifying the holding
time by a factor 1=�(n). Thus, the servers at subsystem S1 in Figure 6.3 have to be load
dependent as well which in its most general form leads to closed queueing-systems of type
Mld[
(�)]/Gld[�(�)]/N//K for the particular modulating processes of the N -Burst model.

The use of matrix-exponential (ME) distributions for the holding times even allows for
an implementation of the notion of tra�c mixes, which are a peculiarity of modern het-
erogeneous networks. Distinct tra�c classes have di�erent back-o� behavior. When us-
ing a block-diagonal ME-representation of the burst-length distribution with each block

2 a would be the mean number of simultaneously active bursts, if no limitation existed, i.e. for N !1.
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Figure 6.4: Matrix-Exponential Representation of the Burst-Length Distribution for
Mixes of Di�erent Tra�c Classes: Each of the m = 1; :::; j blocks represents a tra�c
class with proportion am in the overall tra�c. Di�erent load-dependence factors �m(n)
can be assigned to model di�erent back-o� behavior.

m = 1; :::; j corresponding to a tra�c class, each tra�c class can be assigned a distinct
set of back-o� factors, �m(n), as shown in Figure 6.4.

Though the aforementioned load-dependent generalizations of the N -Burst directly cor-
respond to physical systems, the performance evaluation hereafter will focus on the
[IS/G/N//K] model for reasons of simplicity. The choice of the burst-length distribu-
tion (the `G' in the [x/G/N//K] system) turns out to be critical for the performance
characteristic of network components. When using Power-Tail distributions or their trun-
cated cousins (see Part I or [Greiner et al., 1999]), (truncated) long-range dependence
in the inter-cell times can be observed. The parametric studies in the next section use
this approach to gain insight into the impact of self-similar tra�c on QoS parameters in
network components.

6.2 Performance Results for Self-Similar N -Burst

Assuming that the N -Burst process is capable of describing real network tra�c closely
enough, the performance of network components such as ATM-switches can now be eval-
uated in exact analytic models by using the LAQT-techniques that were presented in
Part I.

The network component is modeled as a queue with exponential server of rate � and
in�nite bu�er, i.e. an SM/M/1 model with the N -Burst process as speci�c Semi-Markov
(SM) arrival process. The performance parameters of interest will be the mean Cell Delay
(CD), the Cell Delay Variation (CDV), and the Cell Loss Probability (CLP) of a so-
called backup-system3. The mean CD and the CDV are critical in particular for real-time
applications such as video or voice tra�c.

The evaluation of a �nite SM/M/1/Bs loss-system with matrix-geometric methods is pos-
sible (see [Krieger et al., 1998]) but no results are shown here. However, the behavior
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of the in�nite-bu�er system (investigated below) in principle also holds for the loss-system,
with the restriction that the queue-length and consequently the Cell Delay are obviously
bound by the bu�er-size.

Modern ATM-Switches tend to have very large bu�ers (order of 104 to 106 cells). The
advantage of Matrix-Geometric solutions is that their computational demand is indepen-
dent of the bu�er size, i.e. all computations are done in the state-space that is de�ned by
arrival and service-process. For that reason, LAQT-methods seem to be most capable for
analytic modeling of modern network components with large bu�ers.

When modeling ATM-switches, the service time of cells should really be deterministic.
This could be modeled by employing Erlangian-k distributions for the service-time with
the drawback of increasing the state-space by a factor k. However, for the interesting
scenarios of potentially long queues4, the exponential service time is expected to be a
good enough approximation.

Section 6.2.1 discusses the computation of the aforementioned QoS parameters in detail.
Thereafter, the results of two parametric studies are presented, while �rst observing the
mean Cell Delay (Section 6.2.2) and then the Cell Loss Probability (Section 6.2.3). The
two di�erent parametric studies (vary truncation, T , in Section 6.2.2.1, and vary intra-
burst cell-rate, �p, in Section 6.2.2.2) are conducted for three di�erent types of burst-
length distributions: Truncated Power-Tail Distributions (TPT(T )), Hyperexponential-2
distributions with same mean and variance, and Hyperexponential-2 distributions with
same �rst three moments as the TPT(T ) distribution. In addition, three di�erent 1-Burst
and 2-Burst processes (namely, [IS/G/1//1], [IS/G/1//2], and [IS/G/2//2]) are compared
with each other in Section 6.2.2.1 and Section 6.2.3.1.

6.2.1 Matrix-Geometric Methods for SM/M/1 Models

Section 4.3 of Part I already mentioned the existence of a matrix geometric solution

r(k) = r(0)Rk;
1X
k=0

r(k)"0 = 1;

for the steady-state queue-length probabilities of an SM/M/1 queue.

The Rate-Matrix, R, has to satisfy the following quadratic matrix equation:

�R2 �R(B + �I) +L = 0:

L and B de�ne the SM arrival process as discussed in Section 4 of Part I. �
is the rate of the exponential server downstream from the semi-Markov genera-
tor/box and I is the unit matrix. E�cient iterative algorithms for solving the matrix
equation are discussed in [Latouche & Ramaswami, 1993], [Bini & Meini, 1996],

3 The in�nite bu�er of the SM/M/1 model consists of a primary bu�er of Bs cells and an in�nite
secondary bu�er. The CLP is then the probability that an arriving cell has to go to the backup-bu�er.
As such it is an upper bound of the CLP in a �nite SM/M/1/Bs loss-system.

4 In classical models, long queues usually result from high utilization. This is not the case for ourN -Burst
as we will see later: Already for a low utilization (e.g. � = 0:2), arbitrary long mean queue-lengths can
be observed.
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and [Krieger et al., 1998]. However, the drawback of these iterative approaches
for nearly self-similar arrival-processes is a widely varying demand of computa-
tion time due to the potentially huge resulting queue-lengths (see below and also
[Lipsky & Schwefel, 1999]).

More important than the scalar steady-state queue-length5 distribution, r(k) = r(k)"0, is
the probability, a(n), that an arriving cell will �nd n other cells at the server. This is
given in [Fiorini, 1997] as

a(n) = (}V"0)� [(I �R)RnL] "0:

For the de�nition of }, V = B�1, and � see Section 4 of Part I.

By straightforward calculations, the mean queue-length at cell arrival times and its second
moment follow:

qa = (}V"0)�R(I �R)�1L"0:

q2a = (}V"0)�R(R+ I)(I �R)�2L"0: (6.3)

The Cell Delay (CD) is equal to the system time, S, of an individual cell. Since an arriving
cell will see n cells already in the system with probability a(n), the distribution of S is a
mixture of Erlangian-(n + 1) distributions with probability a(n), n = 0; 1; 2; ::: . Conse-
quently, the �rst two moments of the cell delay follow by straightforward calculations:

E (S) =
qa + 1

�
; E

�
S2
�
=
q2a + 3qa + 2

�2
� (6.4)

The quadratic coe�cient of variation of the CD-distribution,

C2(S) :=
E (S2)

E (S)2
� 1; (6.5)

can be used as a measure of the Cell Delay Variation (CDV)6. The CDV is only mentioned
here without being the focus of the studies in this paper.

As mentioned above, the Cell Loss Probability (CLP) will be approximated in the in�nite
SM/M/1 queueing model by the probability that the arriving cell will �nd Bs or more
cells already in the queue, which has a compact solution when using the LAQT-methods:

Pr(n � Bs) =
1X

n=Bs

a(n) = (}V"0)�RBsL "0: (6.6)

6.2.2 Performance Results for Mean Cell Delay

Two parametric studies will be conducted to gain insight into the particular behavior of
the �rst moment of the CD for the N -Burst model with truncated Power-Tail distributions
with T phases (called TPT(T ), see Part I) as burst-length distribution: The �rst study
starts o� with an N -Burst model with exponentially distributed burst-lengths (T = 1)

5 Here, queue-length also includes the cell in service.
6 The normalized 95%-quantile would be another possibility of describing the CDV.
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and successively increases the number of phases, T , of the TPT distribution while keeping
all other parameters of the model constant.

The second study varies the intra-burst cell-rate, �p, of particular N -Burst models. The
mean cell-rate, �, is kept constant by adjusting the mean OFF-time (think-time), Z,
of the sources. So far, some results of this study for the 1-Burst [M/G/1//1] model were
presented in Section 6 of Part I. Corresponding results for the 2-Burst model are discussed
in Section 6.2.2.2 and 6.2.3.2.

All the calculations discussed herein use a TPT distribution that approximates a full PT
with exponent � = 1:4 in the reliability function. As a consequence, the variance of the
PT with full tail will be in�nite while the mean, x, is �nite. The mean number of cells in
a burst is always �xed to np = x �p = 10.

6.2.2.1 Impact of the PT Truncation
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Figure 6.5: Mean Cell Delay for 1-Burst [IS/G/1//1] System with Successively Increas-
ing Truncation, T , of the Employed TPT distribution: When the service rate is lower
than the cell-rate during ON-time, � < �p = 5, which corresponds to � > 0:2 here, the
mean CD grows geometrically with increasing T . The geometric factor (i.e. the slope of
the curves) is in fact the same for all curves with � < �p. Note that the utilization is
constant for each individual curve: � = �=� = 1=�. Only the tail of the TPT distribution
is expanded along the individual curves.

The TPT distributions enable us to evaluate the behavior of the SM/M/1 switch model
while approaching self-similar tra�c. Only when using an in�nite number, T , of TPT-
phases a full Power-Tail is obtained. In our �nite physical world the introduction of a
truncation for that full tail is reasonable due to existing physical limitations for e.g. �le-
sizes. The impact of this truncation is investigated hereafter.

Starting o� with a single phase (T = 1) a series of TPT(T ) distribution with increasing
T but same mean x = np=�p is used as burst-length distribution for the N -Burst arrival
process to an SM/M/1-queue. Figure 6.5 shows the exact analytic results for the mean
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Cell Delay of a 1-Burst Model with no waiting bursts ([IS/G/1//1] system). The mean
burst-length is kept constant at x = 2, and the mean OFF-time Z is chosen such that the
1-Burst process has mean arrival rate � = 1. For di�erent service rates � (which imply the
utilization � = 1=�) curves of the mean Cell Delay for � = 1:4 and T = 1; :::; 65 are shown.
As long as the service-rate exceeds the cell-rate �p = 5 during the ON-times, the in
uence
of the truncation is low, i.e. the results for exponentially distributed burst-lengths (T = 1)
do not di�er much from the results for PT burst-lengths (T !1).

However, for � � �p the situation changes radically. For large T , the mean Cell Delay
grows geometrically with increasing T . All curves with � < �p in Figure 6.5 show the
same geometric factor (i.e. same slope in semi-logarithmic scale). Measurements of the
slope of the curves in Figure 6.5 and in a large set of additional experiments of the same
kind yield the following asymptotic relationship for the mean CD:

E (S) �! s1
�
�
2
�T

; for � < �p and �
2 > 1: (6.7)

Herein and hereafter, si > 0, i = 1; 2; ::: are independent of T (or xT , which will be
introduced below). � and 
 are the parameters of the TPT distribution as introduced in
Part I and [Greiner et al., 1999]. More meaningful is the exponent � of the Power-
Tail:

�
2 > 1 , � < 2:

Therefore, the geometric growth in Cell Delay only occurs for diverging variance of the
burst-length distribution which happens for � < 2. For � > 2, the mean CD converges
with T !1.

What is the physical signi�cance of this experiment? �, T and consequently 
 are auxiliary
parameters for the ME-representation of TPT distributions. The last of the T phases of
the TPT distribution has mean

xT =

T�1

�T
; where 
 = ��1=�; �T =

1� �

1� �T
1� (�
)T

1� �


1

x
� (6.8)

When x > xT , RT (x) drops o� exponentially. That drop-o� point, which is a characteristic
of the burst-length distribution, provides a physical meaning to the truncation parameter
T .

Upon plugging in the expressions for 
 and �T in (6.8), it becomes clear that log(xT=x)
and T have an asymptotically linear relationship for � > 1 and large T :

log

�
xT
x

�
�! a+ b (T � 1); (6.9)

with the coe�cients being

a = log

�
1� �1�1=�

1� �

�
; and b =

1

�
log ��1 :

As a consequence of (6.9), to appropriate scale, the curves of Figure 6.5 look (asymptoti-
cally) identical when plotting log10 of the mean CD versus log10 (xT =x) instead of plotting
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against T itself. The geometric growth (6.7) of the mean CD then turns into a power-law
growth for large xT :

E (S) �! s2

�
xT
x

�2��

for � < �p; and � < 2: (6.10)

Note that there are two conditions for an unbounded growth of the mean CD to happen7:

� � 2 and � � �p =: �1:

At the boundary values � = 2 and � = �p the mean CD still grows unboundedly, however
the relation is di�erent from (6.10).

Multiple Sources: 2-Burst

As mentioned in Section 6.1, the 1-Burst system [IS/G/1//1] corresponds to a single
source, toggling between transmission and think-state.

When considering two potential bursts there are (at least) four possible systems: The
1-Burst [IS/G/1//2] model and the 2-Burst [IS/G/2//2] model correspond to two inde-
pendent identical sources using a network line, which is exclusive in the former case and
can handle both bursts simultaneously in the latter model. [M/G/1//2] and [M/G/2//2]
correspond to a large pool of sources but no more than two bursts can be active or waiting
for the line. Additional sources give up in that situation (see Section 6.1).

The 1-Burst models possess only two levels of operation: Either the process is in ON-state,
generating cells with rate �p, or it is in OFF-state being idle. The unbounded Power-Law
growth (blowup) of the mean Cell Delay occurs if cells during ON-level can saturate
the server, i.e. � � �p =: �1. Otherwise the CD and also other performance parameters
converge very quickly and the TPT distributions even for high T do not give very di�erent
results from classical exponential burst-lengths.

Figure 6.6 compares the 1-Burst model with the 2-Burst model for the case of two inde-
pendent sources (IS-system). The particular [IS/G/1//2] model of Figure 6.6 has a critical
service rate of �1 = �p = 5. Consequently, out of the set of curves for this model (plotted
over the full range until xT = 108 in Figure 6.6) only the one for � = 4 shows the blowup
of the mean CD.

Figure 6.6 also shows curves for an equivalent8 2-Burst [IS/G/2//2] model with the same
service rates, �, in the SM/M/1 model. Compared to the [IS/G/1//2] model, the mean CD
is generally higher. But more important, the critical values for the service rate change and
a Power-Law growth is observed for � < 2�p = 10. The asymptotic Power-Law behavior
(6.10) with exponent (slopes) 2�� = 0:6 still holds for the curves with � = 4 and � = 5:2.
However, a smaller exponent 3� 2� = 0:2 is observed for � = 5:7 and � = 8.

In general, the N -Burst model has N + 1 levels of operation de�ned by i active bursts
(i = 0; :::; N). When using (truncated) PT distributions extremely long bursts eventually

7 Long-range dependence which is de�ned by a non-sumable auto-correlation function (see
[Tsybakov & Georganas, 1997]) is only obtained for � � 2 as well.

8 Equivalent in the sense that the model parameters (np, �p) are the same except for the think-time Z
which is adjusted in order to keep the overall mean cell rate � = 1.
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Figure 6.6: Mean Cell Delay Comparing 1-Burst [IS/G/1//2] and 2-Burst [IS/G/2//2]
Model for Successively Increasing Truncation: Both models correspond to two indepen-
dent sources. The curves that are shown over the full range until xT = 108 belong to
the 1-Burst [IS/G/1//2] where the network line is exclusive. The choice of the speci�c
model in
uences the values of the critical service rate �i. Since �1 = 5 is the only
blowup point for the [IS/G/1//2] model while the [IS/G/2//2] model has �1 = 5:5 and
�2 = 10, the curves for the service-rates 5 � � � 10 show di�erent behavior in the
two models: They grow unboundedly for the [IS/G/2//2] model but converge for the
[IS/G/1//2] model.

occur. During a long enough time-span, when i of the N bursts are permanently active,
the mean cell-rate temporarily increases to:

�i = i � �p + �[(N�i)�Burst]; i = 0; 1; :::; N: (6.11)

The �rst term of (6.11) is caused by the i bursts in a long ON-period while the second
term is the mean cell-rate of the remaining potential bursts.

Using a server with rate � � �i, Equation (6.11) implies, that i long-term active bursts
together with the remaining (N � i) bursts in average behavior9 over-saturate the server
temporarily. This over-saturation can be devastating if high-variance burst-length distri-
butions are used, in particular PT-distributions.

For the [IS/G/2//2] model of Figure 6.6 the critical service rates are �1 = 5:5 and
�2 = 2�p = 10. The asymptotic behavior of the mean CD for increasing truncation
depends on the relation between the actual service-rate � and the values of �i. The �i

have the following order:

� ; �p � �1 � �2 � ::: � �N = N � �p;
with all the inequalities being strict when N > 1.

9 �[(N�i)�Burst] is the mean rate of an (N�i)-Burst process, that describes the behavior of the additional
(N � i) sources, e.g. for the [IS/G/N//N ] model it is an [IS/G/N � i//N � i] model with same
parameters np, �p, and Z.
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For the [IS/G/N//N ] model, which will be focused on herein, it follows from (6.11) and
(6.1):

�i =

 
i+

N � i

Z �p
np

+ 1

!
�p = i�p +

�
1� i

N

�
� : (6.12)

Now, let i0 be the smallest i, such that � � �i,

i0 := minfi j � � �ig ; (6.13)

i.e. i0 permanently active bursts would saturate the server but (i0 � 1) of them do not.
Clearly, if � > �N then no saturation of the server can happen for that service rate. In
that case, all Quality of Service (QoS) parameters are bounded and only little dependence
on the actual burst-length distribution is observed (see also Section 6.2.2.2). Therefore,
the case of � > �N is excluded in (6.13) and also excluded from the following discussion.

For the more interesting scenario of � < �N , observations from Figure 6.6 and additional
experiments show the following asymptotic behavior of the mean CD:

E (S) �! s3

�
xT
x

�1+i0�i0�

; for � < 1 +
1

i0
: (6.14)

However, the slope of the set of curves with �1 = 5:5 < � < �N = 10 in Figure 6.6 only
approaches its asymptotic value 3� 2� = 0:2 for rather high T .

As a consequence of (6.14), the critical values for �, where the Power-Law growth of the
mean CD shows up, are (1+1=i0) = [2:0; 1:5; 1:33; :::]. Therefore, the impact of the speci�c
value of � depends strongly on i0, which describes the relation between the service rate,
�, and the blowup-points, �i. Thereby, the latter are mainly determined by the individual
cell-rate within bursts, �p.

The asymptotic behavior of the Cell-Delay turned out to be independent of the speci�c
type of model: The [IS/G/1//2] model and the [IS/G/2//2] model of Figure 6.6 result in
almost parallel curves for the mean CD as long as the service-rate, �, yields the same i0
for both models. However, since the values of �i depend on the speci�c modulator, the
mean CD for � = 5:2, � = 5:7, and � = 8 behaves di�erently in these two models. Using
an [M/G/2//2] model instead does not a�ect the general behavior of the mean CD either.

But again, it changes the critical �-values from �(IS)
1 = 5:5 for the [IS/G/2//2] system

to �(M)
1 � 5:85 for the [M/G/2//2] system. Consequently, the only curve out of the ones

shown in Figure 6.6 that strongly di�ers for the [M/G/2//2] model would be the one with

� = 5:7, because �(IS)
1 < 5:7 < �(M)

1 .

Hyperexponential-2 Distributions for Burst-Lengths

To gain deeper insight into the particular impact of PT-distributed burst-lengths, an-
other experiment replaces the TPT(T ) distributions by other potentially high vari-
ance distributions. The simplest matrix-exponential distribution for that purpose is a
Hyperexponential-2 (HYP-2) distribution that has the reliability function:

RH(x) = p1 e
��1x + (1� p1) e

��2x; 0 < p1 < 1; 0 < �1 < �2 :
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The three free parameters p1, �1, and �2 are used to match the �rst three moments of
the HYP-2 distribution with the corresponding moments of the TPT(T ) distribution. If
only a two moment-match (i.e. mean and variance) is required, the probability of getting
a very long burst, p1, is chosen to a constant value beforehand. The smaller p1 is chosen,
the larger the third moment of the burst-length distribution turns out to be.
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Figure 6.7: Mean Cell Delay for 2-Burst [IS/G/2//2] System Comparing TPT with
HYP-2 Distributed Burst-Lengths for Successively Increasing Truncation: Left graph:
Curves of mean CD for TPT distribution (plotted over shorter range until xT � 107)
compared to 2-Burst model with 3-moment �t of HYP-2 distributions. Right graph:
3-moment �t is replaced by a 2-moment �t with constant p1 = 10�7 of the HYP-2
distribution.

Figure 6.7 compares in its left graph the three-moment match of a HYP-2 distribution
with the TPT distribution in the [IS/G/2//2]/M/1 queue. The right graph shows a set
of curves for a two-moment match with constant p1 = 10�7 of the HYP-2 burst-length
distribution.

In both cases, the 2-Burst model with HYP-2 distributions turns out to be a close approx-
imation in case of � < �1 = 5:5 and � > �2 = 10. However, in the intermediate region
�1 < � < �2, a three moment match of the burst-length distribution is not su�cient.
Only the asymptotic slope (exponent in (6.14)), 3� 2� = 0:2, is identical for both sets of
curves. If the HYP-2 distribution only matches two moments of the TPT(T ) distribution,
even that slope of the curves is a�ected (Figure 6.7, right).

6.2.2.2 Vary Burstiness �p

The experiments that were carried out for the 1-Burst process in Part I are now extended
to two independent sources (2-Burst [IS/G/2//2] system): The cell-rate during bursts, �p,
is varied while keeping the overall tra�c constant by adjusting the mean OFF-time Z of
both sources. Thus, �p and Z are varied simultaneously in order to hold � = 1 constant
while keeping np = 10, � = 5, and thus � = 0:2 constant. The necessary think-time Z of
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Cell Rate: The mean arrival-rate, � = 1, and thus the utilization, � = 0:2, is thereby
hold constant. Two blow-up points can be observed. The higher the truncation T gets,
the more pronounced the blow-ups are.

the individual sources in the [IS/G/N//N ] model follows from (6.1):

Z = np �
�
N

�
� 1

�p

�
:

For Z = 0, i.e. �p = �=N , all sources generate smooth Poisson tra�c in which case the
SM/M/1 model reduces to the M/M/1 model, which does not show any blowups of the
mean CD for � < 1.

When increasing �p as it was done in Figure 6.8, the critical �i also increase (see (6.12)).
Since the service rate � = 5 is kept constant, eventually

�i � � for �p � � � �

i
+

�

N
;

in the [IS/G/N//N ] model, and a blowup of the mean CD can be observed. The values
of �p for which �i = � are marked by vertical dotted lines in Figure 6.8: The �rst blowup
occurs at �N = �, i.e. �p = �=N = 2:5, where both sources when active simultaneously
saturate the switch. The second one happens at �p = � � �[IS=G=1==1] = 4:5 where one
long-term active source plus average behavior of the second source saturates the switch.

The higher the truncation parameter, T , of the TPT distribution, the more pronounced
are the blowups of the mean CD.

Hyperexponential-2 Distributions for Burst-Lengths

Again, it provides further insight into the signi�cance of the TPT distributions to compare
their impact in the N -Burst model with di�erent distributions that have high variance,
namely the HYP-2 distributions with matching �rst two or three moments. The most
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Figure 6.9: Mean Cell Delay for 2-Burst [IS/G/2//2] System Comparing TPT and
HYP-2 Distributed Burst-Lengths for Varying Intra-Burst Cell Rate: All curves are for
models with same �rst two moments of the burst-length distribution. For p1 = 1:6 �10�8

the third moment of the burst-length distribution also matches the third moment of the
TPT(30) distribution.

pronounced blowup of Figure 6.8 is chosen for that experiment, i.e. the [IS/G/2//2] model
with TPT(30) distributed burst-lengths.

The results in Figure 6.9 show that the intermediate region, �1 < � < �2, is highly sen-
sitive to more than the �rst two moments of the speci�c burst-length distribution. All
curves have same �rst two moments of the burst-length distributions, yet they are very
di�erent in that intermediate region. Even the 3-moment match (p1 = 1:6 � 10�8) is not
close to the TPT(30) distribution. Interestingly, a higher p1 than the 3-moment �t can
give a better approximation for the mean CD of the TPT model in Figure 6.9.

As soon as the last blowup point (where � = �1 for �p = 4:5) is reached, the mean CD of
all models with same variance of the burst-length distribution very quickly yields almost
identical curves. So in that region, the �rst two moments of the burst-length distribution
su�ciently determine the mean CD of the 2-Burst model. This is a stronger statement than
the convergence for �p !1. In that limit, the N -Burst/M/1 system reduces to a bulk-
arrival system, whose mean CD can be shown to only depend on the �rst two moments
of the bulk-size distribution. However, Figure 6.9 implies that the higher moments of the
burst-length distribution already lose their in
uence shortly after crossing the last blowup
point. For the plotted range of �p in Figure 6.9, the bulk-arrival model obviously does not
apply yet because otherwise the curves would have to be nearly horizontal.

At the other end when �p is so small that � > �N , the mean CD is not only insensitive
to higher moments than the variance of the burst-length distribution (seen in Figure 6.9)
but Figure 6.8 shows that the variance itself does not matter. In that region of operation,
the used burst-length distribution is not signi�cant and can in good approximation be
replaced by a classical exponential distribution. Finally, at the very end for �p = �=N , all
burstiness is lost and the M/M/1 model10 applies.
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When replacing the [IS/G/2//2] model in the experiment by other 2-Burst models (e.g.
[M/G/2//2]) only the location of the blowup points is di�erent, yet the qualitative be-
havior of the mean CD remains unchanged.

6.2.3 Cell Loss Probability

So far, we observed the mean CD in two parametric studies with di�erent (high-variance)
burst-length distributions. All the experiments of Section 6.2.2 are now repeated while
observing the CLP (approximated by the bu�er-over
ow probability in the backup model).
The constant parameters (� = 1:4 , np = 10, � = 1) are therefore complemented by a
chosen bu�er-size of Bs = 104 cells.

6.2.3.1 Impact of the PT Truncation
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Figure 6.10: CLP for Di�erent N -Burst Systems with Successively Increasing Trunca-
tion, T : Left: 1-Burst [IS/G/1//1] system with �1 = �p = 5 as discussed in Figure
6.5. Right: [IS/G/1//2] model with �1 = 5 in comparison to [IS/G/2//2] model where
�1 = 5:5 and �2 = 10, as in Figure 6.6.

In contrast to the mean CD of Figure 6.5 there is no unbounded growth of the CLP for
increasing truncation, T , in Figure 6.10: All curves converge to a value smaller than 1.
The signi�cance of the blowup value �N in all the models of Figure 6.10 is that the CLP
practically vanishes for � > �N : Even if all N sources are permanently active, the cell rate
N�p does not exceed the service rate �. Consequently, the CLP is bounded from above
by the CLP (�M )Bs in an M/M/1 model11 with �M = N�p=� < 1.

Though the curves for � = 5:2 and � = 5:7 of the [IS/G/2//2] model in Figure 6.10 are
somewhat di�erent, the remaining blowup-points other than �N are not as clearly visible
in that particular experiment when observing the CLP as they were for the mean CD.

10 The M/M/1-queue has mean system time E(S) = 1=(� � �) = 0:25.
11 For the 1-Burst process in the left-hand side of Figure 6.10 and � = 6 the CLP is smaller than

(�M )10
4

� 10�792.



N-Burst Processes as Models of Self-similar Tra�c in Telecommunication Systems, Part II 77

Hyperexponential-2 Distributions for Burst-Lengths
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with a Power-Law decay afterwards. Right Graph: HYP-2 distribution with p1 = 10�7

and matching �rst two moments.

Following the procedure of Section 6.2.2, the TPT(T ) distributions are replaced by HYP-2
distributions with matching �rst two or three moments. Figure 6.11 compares three vari-
ations of the [IS/G/2//2] system, using TPT(T ) distributions, three moment �ts of a
HYP-2 distribution, and two-moment �ts with p1 = 10�7, respectively. Again, curves for
� > �2 = 10 do not appear in the graphs since the CLP in that situation is too low. Note
that the observation in Figure 6.7 (i.e. the mean CD in the HYP-2 model represents a
good approximation for the TPT model in case of � < �1 = 5:5), does not hold any more
for the CLP:

The 2-moment match of the HYP-2 distribution for constant p1 = 10�7 (Figure 6.11,
right hand side) does not approximate the TPT model anywhere: It starts o� with far
too high CLP and grows with an asymptotic Power-Law with the slope depending on the
blowup-region i0.

The 3-moment �t (Figure 6.11, left) is more useful at �rst. However, a maximal CLP
can be observed for some xT in the set of curves for the HYP-2 distribution. After that
maximum, the CLP drops o�, again asymptotically guided by a Power-Law. Up to the
point when the drop-o� behavior starts, the CLP of the HYP-2 model is close to the CLP
of the TPT model.

6.2.3.2 Vary Burstiness �p

Finally, the last set of experiments observes the CLP while varying the intra-burst cell
rate, �p. The detailed description of this experiment is given in Section 6.2.2.2. As already
mentioned there, at the left end at �p = �=N , both sources have think-time Z = 0, thus
they do not show any ON/OFF behavior. The M/M/1 model that applies in that case
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Figure 6.12: CLP for [IS/G/2//2] System with Varying Intra-Burst Cell Rate: Curves
for T = 1 (maximal over
ow probability � 10�44) and for T = 5 (maximum 5 � 10�16)
not visible on that scale. Note that even though the utilization, � = 0:2, is rather low,
the CLP can become almost 10% due to the degree of burstiness of the incoming cells.

has a CLP of (�=�)Bs � 10�3000. Therefore, even on the semi-logarithmic scale of Figure
6.12 that value is by far below the plotted range.

When increasing �p, the sources show a higher degree of burstiness and the values of the
critical service rates, �i, increase. At �p � 2:5, � � �2 and a distinct blowup can be seen
for T � 20 in Figure 6.12. In fact, until �p = 2:5 the CLP is bounded by an M/M/1-
queue with utilization �M = N�p=� < 1 whose CLP is practically zero12 for large bu�ers.
Therefore the leftmost region, � > �2, is not visible in the graph of Figure 6.12 and also
not interesting in terms of performance analysis because QoS can be guaranteed in any
case. The second blowup point at �p = 4:5 where � = �1 is also clearly visible in Figure
6.12 for T � 20.

Hyperexponential-2 Distributions for Burst-Lengths

The blow-up points even show up more clearly when using HYP-2 distributed burst-
lengths, shown in Figure 6.13. The CLP is almost horizontal in between the blowup
points.

In contrast to the mean CD (Figure 6.9), the curves for the CLP do not converge to a
single curve for � < �1 (�p > 4:5). Knowing the �rst 2 (or 3 moments) of the burst-length
distribution is thus not enough for estimating the CLP, even if � < �1. The bulk-arrival
model still applies for �p !1. However, its CLP does not only depend on a few moments
of the bulk-size distribution.

Also, the three moment �t yields a too low CLP compared with the TPT distribution. The

12 For �p = 2:4 and � = 5, when both sources are permanently active, the resulting M/M/1 queue has a

utilization �M = 0:96, but for a large bu�er of Bs = 104 cells its CLP is only (�M )Bs � 10�177, i.e.
practically zero.
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Figure 6.13: CLP for 2-Burst [IS/G/2//2] System Comparing TPT with HYP-2 Dis-
tributed Burst-Lengths for Varying Intra-Burst Cell Rate: The HYP-2 distribution with
p1 = 1:6 � 10�8 has the same �rst three moments as the TPT(30) distribution, but it
still does not yield a good approximation of the CLP. The other curves use constant p1
and match the �rst two moments of the TPT(30) burst-length distribution.

truncation of the TPT is T = 30, i.e. the last phase has mean xT=x = 6:2 � 105. According
to the discussion around Figure 6.11, a better approximation could be expected for lower
T with earlier drop-o�.

6.3 Conclusion

The N -Burst model describes network tra�c on cell-level as a superposition of up to N
simultaneous bursts. It belongs to the more general class of modulated Poisson Processes.
Di�erent kinds of N -Burst Processes are introduced due to di�erent physical scenarios
yet they can be described uniformly by utilizing load-dependent closed queueing systems
of M/G/N//K-type for the the modulating process. The analytic results in this pa-
per concentrate on the N -Burst model with N independent, identical ON/OFF-sources
([IS/G/N//N ] model) but the results are rather robust to changes of the model type. If
the burst-length distribution in these models is a Power-Tail distribution (R(x)! c=x�)
with exponent 1 < � < 2, self-similar or long-range dependent tra�c results.

The self-similar N -Burst model becomes amenable to LAQT-methods when employing
the truncated TPT(T ) distributions that show Power-Tail behavior in their reliability
functions RT (x) up to x � xT (xT is the range of RT (x)). The performance of net-
work components such as ATM-Switches can then be evaluated analytically by utilizing
SM/M/1 queues with the N -Burst process as the SM arrival process. Herein, the two QoS
parameters Mean Cell Delay and Cell Loss Probability were observed under the in
uence
of self-similar tra�c.

The conducted parametric studies reveal the existence of distinct blowup-points, �i (see
(6.11)), where the resulting load temporarily equals the service rate for i long-term active
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bursts. The behavior of the SM/M/1 model with a self-similar SM arrival process changes
drastically at these blowup points. The relationship of the actual service-rate � to the blow-
up points �i de�nes the model behavior: For � < �N = N�p, a Power-Law growth (6.14)
of the mean Cell-Delay for increasing range xT of the truncated Power-Tail distribution
can be observed under speci�c conditions on �.

Except for the extreme cases � < �1 (a single burst can oversaturate the switch) and
� > �N (no over-saturation even if all bursts are active13, no QoS problems occur), which
are not very likely for physical systems, the modeling on cell-level with the speci�c burst-
length distribution is essential: Approximations such as bulk-arrival models or N -Burst
models with other high-variance distributions for the burst-lengths are not eligible since
they were shown to yield very di�erent performance results.
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Abstract

The matrix equation
P

n

i=0
AiX

i = 0, where the Ai's are m � m

matrices, is encountered in many applications, in particular in the

numerical solution of Markov chains which model queueing problems.

We provide here a unifying framework in terms of M�obius' mapping

to relate di�erent resolution algorithms. This allows us to compare

algorithms like Logarithmic Reduction and Cyclic Reduction, which

extend Grae�e's iteration to matrix polynomials, and Matrix Sign

Function iterations, which extend Cardinal's algorithm. We devise

new iterative techniques having quadratic convergence and present

numerical experiments.

1 Introduction

Let Ai, i = 0; : : : ; n be m�m matrices and consider the matrix equation

nX
i=0

AiX
i = 0: (1)

It is encountered in many applicative �elds, in particular in the analysis of

queueing problems modeled by Markov chains of M/G/1 type [25, 24, 20, 30]

in which case I +A1 � 0, Ai � 0 for i 6= 1, and
P

n

i=0
Ai+ I is an irreducible

stochastic matrix. In certain cases, n = 1 and the left-hand side of (1) is

a matrix power series; when n = 2, we have the so called Quasi-Birth-and-

Death (QBD) problems which are of particular interest.

In Markov chains applications, one is interested in the minimal nonneg-

ative solution of (1), and di�erent techniques have been introduced in the

literature to calculate that minimal solution, usually denoted by G. Algo-

rithms based on functional iterations, having linear convergence, are analyzed

1



in [17, 29, 22, 11, 10]. A few methods with quadratic convergence have also

been proposed: the Logarithmic Reduction (LR) technique is de�ned in [19]

for the special case n = 2 and a similar iteration, the Cyclic Reduction (CR)

method, is extended in [3, 4] to arbitrary values for n � 1. The Matrix

Sign Function (MSF) algorithm is introduced in [1] for general �nite values

of n. Finally, we also mention the doubling technique proposed in [21] and

Newton's scheme analyzed in [18] | these, however, are less eÆcient and will

not be considered further here. A recent survey on methods to determine

the solutions of (1) in a general context is presented in [15].

We pursue here the analysis and critical comparison between CR and MSF

performed in [23]. We show that M�obius' mapping z(w) = (1 + w)=(1� w)

and its inverse w(z) = (z�1)=(z+1) are the fundamental keys for expressing

the relation between the CR and LR algorithms on the one hand, and the

MSF algorithm on the other hand. More precisely, we show that the �rst

two methods are particular extensions of Grae�e's iteration [26, 16] to matrix

polynomials and that their quadratic convergence is due to the implicit use

of the square function S(z) = z2. The MSF algorithm, for its part, coincides

with Cardinal's algorithm [9, 8], applied to a suitable Frobenius matrix and

its convergence is due to the explicit use of Joukowski's function J(x) =
1

2
(x+ x�1). This is signi�cant because the two functions are directly related

by means of M�obius' mapping since w(J(z)) = S(w(z)), as one easily veri�es.

The paper is organized as follows. We recall in Section 2 the main proper-

ties of M�obius' mapping, we analyze the correspondence between Joukowski's

and the square functions and we explain why these are important in the con-

text of the computation of the matrix G. In Section 3 we recall various

iterative algorithms for factoring scalar polynomials (the iterations of Cardi-

nal, Chebyshev, Grae�e and Sebastiao e Sylva) and relate them by means of

M�obius' mapping.

In Section 4 we show how the LR, CR and MSF iterative procedures are

based on generalizations to matrix polynomials of Grae�e's and Cardinal's

procedures analyzed in Section 3, and we develop in Section 5 a new algorithm

based on Chebyshev's iterations. We show that this new procedure is better

than the MSF procedure. We give some numerical illustration in Section 6

and argue in Section 7 that the Cyclic Reduction procedure (and its LR

variant) is the method of choice in the context of Markov chains, both in

terms of its speed of convergence and of its numerical stability.

2



2 M�obius' Map

Denote by C + and C � the half-planes made up by the complex numbers with

strictly positive and strictly negative real part respectively, and denote by D

the open unit disk.

M�obius' map is characterized by the function

z(x) = (1 + x)=(1� x); (2)

of a complex variable, de�ned for x 6= 1. It maps the unit circle without the

point 1 into the imaginary axis and the imaginary axis into the unit circle

without the point �1. Moreover, it maps D into C + and the complement

of the closed unit disk into C � . Also, it maps C � into D and C + into the

complement of the closed unit disk.

The inverse map

w(t) = (t� 1)=(t+ 1) (3)

de�ned for t 6= �1 has a very similar behavior: it maps the unit circle,

without the point �1, into the imaginary axis and the imaginary axis into

the unit circle without the point 1; the open unit disk D is mapped into

C � , while the complement of the closed unit disk is mapped into C + ; C + is

mapped into D and C
� into the complement of the closed unit disk.

These are important features of the transformation, and we shall write

that the mapping z(x) transforms the coordinates of the unit circle into the

coordinates of the imaginary axis.

Remark 1 The mappings z and w are so similar that we might choose the

mapping w(x) for changing coordinates from the unit circle to the imaginary

axis as it is done in the paper [1]. However, we prefer to use z(x) since this
leads to simpler expressions while leaving unchanged the substance of the

matter. We return to this comment and motivate our choice in Remarks 2,

3 and 4 of later sections.

Mappings of roots of polynomials The two mappings are very useful

when we have to recast algorithms by interchanging the roles of the unit circle

and of the imaginary axis, as in the analysis of the stability of polynomials

and of the inertia of matrices. Given a polynomial p(x), we may either apply

this transformation to the polynomial itself or to its variable x. In the latter

case we obtain in a natural way the operator

P : �n ! �n

3



de�ned on the set �n = fp(x) =
P

n

i=0
pix

i; pi 2 C g of polynomials of degree

at most n having complex coeÆcients, by the following equation

P(p(x)) � q(t) = (1 + t)np(w(t)): (4)

If p(x) has degree n and p(x) =
Q

n

i=1
(x� �i), then

q(t) = 

Q

1�i�n;

�i 6=1

(t� �i)

where �i = z(�i), 
 = (�2)k
Q

�i 6=1
(1 � �i), and k is the number of the

zeros equal to 1. If, on the other hand, p(x) has degree h < n and p(x) =Q
h

i=1
(x� �i), then

q(t) = 
(t+ 1)n�h
Q

1�i�h

�i 6=1

(t� �i):

Thus, if p(x) has k roots in D and n � k roots in the complement of the

closed unit disk, then q(t) has k roots in C + and n� k roots in C � .

Even though in principle there is no di�erence in the nature of the poly-

nomials p(x) and q(t) in �n, we refer to �n as being in the domain of the

unit circle when we want to point out its role as the domain of de�nition of

P, and in the domain of the imaginary axis when we refer to the co-domain

where P takes its values. One motivation of this notational choice is that the

operator P(�) allows us to transform algorithms for polynomial and matrix

computations de�ned in the domain of the unit circle into algorithms de�ned

in the domain of the imaginary axis.

Mapping of operators M�obius' mapping may also be applied to opera-

tors. When one considers successive iterations of the square function

S(x) = x2;

the complex numbers are naturally partitioned in three subsets: the unit

circle, its interior D and its exterior. Sequences obtained from the recursion

xi+1 = S(xi) quadratically converge to zero if jx0j < 1 and to 1 if jx0j > 1;

there is in general no convergence for starting points with jx0j = 1.

For Joukowski's function

J(t) =
1

2
(t + t�1);

the complex numbers are partitioned into C
+ , C � and the imaginary axis:

sequences obtained from the recursions ti+1 = J(ti) converge to 1 if t0 2 C
+ ,

to �1 if t0 2 C � and fail to converge if t0 is on the imaginary axis.
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We say that Joukowski's function has its natural environment in the do-

main of the imaginary axis while that of the square function is in the domain

of the unit circle. Observe that the �xed points 0 and 1 of S(�) are mapped

by z(x) onto 1 and �1 respectively, and that the unit circle and the imaginary

axis, where we have no convergence of the sequences obtained by means of

the square function and Joukowski's function respectively, are mapped onto

one another.

One proves by direct inspection the following properties:

w(�t) =
1

w(t)
; z(�x) =

1

z(x)
; (5)

w(t�1) = �w(t); z(x�1) = �z(x); (6)

w(J(t)) = S(w(t)); z(S(x)) = J(z(x)); (7)

w(�S(t)) = J(w(t)); z(J(x)) = �S(z(x)): (8)

Now, let us consider a function f(x) of the variable x in the coordinates of

the unit circle. We may apply the change of coordinates t = z(x) both to the
independent variable x and to f , thereby transforming f(x) into the function

g(t) = z(f(w(t))) de�ned for t in the set of coordinates of the imaginary axis.

In this way, any function de�ned in the domain of the unit circle has its

counterpart in the domain of the imaginary axis. In particular, we see from

(5) that the function f(x) = �x is associated to g(t) = t�1 and that the

function f(x) = x�1 is associated to g(t) = �t. We see from (8) that the

function S(x) is associated to J(t) and J(x) is associated to �S(t).

This is the key observation that allows us to recast algorithms de�ned in

the domain of the unit circle into algorithms de�ned in the domain of the

imaginary axis.

Remark 2 If we interchange the roles of z(x) and w(t), and use, like in [1],

w(x) as the function that maps the coordinates of the unit circle onto the

coordinates of the imaginary axis, then the transformation f(x)! g(t) such
that g(t) = w(f(z(t)), maps S(x) into 1=J(t) and J(x) into S(t).

Spectrum of G The minimal nonnegative solution G of (1) has its natural

environment in the domain of the unit circle because of the following property

[12, 13]. De�ne p(x) =
P

n

i=0
Aix

i and denote by �1; �2; � � � the roots of

det(p(x)), ordered in increasing value of their modulus. The eigenvalues of

G are them smallest roots �1; : : : ; �m, the eigenvalue �m with largest modulus

is real, simple, and �m � 1, furthermore, j�m+1j is strictly greater than �m,

and is at least equal to 1. Thus, it comes as no surprise that methods which
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use repeated application of the square function will be useful in directly

determining G.

The approach followed in [1] consists in applying M�obius' map (2), thus

replacing (1) with the equation

nX
i=0

Ai(I �W )n�i(I +W )i =

nX
i=0

UiW
i = 0: (9)

The solution W having eigenvalues in C � provides the solution G by means

of the formula G = (I � W )�1(I + W ). The natural environment of W

is in the domain of the imaginary axis, and it is clear why one should use

Joukowski's function as the basis for iterative algorithms to compute W , as

is done in [1].

3 Polynomial Factorization

The functions S(x) and J(t) are used to solve polynomial computational

problems like approximating polynomial factors or polynomial roots.

Sebastiao e Sylva and Cardinal The algorithms of Sebastiao e Sylva

[32] and of Cardinal [9] are two such applications. The �rst one uses the

square function, the second uses Joukowski's function.

Given a polynomial p(x), Sebastiao e Sylva's procedure is based on the

sequence �i+1(x) = �2
i
mod p(x), starting with an initial polynomial �0(x)

(say, �0(x) = x). Approximations to the factors of p(x) containing equimod-

ular zeros are determined by applying the Euclidean scheme to p(x) and �i(x)

for a large enough i. In Cardinal's algorithm, one generates the sequence of

polynomials  i+1(x) =
1

2
( i(x) +  i(x)

�1)mod p(x), starting from an initial

polynomial  0(x) and one determines two factors of p(x) containing the zeros

with positive (respectively negative) real parts from gcd( i(x)+1;  i(x)�1),

for i large enough.
In matrix form, Sebastiao e Sylva's algorithm corresponds to applying

the power method to the Frobenius matrix

F =

0
BBB@

0 1 


. . .
. . .

0 1

�p0 �p1 : : : �pn�1

1
CCCA (10)

associated with the polynomial p(x), and Cardinal's method corresponds to

applying the matrix sign iteration to the same matrix. One easily veri�es
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from (8) that Cardinal's method may be interpreted as resulting from the

application of M�obius' map to the method of Sebastiao e Sylva. In fact, we

have that �i is associated to  i by the mapping de�ned in Section 2, and

 i(x) = z(�i(x)) mod p(x); for all i, (11)

if we choose the initial polynomials �0(x) and  0(x) such that  0(x) =

z(�0(x)) mod p(x). To see this, assume that (11) holds for some i � 0;

we have

 i+1(x) = J( i(x)) mod p(x) by de�nition

= J(z(�i(x)) mod p(x) by induction assumption

= z(S(�i(x))) mod p(x) by (7)

= z(�i+1(x)) mod p(x) by de�nition

which proves that (11) holds for all i.
Observe also that, if p(x) =

Q
n

i=1
(x� �i), then �i(�j) = �0(�j)

2
i

= S ÆS Æ

� � � ÆS(�0(�j)), whereas  i(�j) = J Æ J Æ � � � Æ J( 0(�j)), where the functional
composition Æ is applied i times.

The algorithms can be implemented in the polynomial setting with fast

algorithms for polynomial computation [7] or in the matrix setting where the

computation modulo p(x) automatically results from the application of the

square function S(�) or Joukowski's function J(�) to the Frobenius matrix

F . In fact, we have �i(F ) = �i�1(F )
2 = �0(F )

2
i

, and each step of the

repeated squaring iteration costs just one matrix multiplication. We also

have  i(F ) = J( i�1(F )) = J Æ � � � Æ J( 0(F )) and the cost of each iteration

with Joukowski's function is dominated by the cost of one matrix inversion.

Thus, it might seem preferable to apply Sebastiao e Sylva's iterations

than Cardinal's iterations since squaring a polynomial modulo p(x) is less
expensive than computing the reciprocal modulo p(x). However, to apply

the Euclidean scheme to p(x) and �i(x) is a numerically ill-conditioned prob-

lem. In order to overcome this diÆculty, one might consider starting the

computation in the domain of the unit circle, compute Fi = F 2
i

for some

large enough i by means of repeated squaring, then switch to the domain

of the imaginary axis by computing Hi = (I � Fi)
�1(I + Fi) and complete

the computation there. Unfortunately, the condition number of the matrix

(I � Fi) which must be inverted for the computation of Hi grows exponen-

tially with i and this makes the mixed approach numerically unstable as well.

Therefore, Cardinal's algorithm, or the equivalent matrix sign iteration, is

the more appropriate for polynomial factorization.

This is a nice example of how the application of (2) and (3) provides

algorithmic improvements for solving certain polynomial and matrix compu-

tations.

7



Remark 3 If we use w(x) to map the coordinates of the unit circle onto

the coordinates of the imaginary axis, then we are lead through (8) to

the following relation between Sebastiao e Sylva's and Cardinal's algorithm:

 i(x) = (�1)iw(�i(x))mod p(x) instead of (11).

Grae�e and Chebyshev One may also apply the mapping (2) to the

variable of a polynomial; this provides us with a di�erent type of association

between methods. Take Grae�e's iterative method1 [26, 16] where a sequence

of polynomials is de�ned as follows:

pi+1(x
2) = (�1)npi(x)pi(�x); p0(x) = p(x): (12)

Denote by �1; : : : ; �n the roots of p(x). The roots of pi(x) are �
2
i

1
; : : : ; �2

i

n
.

If k roots, �1; : : : ; �k say, have modulus less than 1, and n � k roots have

modulus greater than 1, then k roots of the sequence fpi(x)g tend to zero

and n� k roots tend to in�nity, and the convergence is doubly exponential.

This is the approach used in [8, 27, 28, 31] to factor the polynomial p(x)
with respect to the unit circle, i.e., to approximate the coeÆcients of the

polynomials
Q

k

i=1
(x � �i) and

Q
n

i=k+1
(x � �i). Using the FFT-based fast

polynomial arithmetic, the computation of the coeÆcients of pi+1(x), given

those of pi(x), costs O(n logn) arithmetic operations.

Let us consider �rst, for simplicity, the relation

u(x2) = (�1)nv(x)v(�x) (13)

where u(x) and v(x) are polynomials of degree n. If we replace x with w(t)

of (3), multiply both sides of the above equation by (1 + t)n(1 + t�1)n and

apply the transformation (4), we �nd from (6) that

(1 + t)n(1 + t�1)nu(w2(t)) = (�1)nV (t)V (1=t);

where V (t) = P(v(x)). Now, w2(t) = w(J(t)) by (7), so that u(w2(t)) =

u(w(J(t))) and (1 + J(t))nu(w(J(t))) = U(J(t)), where U(t) = P(u(x)).

Since (1 + t)(1 + t�1)=(1 + J(t)) = 2, we obtain that

U(J(t)) = (�2)�nV (t)V (1=t): (14)

By applying the argument above to (12), we obtain the iteration

qi+1(J(t)) = (�2)�nqi(t)qi(t
�1) (15)

1�rst discovered by Dandelin and Lobachevski [26]
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and the polynomials in that sequence are such that

qi(t) = P(pi(x)) for all i.

If we denote by �
(i)

1
; : : : ; �

(i)

n the roots of ui(w), then �
(i+1)

j
= J(�

(i)

j
), j =

1; : : : ; n, and the sequence f�
(i)

j
gi converges doubly exponentially to 1 or to

�1 according to the sign of the real part of �j.

The iteration (15), introduced in [8] and called Chebyshev's iteration

there, can be used to factor a polynomial with respect to the imaginary

axis. The computation of the coeÆcients of ui+1(t), given the coeÆcients of

ui(t) can be performed in O(n log2 n) arithmetic operation; the higher cost

(compared to the cost of Grae�e's iteration) results from the need to ap-

ply the evaluation/interpolation technique at the nodes cos �i

2n
, i = 1; : : : ; n.

See [8] for more details.

In Section 5 we will show how the transition from the domain of the unit

circle to the domain of the imaginary axis can be performed also in the case

of matrix polynomials, and use this fact to devise new iterative methods for

the solution of the matrix equation (9). Before doing so, we recall in the next

section two classical technique for solving (1).

Remark 4 If we had used w(x) instead of z(x) to map from the unit circle

to the imaginary axis, by replacing P of (4) with P(p(x)) = (1� t)np(z(t)),
we would have obtained the following equation

UR(J(t)) = 2�nV (t)V (1=t):

in place of (14), where UR(t) = tnU(t�1) is the polynomial obtained by

reversing the coeÆcients of U(t). In this case the iteration (15) would have

been replaced by the more complex

ri+1(J(t)) = 2�nqi(t)qi(t
�1)

qi+1(t) = tnri+1(t
�1)

The iteration above has the same convergence properties and the same com-

putational cost as (15).

4 Past Algorithms Revisited

Cyclic Reduction and Logarithmic Reduction operate in the domain of the

unit circle and can be viewed as two di�erent ways of extending Grae�e's

iteration to matrix polynomials, while the matrix sign iteration operates in

9



the domain of the imaginary axis and can be viewed as an extension of

Cardinal's algorithm.

Before dealing with the general case, we describe these techniques for

positive recurrent QBDs, for which n = 2 and (1) reduces to

A0 + A1X + A2X
2 = 0: (16)

The minimal solution G of (16) has spectral radius equal to 1. Furthermore,

the roots �1; : : : ; �2m of the polynomial det(A0 + A1x + A2x
2) are such that

j�1j � � � � � j�2mj, �m = 1 < j�m+1j and �m is simple (here we assume zeros

at in�nity if A2 is singular).

Logarithmic Reduction We express in polynomial form the algorithm

LR of [19] for the solution of (16). Let ri(x) be matrix polynomials recursively

de�ned by

ri(z) = E0;i + E1;ix + E2;ix
2

ri+1(x
2) = �bri(x)bri(�x);bri(x) = E�1

1;i
ri(x);

(17)

where r0(x) = A0 +A1x+A2x
2. The matrix coeÆcients of ri(x) and ri+1(x)

are related by the equations

E0;i+1 = �(E�1
1;i
E0;i)

2;

E2;i+1 = �(E�1
1;i
E2;i)

2; (18)

E1;i+1 = I � (E�1
1;i
E0;i)(E

�1

1;i
E2;i)� (E�1

1;i
E2;i)(E

�1

1;i
E0;i)

and the following result is proved in [19].

Theorem 1 The minimal solution G of (16) is such that G = Gi + O(�2
i

)

with � = j�mj=j�m+1j < 1, where Gi =
P

i

j=0

�Q
j�1

k=0
D2;k

�
D0;k, Dj;k =

�E�1
1;i
Ej;i, j = 0; 2.

Observe that the computation of (18) can be performed with one matrix

inversion and 6 matrix multiplications (we do not count matrix additions

since they have a lower cost O(m2) instead of O(m3)). In Markov chains

applications, the matrices E1;i are nonsingular M-matrices and their inversion

can be performed in a numerically stable way without pivoting by applying

Gaussian elimination with the GTH trick of [14]. Actually, these matrices are

not explicitly inverted: their LU factorization is computed instead. In this

way, multiplying a matrix by U�1L�1 corresponds to solving 2m triangular

10



systems and can be performed in 2m3 + O(m2) arithmetic operations. The

cost of the LU factorization is dominated by (2=3)m3 ops, while the cost of

matrix multiplication is dominated by 2m3 ops. The overall cost, including

two matrix multiplications needed to update Gi, is therefore (50=3)m3 +

O(m2) ops per iteration. Besides the numerically stable inversion of E1;i, the

remaining operations involve multiplications and additions of nonnegative

numbers, so that there is no possibility of cancellation errors.

Cyclic Reduction De�ne the polynomials pi(x) = A0;i+A1;ix+A2;ix
2 by

pi+1(x
2) = �pi(x)A

�1

1;i
pi(�x); (19)

with p0(x) = A0 + A1x + A2x
2. The coeÆcient matrices Aj;i+1, themselves

are iteratively de�ned by

A1;i+1 = A1;i � A0;iA
�1

1;i
A2;i � A2;iA

�1

1;i
A0;i;

A0;i+1 = �A0;iA
�1

1;i
A0;i; (20)

A2;i+1 = �A2;iA
�1

1;i
A2;i

and the following property is proved in [4]:

Theorem 2 The minimal solution G of (16) is such that G = Gi +O(�2
i

),

with � = j�mj=j�m+1j < 1, where Gi = � bA�1
i
A0 and

bAi+1 = bAi � A2;iA
�1

1;i
A0;i; (21)

for i � 0, with bA0 = A1.

The computational cost per iteration is one matrix inversion and 6 matrix

multiplications, including the cost of updating bAi. The overall cost is there-

fore (38=3)m3+O(m2) ops. The same numerical stability properties hold as

for LR. As a matter of fact, the two algorithms are directly related as the

following theorem shows (the proof by induction is immediate and omitted).

Theorem 3 The blocks (18, 20) generated by LR and CR are such that

Ej;i = A�1
1;i�1

Aj;i, for j = 0; 1; 2 and all i � 1.

Matrix sign function In the QBD case, (9) becomes

U0 + U1W + U2W
2 = 0; (22)

11



obtained by replacing X in (16) with X = (I �W )�1(I +W ). Observe that

it is the function w(t) which is used for mapping the coordinates of the unit

circle onto the coordinates of the imaginary axis. The coeÆcients are

U0 = A0 + A1 + A2

U1 = 2A2 � 2A0

U2 = A0 � A1 + A2

and U2 is nonsingular. If �m = 1 and j�m�1j < 1, then the solution W

of (22) which corresponds to the minimal solution G of (16), has only one

null eigenvalue. Because of that null eigenvalue, one may not directly apply

Joukowski's function to W . This diÆculty is solved as follows.

The block Frobenius matrix

H =

�
0 I

�U�1
2
U0 �U�1

2
U1

�

has for eigenvalues the roots �i, i = 1; : : : ; 2m, of det(U0 + U1t + U2t
2), and

�i = w(�i), so that H has m� 1 eigenvalues in C
� , one equal to zero, and m

in C + .

If x and y are such that U0x = 0, yTU0 = 0, yTU1x = 1, then the matrix

bH = H �

�
x

0

� �
y
TU1 y

TU2

�
has m eigenvalues in C � and m eigenvalues in C + . Therefore, the MSF

iteration can be applied to bH and yields the sequence

bHi+1 =
1

2
( bHi + bH�1

i
); (23)

which converges to limi
bHi = K. That limit may be expressed as K =

TST�1, where S = diag (s1; : : : ; s2m), si = sign (Re (�i)), and J = T�1 bHT
is the Jordan normal form of bH. Now, it is possible to recover W from

K as follows: by means of the QR factorization, say, of K � I, compute

the (2m) � m matrix K� made up by m linearly independent columns of

K � I; partition K� into two m �m blocks K�

1
and K�

2
. The matrix W =

(K�

1
+K�

2
)(K�

1
�K�

2
)�1 is the solution of (22) having eigenvalues in C � , and

G = (I +W )(I �W )�1 = �K�

1
(K�

2
)�1 is the minimal nonnegative solution

of (16).

The cost of (23) amounts to inverting a (2m)�(2m) matrix, that is about

16m3 ops, to be compared to 50=3m3 for LR and to 38=3m3 for CR. For the

�nal computation of G, we have to compute a QR factorization of bHi� I, for

12



a large enough value of i, obtain approximations of K�

1
and K�

2
, and compute

G = �K�

1
(K�

2
)�1 with one matrix inversion and one matrix product. The

cost of the latter computation amounts to 4

3
(2m)3 + 6m3 ops.

The convergence speed of bHi to K depends on how fast the values J (i)(�j)

converge to �1, where J (i) denotes the composition of Joukowski's function

i times with itself. De�ning wi+1 = J(wi), one has that wi+1 � 1 =
(wi�1)

2

2wi
,

so that one may expect slow convergence if w0 is very close to zero or if w0

is very large in modulus or if w0 is very close to the imaginary axis. In the

domain of the unit circle, the three conditions correspond to eigenvalues of

G being close to 1, to �1 or to the unit circle. By contrast, the convergence

of CR and LR is not slowed down if there are eigenvalues of modulus close to

1 provided that the ratio j�m=�m+1j is suÆciently small. Therefore we may

expect LR and CR to converge faster than MSF in general.

Moreover, if some value �j is close to the imaginary axis, the matrices bHi

generated by MSF may have a very large condition number and the compu-

tation can be a�ected by large rounding errors [2].

Arbitrary matrix power series If p(x) =
P
1

i=0
Aix

i is a matrix power

series or a matrix polynomial of degree n (when An+1 = An+2 = � � � = 0),

then LR and CR still apply. For CR, the equation (19) must be adjusted in

the following way [4, 3]:

pi+1(x
2) = �pi(x)Ki(x)

�1pi(�x) (24)

where

Ki(x
2) = (pi(x)� pi(�x))=(2x)

with p0(x) =
P

+1

j=0
Ajx

j.

In this generalization the quadratic matrix polynomials are replaced by

the matrix power series pi(x) and the matrices bAi of Theorem 2 are replaced

by the matrix power series bpi(x) de�ned below (for more details we refer the

reader to [4, 3])

bpi+1(x) = bp(odd)
i

(x)� p
(even)

i
(x)Ki(x)

�1bp(even)
i

(x) (25)

where bpi(x) =P+1

j=0
bAj+1;ix

j, bp0(x) =P+1

j=0
Aj+1x

j, p
(even)

i
(x) =

P
+1

j=0
A2j;ix

j,bp(even)
i

(x) =
P

+1

j=0
bA2(j+1);ix

j, bp(odd)
i

(x) =
P

+1

j=0
bA2j+1;ix

j.

The matrix power series in the sequences fpi(x)g and fbpi(x)g converge in
the unit disk, and for this reason can be easily approximated with polyno-

mials of suitable degree ni (we call these the numerical degrees of the power

13



series). Moreover,

A0 +

1X
j=0

bAj+1;iG
1+j2

i

= 0 (26)

for all i, and the following result holds:

Theorem 4 Let the matrix power series p(x) =
P

+1

i=0
Aix

i be such that

I + A1 � 0, Ai � 0, i 6= 1, B = I +
P

+1

i=0
Ai is stochastic and irreducible.

Assume that p(x) is meromorphic in the complex plane, that
P

+1

i=1
iAi < +1

and that the dominating left eigenvector b of B, normalized by bTe = 1, where

e = (1; : : : ; 1)T , satis�es bT
P

+1

i=1
iAie < 1. Then the equation (1) has one

nonnegative solution G with spectral radius 1 and G = �( bA1;i)
�1A0+O(�

�2
i

),

where bA1;i = bpi(0) and � = minfjxj : x 2 C ; det p(x) = 0; jxj > 1g.

Proof. From the hypotheses it follows that there exists a sequence of positive

vectors �j 2 Rm , j = 0; 1; 2; : : : , such that �T

0
(A0 + A1) + �

T

1
A0 = 0,P

i

j=0
�
T

j
Ai�j = 0, i = 2; 3; : : : ,

P
1

j=0
�
T

j
e = 1 (see [25]), and �j = O(��j)

(see [13]). By following the same argument as in the proof of [4, Theorem 4.1],

we �nd that �T

0
bAj;i+vj;i = �(j�1)2i for j � 2, where vj;i =

P
j

k=1
�
T

k2i
Aj�k;i+

�(j�1)2i . Since the vector vj;i is nonnegative (see [4]), �0 is positive andbAj;i is nonnegative for j � 2, then we deduce that bAj;i = O(��(j�1)2
i

), for

j = 2; 3; : : : . The thesis follows from (26). ut

A consequence of this theorem is that the numerical degrees ni are bounded
from above by a constant N . The computation of the ni + 1 coeÆcients of

pi(x) can be performed by means of evaluation/interpolation at the roots of

1 at a cost of O(Nm3 + Nm2 logm) ops; in practice, the values of ni are

roughly halved at each step of CR, which makes CR an e�ective tool for the

numerical solution of (1) even for matrix power series. See [5] for details.

It is clear that one may similarly generalize the LR algorithm to the case

of matrix power series.

Two special cases are worth mentioning. The �rst one is when p(x) is

a matrix polynomial of degree n. Then we may in principle avoid to deal

with the general form (25) of the iterative procedure by considering the \re-

blocked" matrix equation

A0 +A1X +A2X
2 = 0 (27)

where Ai are (n � 1) � (n � 1) block matrices with m �m blocks and: A2

is the block lower triangular Toeplitz matrix with An�i+j in position (i; j)
for i � j; A1 is the block Hessenberg block Toeplitz matrix with Aj�i+1
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in position (i; j) for j � i � 1; A0 is the block matrix having null blocks

everywhere except for A0 in the upper rightmost corner. We might apply

to (27) the CR algorithm (20) or the LR algorithm (18); by following the

same technique as in [6], it can be proved that the cost of each iteration

is O(m3n log2m) ops. We see that the approach based on power series is

generally much more convenient since the numerical degrees of the matrix

power series involved in the computation rapidly decay.

The second case is when the matrix power series p(x) =
P

+1

i=0
Aix

i is

such that x+p(x) is a rational function, that is, when x+p(x) = d(x)�1e(x),

where d(x), e(x) are matrix polynomials. Then the equation p(X) = 0 can

be rewritten as X = d�1(X)e(X), or d(X)X � e(X) = 0. In this way we

reduce the original equation to a polynomial equation and CR can be applied

in its polynomial form.

The MSF algorithm can be easily applied to the case of polynomials of

any degree n. The cost of each step is dominated by the inversion of an

nm � nm matrix in the algebra generated by the block Frobenius matrix

associated with the matrix polynomial p(x) =
P

n

i=0
Aix

i. This is a Toeplitz-

like matrix and its inversion costs O(m3n log2 n) ops. The evaluation of the

invariant subspaces by means of the SVD costs O((nm)3) ops and this is the

most expensive part of the overall computation for large n.

5 Chebyshev's Iteration

We extend here Chebyshev's iteration (15) in the CR fashion. We give all

details for matrix polynomials of degree n = 2. The case of polynomials of

arbitrary degree is not given here as it is dealt with in a similar manner,

starting from the general CR iteration (24).

In order to solve (16) in the domain of the unit circle, we apply the

operator P of (4) to the polynomial p0(x) and solve the equation

Q0 +Q1T +Q2T
2 = 0 (28)

in the domain of the imaginary axis, where

Q0 = A0 � A1 + A2;

Q1 = 2(A0 � A2);

Q2 = A0 + A1 + A2:

If T is the solution of (28) with all eigenvalues having nonnegative real parts,

then G = (T � I)(T + I)�1 is the solution of (15) with all eigenvalues in the

unit circle.
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We de�ne the polynomial sequence

qi(t) = (1 + t)2pi(w(t)) � Q0;i +Q1;it+Q2;it
2 (29)

and, in order to overcome the non-commutativity of matrix multiplication,

we need to �nd matrices Ki with the same role of �A1;i in (19) such that

(15) generalizes to qi+1(J(t)) = qi(t)Mqi(t
�1) for some matrix M .

First, we observe that �A1;i = (pi(�x) � pi(x))=(2x): Setting x = w(t)

in the equation above, we obtain that

�A1;i =
t+ 1

2(t� 1)

�
1

(t�1 + 1)2
qi(t

�1)�
1

(t + 1)2
qi(t)

�
= (Q0;i �Q2;i)=2: (30)

Now, apply to (19) the same transformations as to (13): replace x with w(t)
and multiply by (1 + t)2(1 + t�1)2. This leads to

qi+1(J(t)) =
1

2
qi(t)Kiqi(t

�1) (31)

where

Ki = (Q0;i �Q2;i)
�1:

The matrix coeÆcients of qi(t) are related to those of qi+1(t) by the equations
(32) below. For the sake of simplicity in proving (32), we temporarily write

Q0; Q1; Q2 instead of Q0;i; Q1;i; Q2;i and K instead of Ki.

We de�ne
P

2

j=�2
Cjt

j = qi(t)Kiqi(t
�1) and verify by direct inspection

that

C1 = Q1KQ0 +Q2KQ1 C�1 = Q0KQ1 +Q1KQ2

C2 = Q2KQ0 C�2 = Q0KQ2

C0 = Q0KQ0 +Q1KQ1 +Q2KQ2

We have that C1 = C�1 and C2 = C�2 since Q1K(Q0 � Q2) = Q1 = (Q0 �

Q2)KQ1 and Q2KQ0 = Q0KQ0 �Q0 = Q0KQ2. Therefore, we obtain that

2X
j=�2

Cjt
j = C0 + C1(t+ t�1) + C2(t

2 + t�2)

= (C0 � 2C2) +
t+ t�1

2
2C1 +

�
t + t�1

2

�2

(4C2):
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Finally, since C0 � 2C2 = Q0 � Q2 + Q1KQ1, the coeÆcient matrices Q0;i,

Q1;i, Q2;i, of the polynomials qi(t) are iteratively determined by the following

relations

Q0;i+1 =
1

2
(Q0;i �Q2;i +Q1;iKiQ1;i);

Q1;i+1 = Q2;iKiQ1;i +Q1;iKiQ0;i; (32)

Q2;i+1 = 2Q2;iKiQ0;i:

In order for this algorithm to be useful, we need to express in the domain of

the imaginary axis the successive approximations of G which are de�ned in

Theorem 2. This means that we need an expression for the matrices bAi of (21)

and, unfortunately, it seems that there is no direct polynomial interpretation

of these. Thus, we need to explicitly relate the coeÆcients of pi(x) with those
of qi(t). A simple calculation shows that

Q0;i = A0;i � A1;i + A2;i; A0;i =
1

4
(Q0;i +Q1;i +Q2;i);

Q1;i = 2(A0;i � A2;i); A1;i = �
1

2
(Q0;i �Q2;i);

Q2;i = A0;i + A1;i + A2;i; A2;i =
1

4
(Q0;i �Q1;i +Q2;i):

De�ning bQi as

bQi+1 = bQi + (Q0;i �Q1;i +Q2;i)Ki(Q0;i +Q1;i +Q2;i)=8 (33)

where bQ0 = �
1

2
(Q0�Q2), we readily conclude from (21) that bQi = bAi for all

i. Then, the matrix sequence Gi = � bA�1
i
A0 which quadratically converge to

G (by Theorem 2) can be written as

Gi = �
1

4
bQ�1
i
(Q0 +Q1 +Q2): (34)

The computational cost at each step of the iterations (32, 33) amounts to

one matrix inversion and 8 matrix multiplications; this cost is comparable

with the one of CR.

In conclusion of this section, we point to the fact that, should it be

necessary, Chebyshev's iterative scheme may be used to approximate the

solution W = (G+ I)�1(G� I) of (22) having eigenvalues with non-positive

real parts. Indeed, since Gi = � bA�1
i
A0 provides an approximation to G,

Wi = (Gi + I)�1(Gi � I) provides an approximation to W . From (34), a

simple calculation shows that

Wi = (�4 bQi +Q0;i +Q1;i +Q2;i)
�1(4 bQi +Q0;i +Q1;i +Q2;i) (35)

and the following is a direct consequence of Theorem 2.
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Theorem 5 Let the equation (22) have a solutionW with eigenvalues �1; : : : ; �m
having non-positive real parts. Then W = Wi + O(Æ2

i

), where Wi is de�ned

in (32, 33, 35) and Æ =
��� (�m+1)(�m+1�1)

(�m�1)(�m+1+1)

��� < 1.

6 Numerical Experiments

We have implemented in Fortran 95 the three techniques CR, MSF and

Chebyshev's iteration (henceforth denoted as ChI) for the solution of (16).

We checked the convergence speed of the three algorithms and their numerical

performances. We report in Table 1 the number of steps and the residual

error for three test problems. If eG is an approximate solution of (16) we

de�ne jjA0 + A1
eG + A2

eG2jj1 the residual error, where jj � jj1 denotes the

in�nity norm.

Problem 1 The m �m matrices A0, A1, A2, where m = 32, are given by,

A0 =M�1

1
M0, A1 = I, A2 =M�1

1
M2, with (M2)i;j = �i if j = i+1 (mod m),

(M2)m;m = �, (M2)i;j = 0 elsewhere, (M0)i;j = �i if j = i � 1 (mod m),

(M0)i;j = 0 elsewhere, M1 = diag (
1; : : : ; 
m), 
i = ��i��i, i = 1; : : : ; m�
1, 
m = ��m � �m � �. The numerical values of the parameters are �i = 1,

�i = 1:2, for i = 1; : : : ; 16, �i = 0:85, for i = 17; : : : ; 32, � = 0:001. For

this problem the eigenvalues are close to the unit circle on both sides: it

holds �m�1 = 0:998975, �m = 1 and �m+1 = 1:00978. In this, case, since

j�m=�m+1j < j�m�1=�mj, CR performs better than MSF, as seen in Table 1.

Moreover that condition number of bH and of K is 1:2 � 1010 and 6:4 � 106,
respectively, thus leading to instability problems for MSF, and to its much

larger residual error. The algorithm ChI has the same behavior as CR, as

expected.

Problem 2 This example is taken from [20, Page 208]. It represents an

M/M/1 queue in a random environment where periods of severe over
ows

alternate with periods of low arrivals. The m � m matrices A0, A1, A2,

where m = 8, are given by, A0 =M�1

1
M0, A1 = I, A2 =M�1

1
M2, with M2 =

��diag (�1; : : : ; �m)M0 = diag (�1; : : : ; �m) (M1)i;j = 1 if j = (imod m)+1,

(M1)i;j = �1� ��i� �i if j = i, (M1)i;j = 0 elsewhere, The numerical values

of the parameters are � = (0:2; 0:2; 0:2; 0:2; 13; 1; 1; 0:2), �i = 2, for i =

1; : : : ; m, � = 0:99. Here, �m = 1, �m+1 = 1:00188, and the remaining zeros

are far from the unit circle. This is a critical case for the three algorithms,

but CR and ChI converge faster to a more accurate solution than MSF. The

condition number of bH and of K is 5:9 � 108 and 2:2 � 106, respectively.
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Problem 1 Problem 2 Problem 3

steps residual steps residual steps residual

CR 12 6.7e-16 14 4.4e-16 29 6.7e-16

MSF 16 3.1e-10 19 2.3e-12 85 1.0e-1

ChI 12 6.3e-15 14 3.4e-16 18 4.9e-12

Table 1: Number of iterations and residual error

Problem 3 This example is taken from [23]. The matrices A0, A1, A2 have

all the entries equal to � = ��1

3(m�1)
for i 6= j, (A0)i;i = ��, (A1)i;i = 1,

(A2)i;i = 0, for i = 1; : : : ; m, and m = 32. We have chosen � = 0:99, so

that �m = 1, �m+1 = 1:00000003, and the remaining zeros are equal and far

from the unit circle. This is a very diÆcult problem since �m=�m+1 is very

close to 1. The condition number of bH and of K is 4:2 � 1023 and 1:8 � 1016,
respectively. The MSF is not able to approximate the solution at all, ChI is

not able to reach a really small residual error, and CR still works very well,

providing a very accurate result.

7 Conclusions

We considered the problem of solving polynomial matrix equations in terms

of polynomial computations. We introduced a mapping of the complex plane

and pointed out that it sets a relationship between Joukowski's and the

square functions. This allowed us to relate di�erent existing algorithms to

each others and to devise new ones, each algorithm having its own version

in the domain of the unit circle and in the domain of the imaginary axis.

In particular, we have seen that Akar and Sohrabi's algorithm is the ma-

trix version of Cardinal's method which acts in the domain of the imaginary

axis while its formulation in the domain of the unit circle corresponds to Se-

bastiao e Sylva's algorithm. We have also introduced Chebyshev's iterations

for matrix polynomials which correspond, in the domain of the imaginary

axis, to the Logarithmic Reduction and to the Cyclic Reduction algorithms.

By comparing Cyclic Reduction, Chebyshev's iteration and Akar and

Sohrabi's method we have shown that for problems originated from queueing

theory, Cyclic Reduction and its new version in the domain of the imaginary

axis have better convergence performances and lower cost.

In �ne, we pointed out that Cyclic Reduction (and Logarithmic Reduc-

tion) have better numerical properties than their counterpart (ChI) in the
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domain of the imaginary axis. This points to the importance of remaining

in the domain of the unit circle where we deal with probabilities: quantities

which are positive and less than 1.

A Chebyshev's LR variant

If we apply the transformation (2) to (17) and de�ne si(t) = (1+t)2ri(w(t)) =

S0;i + S1;it + S2;it
2, we obtain E1;i = (ri(x)� ri(�x))=(2x) = (S2;i � S0;i)=2,

where ri(x) = E0;i + E1;ix+ E2;ix
2 are de�ned in (17). Moreover, we have

si+1(J(t)) = �bsi(t)bsi(t�1)bsi(t) = Hisi(t)

Hi = 2(S2;i � S0;i)
�1

(36)

where the initial polynomial is s0(t) = (A0�A1+A2)+ 2(A0�A2)t+(A0+

A1 + A2)t
2 = S0 + S1t + S2t

2.

The coeÆcients of the matrix polynomials si(t) are related as follows,

S0;i+1 = �(4I + (HiS2;i)
2)

S1;i+1 = �2Hi(S1;iHiS0;i + S2;iHiS1;i)
S2;i+1 = �4HiS2;iHiS0;i:

(37)

Theorem 1 provides approximations to G with D0;i = Hi(S0;i+S1;i+S2;i),
D2;i = Hi(S0;i � S1;i + S2;i).

References

[1] N. Akar and K. Sohraby. An invariant subspace approach in M/G/1

and G/M/1 type Markov chains. Commun. Statist. Stochastic Models,

13:381{416, 1997.

[2] Z. Bai and J. Demmel. Using the matrix sign function to compute invari-

ant subspaces. SIAM J. Matrix Anal. Appl., 19(1):205{225 (electronic),

1998.

[3] D. A. Bini and B. Meini. On cyclic reduction applied to a class of

Toeplitz-like matrices arising in queueing problems. In W. J. Stewart,

editor, Computations with Markov Chains, pages 21{38. Kluwer Aca-

demic Publisher, 1995.

[4] D. A. Bini and B. Meini. On the solution of a nonlinear matrix equation

arising in queueing problems. SIAM J. Matrix Anal. Appl., 17:906{926,

1996.

20



[5] D. A. Bini and B. Meini. Improved cyclic reduction for solving queueing

problems. Numerical Algorithms, 15:57{74, 1997.

[6] D. A. Bini and B. Meini. Using displacement structure for solving non-

skip-free M/G/1 type Markov chains. In A. Alfa and S. Chakravarthy,

editors, Advances in Matrix Analytic Methods for Stochastic Models -

Proceedings of the 2nd international conference on matrix analytic meth-

ods, pages 17{37. Notable Publications Inc, NJ, 1998.

[7] D. A. Bini and V. Pan. Matrix and Polynomial Computations, Vol. 1:

Fundamental Algorithms. Birkh�auser, Boston, 1994.

[8] D. A. Bini and V. Y. Pan. Grae�e's, Chebyshev-like, and Cardinal's

processes for splitting a polynomial into factors. J. Complexity, 12:492{

511, 1996.

[9] Jean-Paul Cardinal. On two iterative methods for approximating the

roots of a polynomial. In The mathematics of numerical analysis (Park

City, UT, 1995), pages 165{188. Amer. Math. Soc., Providence, RI,

1996.

[10] P. Favati and B. Meini. On functional iteration methods for solving

M/G/1 type Markov chains. In A. Alfa and S. Chakravarthy, editors,

Advances in Matrix Analytic Methods for Stochastic Models - Proceed-

ings of the 2nd international conference on matrix analytic methods,

pages 39{54. Notable Publications Inc, NJ, 1998.

[11] P. Favati and B. Meini. On functional iteration methods for solving

nonlinear matrix equations arising in queueing problems. IMA J. of

Numerical Analysis, 19:39{49, 1999.

[12] H. R. Gail, S. L. Hantler, and B. A. Taylor. Spectral analysis ofM=G=1

and G=M=1 type Markov chains. Adv. in Appl. Probab., 28:114{165,

1996.

[13] H. R. Gail, S. L. Hantler, and B. A. Taylor. Use of characteristics roots

for solving in�nite state Markov chains. In W. K. Grassmann, editor,

Computational Probability, pages 205{255. Kluwer Academic Publishers,

2000.

[14] W. K. Grassman, M. I. Taksar, and D. P. Heyman. Regenerative analysis

and steady state distribution for Markov chains. Oper. Res., 33:1107{

1116, 1985.

21



[15] N. J. Higham and H.-M. Kim. Numerical analysis of a quadratic matrix

equation. Numerical Analysis Report No. 347, Manchester Centre for

Computational Mathematics, Manchester, England, August 1999. To

appear in IMA J. of Numerical Analysis.

[16] A. S. Householder. The Numerical Treatment of a Single Nonlin-

ear Equation. International Series in Pure and Applied Mathematics.

McGraw-Hill Inc., New York, NY, 1970.

[17] G. Latouche. Algorithms for in�nite Markov chains with repeating

columns. In C.D. Meyer and R.J. Plemmons, editors, Linear Algebra,

Queueing Models and Markov Chains, pages 231{265. Springer-Verlag,

New York, 1993.

[18] G. Latouche. Newton's iteration for non-linear equations in Markov

chains. IMA J. of Numerical Analysis, 14:583{598, 1994.

[19] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for

Quasi-Birth-Death processes. J. Appl. Probability, 30:650{674, 1993.

[20] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Meth-

ods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied

Probability 5. SIAM, 1999.

[21] G. Latouche and G.W. Stewart. Numerical methods for M/G/1 type

queues. In W. J. Stewart, editor, Computations with Markov Chains,

pages 571{581. Kluwer Academic Publishers, 1995.

[22] B. Meini. New convergence results on functional iteration techniques for

the numerical solution of M/G/1 type Markov chains. Numer. Math.,

78:39{58, 1997.

[23] B. Meini. Solving QBD problems: the cyclic reduction algorithm versus

the invariant subspace method. Adv. Perf. Anal., 1:215{225, 1998.

[24] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An

Algorithmic Approach. The Johns Hopkins University Press, Baltimore,

MD, 1981.

[25] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their

Applications. Marcel Dekk., New York, 1989.

[26] M. A. Ostrowski. Recherches sur la methode de Grae�e et les zeros des

polynomes et des series de Laurent. Acta Math., 72:99{257, 1940.

22



[27] V. Y. Pan. Algebraic complexity of computing polynomial zeros. Com-

puters & Math. (with Applications), 14, 4:285{304, 1987.

[28] V. Y. Pan. Sequential and parallel complexity of approximate evaluation

of polynomial zeros. Computers & Math. (with Applications), 14, 8:591{

622, 1987.

[29] V. Ramaswami. Nonlinear matrix equations in applied probability - So-

lution techniques and open problems. SIAM Review, 30:256{263, 1988.

[30] V. Ramaswami. A stable recursion for the steady state vector in Markov

chains of M/G/1 type. Commun. Statist. Stochastic Models, 4:183{188,

1988.

[31] A. Sch�onhage. The fundamental theorem of algebra in terms of com-

putational complexity. Math. Dept., University of T�ubingen, T�ubingen,

Germany, 1982.

[32] J. Sebastiao e Silva. Sur une m�ethode d'approximation semblable �a celle

de Gr�a�e. Portugaliae Math., 2:271{279, 1941.

23



Improved Cyclic Reduction for Solving Queueing

Problems

Dario Andrea Bini and Beatrice Meini

Dipartimento di Matematica

Universit�a di Pisa

Via Buonarroti 2, 56127 Pisa, Italy

bini@dm.unipi.it, meini@dm.unipi.it

Abstract

The cyclic reduction technique [7], rephrased in functional form [3],

provides a numerically stable, quadratically convergent method, for solv-

ing the matrix equation X =
P

+1

i=0
X

i
Ai, where the Ai's are nonnegative

k� k matrices such that
P

+1

i=0
Ai is column stochastic. In this paper we

propose a further improvement of the above method, based on a point-

wise evaluation/interpolation at a suitable set of Fourier points, of the

functional relations de�ning each step of cyclic reduction [3]. This new

technique allows us to devise an algorithm based on FFT having a lower

computational cost and a higher numerical stability. Numerical results

and comparisons are provided.

Keywords. Queueing problems, M/G/1 type matrices, cyclic reduc-

tion, Toeplitz matrices, FFT.

1 Introduction

The mathematical modelling of many queueing problems leads to solving the

in�nite system

(I � P )� = 0; jj�jj1 = 1; (1)

where P is a column stochastic matrix in block Hessenberg form having the

block Toeplitz-like structure

P =

0BB@
B1 A0 


B2 A1 A0

B3 A2 A1 A0

...
...

. . .
. . .

. . .

1CCA (2)

and the blocksAi, Bi are nonnegative k�k matrices such that
P
1

i=0Ai,
P
1

i=1 Bi

are column stochastic. Matrices of the structure (2) are known in literature as
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stochastic matrices of M/G/1 type [16]. It is well known that the solution

of (1) exists uniquely if the matrix P is irreducible and positive recurrent [8],

moreover the computation of � can be obtained from the computation of the

minimal nonnegative solution G of the nonlinear matrix equation

X =

1X
i=0

X iAi; (3)

by means of the Ramaswami formula [16], [17], [14], where X is a k� k matrix.

This makes of great interest the study of e�cient numerical methods for solving

equation (3).

Recently, the analysis of numerical methods for the computation of the solu-

tion G of (3) has been largely developed. Classical linearly convergent methods,

based on functional iteration techniques, have been studied in detail in [15], [10],

[16] and [18]. New quadratically convergent methods have been proposed in [3],

[13], [11], [20]. These methods show their e�ectiveness specially in the cases

where classical algorithms based on functional iterations converge very slowly

[3]. From the numerical experiments performed so far [1], [3], the most e�cient

method seems to be the one of [3]. Indeed, the methods proposed in [13], [11],

even if quadratically convergent, have a much higher computational cost per

iteration.

The method of [3] consists in rewriting the matrix equation (3) in matrix

form as

(X;X2; X3; : : :)

0BB@
I �A1 �A0 


�A2 I �A1 �A0

�A3 �A2 I �A1 �A0

...
...

. . .
. . .

. . .

1CCA = (A0; O;O; : : :)

(4)

and in applying the cyclic reduction technique, rephrased in functional form,

to solve (4). A single step of cyclic reduction consists in performing an odd-

even permutation of the block rows and the block columns of the matrix (4)

followed by one step of block Gaussian elimination. It is shown in [3] that

this transformation keeps unchanged the structure of the system. By means of

a recursive application of cyclic reduction, it is generated a sequence of block

Hessenberg, block Toeplitz-like in�nite systems that quadratically converges to

a limit system whose solution can be explicitely evaluated.

The matrix of the system at step n, having the same block Toeplitz-like,

block Hessenberg structure, of (2), is fully de�ned by its �rst and second block

columns. The block entries of the �rst block column, denoted by I � bA(n)
1 ,

� bA(n)
2 , � bA(n)

3 ; : : :, and the block entries of the second block column, denoted

by �A
(n)
0 , I �A

(n)
1 ; �A

(n)
2 ; : : :, de�ne two formal matrix power series b'(n)(z) =P+1

i=0
bA(n)
i+1z

i, '(n)(z) =
P+1

i=0 A
(n)
i zi associated with the system. Moreover, an

2



explicit functional relation intercurs between '(n+1)(z), b'(n+1)(z) and '(n)(z),b'(n)(z):
('(n+1)(z); b'(n+1)(z)) = F ('(n)(z); b'(n)(z)) (5)

for a suitable F , which expresses in functional form the cyclic reduction step.

The functional representation (5) allows one to reduce the overall computa-

tion for performing formal operations between matrix power series, which are

numerically truncated to matrix polynomials, i.e., polynomials having matrix

coe�cients. The use of fast polynomial arithmetic, based on FFT [4], [5], for

computing products and reciprocals of polynomials, provides a tool for dra-

matically reducing the computational cost, arriving at an e�cient and reliable

implementation of the algorithm [3].

In this paper we propose an improvement of the algorithm of [3], based

on a more e�cient implementation of the functional relations (5) which the

algorithm relies on. More precisely, the idea at the basis of our improvement

consists in a pointwise evaluation of (5) at a suitable set of Fourier points.

From these values we may recover the block coe�cients of the matrix series

'(n+1)(z), b'(n+1)(z) once we are given the block coe�cients of '(n)(z), b'(n)(z).
This evaluation/interpolation procedure provides accurate approximations of

the matrix power series if the number of Fourier points is large enough. In fact,

we introduce a modi�cation of the FFT algorithm which allows us to compute

the values of '(n)(z), b'(n)(z) at the even-indexed Fourier points and, if needed,

to compute the values of these power series taken on at the odd-indexed Fourier

points without having to recompute all the values from scratch.

In order to determine the number of Fourier points su�cient to reach the

desired accuracy, we introduce a criterium allowing us to control the approxim-

ation error and to adjust dynamically the number of Fourier points at each step

of the algorithm with no waste of computation.

By using this di�erent strategy we arrive at a new version of the algorithm

which, besides being much easier to implement, leads to a reduction of the

computational cost of a factor of about 2 and is numerically more stable.

The paper is organized as follows. In Section 2 we recall the algorithm based

on cyclic reduction and the main convergence results. In Section 3 we propose

the new algorithm based on the pointwise evaluation of (5). In Section 4 we

introduce the basic tools for FFT computations. In Section 5 we describe the

implementation of the algorithm in Fortran 90 and present numerical results.

2 The cyclic reduction algorithm.

In this section we recall the main results concerning the cyclic reduction method

applied to solve equation (3). For major details we refer the reader to [3] and

[2].

The key idea consists in rewriting the nonlinear equation (3) in the matrix

form (4). In order to solve the block Hessenberg, block Toeplitz in�nite system

3



(4) we recursively apply the cyclic reduction algorithm [7], i.e. a block odd-even

permutation followed by one step of Gaussian elimination, thus generating the

sequence of block Hessenberg, block Toeplitz-like in�nite systems

(X;X2n+1; X2�2n+1; : : :)

0BBB@
I � bA(n)

1 �A
(n)
0 


� bA(n)
2 I �A

(n)
1 �A

(n)
0

� bA(n)
3 �A

(n)
2 I �A

(n)
1 �A

(n)
0

...
...

. . .
. . .

. . .

1CCCA =

(A0; O;O; : : :); n � 0;

A
(0)
0 = A0; bA(0)

i = A
(0)
i = Ai; i � 1:

(6)

The block entries fA
(n+1)
i gi�0, f bA(n+1)

i gi�1, obtained at step n+ 1, are re-

lated to the block entries fA
(n)
i gi�0, f bA(n)

i gi�1, obtained at step n, by means of

functional relations, that express in compact form the block odd-even permuta-

tion and the Gaussian elimination of one step of cyclic reduction. More precisely,

for any n � 0, let us associate with the matrix sequences fA
(n)
i gi�0, f bA(n)

i gi�1,

the formal matrix power series '(n)(z) =
P+1

i=0 A
(n)
i zi, b'(n)(z) =P+1

i=0
bA(n)
i+1z

i,

respectively. Then the following functional relations hold:(
'(n+1)(z) = z'

(n)

odd(z) + '
(n)
even(z)

�
I � '

(n)

odd(z)
��1

'
(n)
even(z)b'(n+1)(z) = b'(n)odd(z) + '

(n)
even(z)(I � '

(n)

odd(z))
�1 b'(n)even(z)

(7)

where
'
(n)
even(z) =

P+1

i=0 A
(n)
2i z

i; '
(n)

odd(z) =
P+1

i=0 A
(n)
2i+1z

ib'(n)even(z) =
P+1

i=0
bA(n)

2(i+1)
zi; b'(n)odd(z) =

P+1

i=0
bA(n)
2i+1z

i:
(8)

The relations (7), besides to express in compact form the recursions which the

cyclic reduction method is based on, provide a basic tool for the e�cient com-

putation of the matrices fA
(n)
i gi�0, f bA(n)

i gi�1, as we will explain in the next

section.

The following results are fundamental for devising an e�cient algorithm

based on cyclic reduction:

Theorem 1 The blocks fA
(n)
i gi�0, f bA(n)

i gi�1 are nonnegative matrices such

that
P+1

i=0 A
(n)
i , A0 +

P+1
i=1

bA(n)
i are stochastic. Moreover, if the matrix I �P+1

i=0 G
i�2j bA(n)

i+1 is nonsingular, then

G = A0

 
I �

+1X
i=0

Gi�2j bA(n)
i+1

!�1
: (9)
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Under mild conditions, usually satis�ed in the applications, the block entries

A
(n)
i and bA(n)

i quadratically converge to zero, for i � 2, for n ! 1, as stated

by the following theorem [3]:

Theorem 2 Let G0 = limn!1Gn. Then the following convergence properties

hold:

1. limn!1
bA(n)
i = 0, for i � 2;

2. if the entries of the matrix (I �
P+1

i=1 A
(n)
i )�1 are bounded above by a

constant, then the sequence of matrices

R(n) = A
(n)
0

 
I �

+1X
i=1

A
(n)
i

!�1
(10)

converges quadratically to the matrix G0;

3. if the solution G of (3) is irreducible then

limn!1A
(n)
0 (I �A

(n)
1 )�1 = G0

limn!1A
(n)
i = 0; i � 2:

Under the assumptions of theorems 1 and 2 the following algorithm for the

numerical computation of the matrix G can be applied.

Algorithm 2.1

1. Apply cyclic reduction to (4), by means of (7), obtaining the sequence (6)

of in�nite systems de�ned by the blocks A
(n)
i , bA(n)

i , n = 1; 2; : : : ; q, until

one of the following conditions is satis�ed

(C1) jR(q)
�R(q�1)

j < �E,

(C2) eT (I �A
(q)
0 (I �A

(q)
1 )�1) < �eT ,

(C3) eT (I �A0(I � bA(q)
1 )�1) < �eT ,

where, at each step n, the matrix R(n) is de�ned in (10), � > 0 is �xed

and E is the k � k matrix having all the entries equal to 1.

2. Compute an approximation of the matrix G:

(a) if condition (C1) or condition (C2) is veri�ed compute an approx-

imation of G by replacing, in the right hand side of (9), for n = q,

the positive powers of G with R(q);

(b) if condition (C3) is veri�ed an approximation of G is given by A0(I�bA(q)
1 )�1.

5



3 Pointwise Cyclic Reduction

The e�ectiveness of algorithm 2.1 relies on the possibility of computing the

blocks A
(n)
i , bA(n)

i , at each step n in an e�cient way: an improved computation

of such matrices can lead to a strong reduction of the computational cost of

each iteration.

According to the ideas developed in [3] and [2], we may truncate the se-

quences fA
(n)
i gi f

bA(n)
i gi to the index mn and bmn, respectively, such that e

T (I�Pmn

i=0A
(n)
i ) < �eT and eT (I � A0 �

Pbmn

i=1
bA(n)
i ) < �eT , where � is an upper

bound to the machine precision of the 
oating point arithmetic used in the com-

putation, and is related to the accuracy of the computed approximation of G.

In other words, due to theorem 1, we consider only those blocks which make the

matrices
Pmn

i=0A
(n)
i and A0 +

Pbmn

i=1
bA(n)
i numerically stochastic with respect to

�. A nonnegative matrix A is said numerically stochastic with respect to �, or

�-stochastic, if eT (I �A) < �eT . In this way, the matrix series '(n)(z), b'(n)(z)
are replaced by matrix polynomials of degree mn, bmn� 1, respectively, that we

denote with the same symbols '(n)(z), b'(n)(z). The degrees mn and bmn�1 are

called the numerical degrees of the series '(n)(z), b'(n)(z), respectively. Thus,

relations (7) can be rewritten in terms of matrix polynomials, in the variable z,

instead of matrix power series, and all the computations can be performed by

means of techniques based on Fast Fourier Transform, drastically reducing the

computational cost.

In [2] and [3] we have extended to matrix polynomials the FFT-based tech-

niques which have been devised for scalar polynomial arithmetic [5], [4], and we

have reduced all the operations involved in (7) to multiply matrix polynomials

and invert a matrix polynomial modulo zm, for a suitable m (a detailed descrip-

tion of the algorithms is provided in [3]). In this way the computational cost

to perform one step of cyclic reduction is reduced to O(k3Mn + k2Mn logMn)

arithmetic operations, where Mn is such that the matrices
PMn

i=0A
(n)
i and A0+PMn

i=1
bA(n)
i are numerically stochastic, versus the cost of O(k3M2

n) if the cus-

tomary arithmetic were used.

In this section we propose a new improved method for the computation of

one step of cyclic reduction, based on a point-wise evaluation at the roots of

1, of the series involved in (7). The new approach consists in performing the

following steps:

1. Evaluating the series '
(n)

odd(z), '
(n)
even(z), b'(n)odd(z), b'(n)even(z) at the Mn-th

roots of 1, where Mn � 1 = 2p � 1 is an upper bound to the numerical

degree of the above series.

2. Performing a pointwise evaluation of (7) at the Mn-th roots of 1.

3. Computing the coe�cients of the matrix polynomials P (z) and bP (z) of
6



degreeMn� 1 which interpolate the values of the matrix series '(n+1)(z),b'(n+1)(z) obtained at stage 2.

4. Checking whether or not the matrix polynomials P (z) and bP (z) are good
approximations of the series '(n+1)(z), b'(n+1)(z), respectively.

5. If the polynomials P (z) and bP (z) are poor approximations of '(n+1)(z),b'(n+1)(z), set Mn = 2Mn and repeat steps 1{5 until the accuracy of the

approximation is reached.

Due to the properties of FFT, in each doubling step, part of the results is

already available at no cost. Moreover, unlike in the implementation of the

algorithm of [2] and [3], the computation of the reciprocal of a polynomial is

avoided and the order of the involved DFT and IDFT is kept to its minimum

value, thus substantially reducing the computational cost per iteration.

The following properties of cyclic reduction and of FFT provide a good test

to check the accuracy of the approximations P (z), bP (z) of the series '(n+1)(z),b'(n+1)(z) needed at step 4:

Theorem 3 Let, for any n � 0,

�
(n)T = eT

1X
i=1

iA
(n)
i ; b�(n)T

= eT
1X
i=1

i bA(n)
i+1:

Then the following recursive relations hold:

�
(n+1)T =

�
eT +�(n)T

� (eT ��(n)T )(I � '
(n)

odd(1))
�1'

(n)
even(1)

�
=2b�(n+1)T

=
�b�(n)T

� (eT ��(n)T )(I � '
(n)

odd(1))
�1 b'(n)even(1)

�
=2:

(11)

Proof. Observe that, at each step n, the following relation holds:

(0; eT ; 2eT ; 3eT ; : : :)

0BBB@
I � bA(n)

1 �A
(n)
0 


� bA(n)
2 I �A

(n)
1 �A

(n)
0

� bA(n)
3 �A

(n)
2 I �A

(n)
1 �A

(n)
0

...
...

. . .
. . .

. . .

1CCCA =

(�b�(n)T
; eT ��(n)T ; eT ��(n)T ; eT ��(n)T ; : : :):

By applying to the above system one step of cyclic reduction we easily obtain

formulae (11).

Proposition 4 Let s(z) =
P
1

i=0 siz
i be a series converging in the closed unit

disk. Let r(m)(z) =
Pm�1

i=0 riz
i be the polynomial of degree m � 1 interpolating

7



the series s(z) at the m-th roots of 1. Then, for i = 0; : : : ;m�1, the coe�cients

ri are given by

ri =

1X
j=0

si+jm:

Proof Let ! be a principal m-th root of 1. Then the coe�cient ri, for

i = 0; : : : ;m� 1, is given by

ri =
1

m

m�1X
h=0

!�ihs(!h) =
1

m

m�1X
h=0

1X
j=0

!(�i+j)hsj =

1X
j=0

si+jm:

The above proposition can be easily extended to the case of matrix power

series, thus leading to the following

Theorem 5 Let, at step n, P (m)(z) =
Pm�1

i=0 Piz
i and bP (m) =

Pm�1
i=0

bPizi be
the matrix polynomials of degree m� 1 interpolating the series '(n)(z), b'(n)(z)
at the m-th roots of 1. Then the following inequalities hold:

eT
P
1

i=m A
(n)
i � �

(n)T
� eT

Pm�1
i=1 iPi

eT
P
1

i=m+1
bA(n)
i � b�(n)T

� eT
Pm�1

i=1 i bPi:
Proof The proof readily follows from Proposition 4 and from the de�nition

of �(n) and b�(n)
given in theorem 3.

Theorems 3 and 5 provide a good test to check the accuracy of the ap-

proximations of the series '(n)(z), b'(n)(z) at each step n. Indeed, suppose to

know the coe�cients of the series '(n)(z), b'(n)(z), and to compute the coe�-

cients Pi, bPi, i = 0; : : : ;m � 1, of the approximations P (m)(z) =
Pm�1

i=0 Piz
i,bP (m)(z) =

Pm�1
i=0

bPizi of the series '(n+1)(z), b'(n+1)(z) by interpolating the

functional relations (7) at the m-th roots of 1. From Theorem 5 it follows that,

if

�
(n+1)T

� eT
m�1X
i=1

iPi � �eT (12)

and

b�(n+1)T
� eT

m�1X
i=1

i bPi � �eT ; (13)

then the matrices
Pm�1

i=0 A
(n+1)
i andA0+

Pm
i=1

bA(n+1)
i are �{stochastic. Whence,

for � \small enough", the series '(n+1)(z), b'(n+1)(z), can be truncated to poly-

nomials of degree m� 1, and P (m)(z), bP (m)(z) are good approximations. It is

important to point out that (12) and (13) can be easily applied without knowing

the coe�cients of the series '(n+1)(z), b'(n+1)(z). In fact, �(n+1) and b�(n+1)

can be explicitely obtained by means of (11) at the cost of O(k3) arithmetic

operations. This provides an e�cient tool to check the accuracy of the approx-

imations P (m)(z), bP (m)(z) to '(n+1)(z), b'(n+1)(z).
8



4 Computing DFT's.

The e�cient computation of the functions (7) relies on the possibility of eval-

uating/interpolating a matrix power series, which is numerically reduced to a

matrix polynomial, at the roots of 1 by means of FFT. In this section we in-

troduce and analyze some tools and computations needed for dealing with this

problem. Firstly, we recall well-known formulae for the computation of DFT's

and IDFT's of real vectors [6], [9]. Then we provide suitable formulae for similar

computations where part of the result is already available at no cost.

Throughout this section i is the imaginary unit such that i2 = �1, !m =

cos 2�
m

+ i sin 2�
m

denotes a principal m-th root of 1, �x denotes the complex

conjugate of x 2 C. The vector b = (bj) 2 Cm such that bj =
Pm�1

i=0 ai!
ij
m

is called the discrete Fourier transform of the vector a = (aj), and is denoted

by b = DFTm(a), the vector a = IDFTm(b), a = (aj), aj =
1
m

Pm�1
i=0 �!ijmbi

denotes the inverse discrete Fourier transform of b.

We recall two known equations relating the vectors w; z 2 Cm such that

z = DFTm(w), on which the algorithms of Cooley-Tukey and Sande-Tukey are

based. Let

D = diag(1; !m; !
2
m; : : : ; !

m=2�1
m );

w(1) = (wj); w
(2) = (wm=2+j); z

(even) = (z2j); z
(odd) = (z2j+1) 2 Cm=2

(14)

then �
z(even) = DFTm=2(w

(1) +w(2))

z(odd) = DFTm=2(D(w(1)
�w(2)))

(15)

and �
w(1) = ( IDFTm=2(z

(even)) + �D IDFTm=2(z
(odd)))=2

w(2) = ( IDFTm=2(z
(even))� �D IDFTm=2(z

(odd)))=2
(16)

where �D is the complex conjugate of D.

The following problem, which consists in computing the DFT of a real vector

of m components, is solved by means of the computation of a complex DFT of

order m=2.

Problem 1. Given the integer m = 2q, q > 0 integer, and the real

coe�cients a0; a1; : : : ; am�1 of the polynomial a(x) =
Pm�1

j=0 ajx
j , compute the

values bj = a(!jm), j = 0; : : : ;m � 1 that the polynomial a(x) takes on at the

m-th roots of 1.

Solution. The following well-known formulae reduce Problem 1 to com-

puting a complex DFT of order m=2. Let

w = (wj); wj = a2j + ia2j+1; j = 0; : : : ;m=2� 1;

z = DFTm=2(w);
(17)

9



then
b0 = re(z0) + im(z0); bm=2 = re(z0)� im(z0);

bj = ((zj + �zm=2�j)� i!jm(zj � �zm=2�j))=2;

bm=2+j = �bm=2�j ; j = 1; : : : ;m=2� 1:

(18)

2

The converse of Problem 1 is described below.

Problem 2. Given the integer m = 2q as in Problem 1, and the values

bj = a(!jm), j = 0; : : : ;m� 1 that the real polynomial a(x) =
Pm�1

j=0 ajx
j takes

on at the m-th roots of 1, compute the coe�cients a0; a1; : : : ; am�1 of a(x).

Solution. Problem 2 can be easily reduced to the computation of a

complex IDFT of order m=2; in fact, we have the following formulae that can

be obtained by reverting (17) and (18). Let

z = (zj);

zj = ((bj + bm=2+j) + i�!jm(bj � bm=2+j))=2; j = 0; : : : ;m=2� 1;

w = IDFTm=2(z);

(19)

then

a2j = re(wj); a2j+1 = im(wj); j = 0; : : : ;m=2� 1: (20)

2

The next problem consists in computing the values that a polynomial of

degree less than m takes on at the odd powers of !2m, once the values taken on

at the even powers of !2m have been computed.

Problem 3. Given the integer m = 2q, as in Problem 1, the coe�cients

a0; a1; : : : ; am�1 of the polynomial a(x) and the values b2j = a(!
2j
2m) = a(!jm),

j = 0; : : : ;m � 1 that a(x) takes on at the even powers of !2m, compute the

values b2j+1 = a(!
2j+1
2m ), j = 0; : : : ;m� 1, that a(x) takes on at the odd powers

of !2m.

Solution. Indeed, Problem 3 can be solved by computing the DFT of

order 2m of the real vector u = (u(1)T ;u(2)T )T , where u(1) = (a0; : : : ; am�1)
T ,

u(2) = 0, i.e., v = DFT2m(u). But in this way the values b2j would be

computed once again. In a more e�cient way this problem can be solved by

reducing it to the computation of a complex DFT of order m=2. In fact, by

using (17) and (18) where m is replaced by 2m, we �nd that Problem 3 is

reduced to computing z = DFTm(w) where the vector w = (wj) is such

that wj = a2j + ia2j+1, wm=2+j = 0, j = 0; : : : ;m=2 � 1. Partitionig w as

(w = (w(1)T ;w(2)T )T and applying (14) and (15) yields

z(even) = DFTm=2(w
(1))

z(odd) = DFTm=2(Dw
(1))

10



since w(2) = 0. Now, again from (18) we �nd that the components b2j+1, are

fully de�ned by the components z2j+1. In this way the computation is reduced

to a single DFT of order m=2, namely DFTm=2(Dw
(1)). 2

In the computation of the coe�cients of the power series '(n+1)(z), b'(n+1)(z)
(7) by means of the evaluation/interpolation technique, we also need to solve

the following problem.

Problem 4. Given the integer m = 2q as in Problem 1, the values b2j+1 =

a(!
2j+1
2m ), j = 0; : : : ;m�1 that the real polynomial a(x) =

P2m�1
j=0 ajx

j takes on

at the odd powers of !2m, and a(1) = IDFTm(b
(even)), b(even) = (b2j), b2j =

a(!
2j
2m) = a(!jm), j = 0; : : : ;m� 1, compute the coe�cients a0; a1; : : : ; a2m�1 of

a(x).

Solution. Indeed, this problem can be solved by computing a = IDFT2mb.

A cheaper solution can be obtained as follows. By applying (19) and (20) where

m is replaced by 2m, we �nd that the vector a is recovered from the components

of w, where w = IDFTm(z). Now, in order to compute w we apply (14), (16)

and reduce the problem to computing IDFTm=2(z
(even)) and IDFTm=2(z

(odd)).

Now, the vector IDFTm=2(z
(even)) is already available and needs the computa-

tion of no IDFT. In fact, observe that applying (19) and (20) for the computation

of a(1) = IDFTm=2(b
(even)), i.e., with aj and bj replaced with a

(1)
j and b2j , re-

spectively, yields IDFTm=2(z
(even)) as explicit function of a

(1)
j , more precisely,

IDFT(z(even)) = (a
(1)
2j + ia

(1)
2j+1). 2

5 Implementation of the algorithm and numer-

ical results

By using the results presented in Sections 3 and 4 we may now give a more

accurate description of Algorithm 2.1 in the form of the following:

Algorithm 5.1. Computation of the solution G of (3).

Input. Positive integers q0;M0; k, M0 = 2q0 , an error bound � > 0, and the

nonnegative k � k matrices Ai, i = 0; 1; : : : ;M0, such that the matrixPM0

i=0 Ai is �-stochastic and the associated Markov chain is positive recur-

rent.

Output. An approximation eG of the solution G of (3) together with an error

bound � such that eT j
P+1

i=0
eGiAi �

eGj � �eT :

Computation. 1. Initialization.

Let '(0)(z) =
PM0

i=0 Aiz
i, b'(0)(z) = PM0�1

i=0 Ai+1z
i, R(0) = A0(I �PM0

i=1Ai)
�1, n = 0.

11



2. Computation of the coe�cients of the matrix polynomials P (z) andbP (z) of degree Mn and Mn � 1 which approximate the matrix power

series '(n)(z) and b'(n)(z).
Repeat

(a) Set n = n+ 1, qn = qn�1 � 1;Mn = 2qn .

(b) Compute the mean values �(n) and b�(n)
by means of (11).

(c) Evaluate the functions '
(n�1)

odd (z), '
(n�1)
even (z) and b'(n�1)odd (z),b'(n�1)even (z) at the set of Fourier points

FMn
= f!iMn

; i = 0; 1; : : : ;Mn � 1g:

This computation is performed by means of the solution of Prob-

lem 1, if Mn = 2qn�1�1, that is, when this evaluation stage is

encountered for the �rst time. The computation is performed by

means of the solution of Problem 3, otherwise.

(d) Pointwise apply equations (7), that is, successively compute the

matrices

S1(z) = '
(n�1)
even (z)(I � '

(n�1)

odd (z))�1

S2(z) = z'
(n�1)

odd (z) + S1(z)'
(n�1)
even (z)bS2(z) = b'(n�1)odd (z) + S1(z)b'(n�1)even (z)

(21)

for z 2 FMn
if Mn = 2qn�1�1, that is, when this stage is en-

countered for the �rst time; otherwise for z 2 FMn
�FMn=2.

(e) Interpolate the values of S2(z) and bS2(z) at z 2 FMn
, and obtain

the coe�cients of the matrix polynomials P (z) and bP (z). This
computation is performed by means of the solution of Problem

2, if Mn = 2qn�1�1, that is, when this interpolation stage is

encountered for the �rst time. The computation is performed by

means of the solution of Problem 4, otherwise.

(f) Apply tests (12) and (13) in order to check if P (z) and bP (z)
are good approximations of the series. If the inequalities (12)

and (13) are satis�ed then skip to the next stage. Otherwise, set

Mn = 2Mn, qn = qn + 1 and repeat from stage (2c).

(g) Set '(n)(z) = P (z), b'(n)(z) = bP (z).
(h) Compute R(n) = A

(n)
0 (I �

PMn

i=1 A
(n)
i )�1.

Until one of the following conditions is veri�ed.

jR(n)
�R(n�1)

j < �E; (C1)

eT (I �A
(n)
0 (I �A

(n)
1 )�1) < �eT ; (C2)

eT (I �A0(I � bA(n)
1 )�1) < �eT : (C3)

12



3. Computation of the matrix eG.
(a) If condition (C1) is veri�ed then eG = A0(I�

PbMn�1

i=0 R(n)i bA(n)
i+1)

�1:

(b) If condition (C2) is veri�ed then eG = A0(I � bA(n)
1 )�1:

(c) If condition (C3) is veri�ed then eG = A0(I � bA(n)
1 )�1:

4. Computation of the error bound �.

Compute � = maxn=1;:::;k
Pk

i=1 jwi;j j, for W = (wi;j)i;j , W =PM0

i=0
eGiAi �

eG.
The above algorithm has been implemented in Fortran90 in the subroutine

pwcr (pointwise cyclic reduction). In order to use the subroutine pwcr, a driver

program pwcr drv is also provided. This program pwcr drv reads from the

standard input the �le name <input file name> of the input data. This �le

must contain the folling data on each line:

1. On the �rst line: the block dimension k;

2. On the second line: the number M0+1 of blocks Ai such that
PM0

i=0 Ai is

numerically stochastic;

3. On the third line: the error bound �;

4. On the subsequent lines: the nonzero entries (Ai)r;s of the blocks Ai coded

as follows: i+ 1, r, s, (Ai)r;s;

5. On the last line: the quartuple 0; 0; 0; 0:d0, which denotes the end of the

data �le.

The driver calls the subroutine pwcr and writes the output into the �le

<input file name>.out. The output �le contains the residual error

jj

PM0

i=0
eGiAi �

eGjj1, where eG is the computed approximation of the solution

G of (3), and the entries egr;s of eG arranged row-wise.

The subroutine pwcr has the call sequence

CALL pwcr(a,eps,g,err)

where: a is a real(kind(0.d0)), dimension(:,:,:), pointer, containing the entries

of the blocks Ai; eps is a real(kind(0.d0)) containing the error bound �; g is a

real(kind(0.d0)), dimension(:,:), pointer, containing the entries of the computed

approximation eG; err is the residual error jj
PM0

i=0
eGiAi �

eGjj1.
The main subroutine used inside pwcr is the subroutine schur which per-

forms one step of cyclic reduction by computing the even and the odd compon-

ents of the matrix series '(n+1)(z) and b'(n+1)(z) (compare (7) ) which de�ne

the Schur complement in the cyclic reduction process.

In order to compute the values of the series '(n+1)(z) and b'(n+1)(z) at the
roots of 1, several subroutines which implement the solutions of problems 1,2,3,4,

of section 4 in the case of matrix polynomials, have been introduced. More
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speci�cally the subroutines ftb1 and iftb1 solve problems 1 and 2, respectively;

the subroutines ftb2 and iftb2 solve problems 3 and 4, respectively.

For the computation of the FFT's of real vectors, the split radix algorithm

of Dhuamel-Hollman, implemented by Sorensen et al [19], has been modi�ed

in order to avoid the recomputation of the Fourier points. The subroutines

that are involved in this computation are: fft1, ifft1, ffts1, iffts1, ffts2,

iffts2, twiddle, itwiddle. The Fourier points are computed by the sub-

routine fillroots.

The subroutines involved in the computation of the FFT's are contained

in the �le pwcr fft.f90. The subroutines pwcr, schur, and the related sub-

routines, are contained in the �le pwcr sub.f90.

We have tested our algorithm on a problem arising from the mathematical

modeling of a Metaring MAC Protocol [1]. For this particular example the

blocks Ai have dimension k = 16. We have tested the algorithm for di�erent

values of the parameter �, 0 < � < 1, which represents the stability condition of

the associated Markov chain [16]: as � tends to one, the problem of computing

the solution G of (3) by using customary techniques becomes more di�cult; in

fact, for � = 1 the Markov chain is not positive recurrent [16]. The numerical

degree of the series '(0)(z) is equal to 168 for � = 0:1, is equal to 240 for

� = 0:8, and is equal to 264 for the remaining tested values of � � 0:9. We have

compared our algorithm with the cyclic reduction of [3] and with the functional

iteration method based on the recursion

X0 = I;

Xn+1 = A0

�
I �

P+1

i=2 X
i�1
n Ai

��1
; n � 0;

(22)

which is the fastest among the classical linearly convergent functional iterations

[15].

The numerical experiments have been performed on an alpha workstation

with a base 2 arithmetic endowed with 53 bits.

Table 1 reports the CPU time (in seconds) and the number of iterations

needed by the Point-Wise Cyclic Reduction (PWCR) algorithm to compute an

approximation of the matrix G, by choosing � = 10�12; the residual of the

computed approximation is also reported.

Table 2 reports the CPU time (in seconds) and the number of iterations

needed by the Cyclic Reduction (CR) implemented in [3], the residual of the

computed approximation, and the ratio between the times needed by CR and

by PWCR. Observe that the algorithm PWCR, besides being faster than CR,

leads to a higher accuracy of the result.

We also compared our method with classical techiques based on functional

iterations: Table 3 reports the CPU time (in seconds) and the number of iter-

ations needed by the Functional Iteration Formula (FIF) de�ned in (22), the

residual of the computed approximation, and the ratio between the times needed

by this algorithm and by PWCR.
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� Time (s.) Iterations Residual

0:1 0:9 9 1:8 � 10�13

0:8 1:5 13 5:4 � 10�14

0:9 2:3 14 1:5 � 10�14

0:95 2:4 16 1:8 � 10�14

0:96 2:4 17 2:3 � 10�14

0:97 2:5 20 4:2 � 10�14

Table 1: Point-Wise Cyclic Reduction

� Time (s.) Iterations Residual CCR/PWCR

0:1 1:3 9 8:4 � 10�14 1:4

0:8 3:2 13 2:7 � 10�13 2:1

0:9 3:3 14 2:7 � 10�13 1:4

0:95 3:4 16 1:8 � 10�13 1:4

0:96 3:4 17 2:0 � 10�13 1:4

0:97 3:5 20 2:3 � 10�13 1:4

Table 2: Customary Cyclic Reduction

Table 3 shows the e�ectiveness of our method, specially in cases where cus-

tomary techniques converge very slowly. Indeed, observe that the cyclic reduc-

tion algorithm is almost insensitive to the values of the parameter �, whereas

the performance of the functional iteration method strongly deteriorates as �

approaches to 1.
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On functional iteration methods for solving

nonlinear matrix equations arising in queueing

problems

Paola Favati
�

Beatrice Meini
y

Abstract

The problem of the computation of the minimal nonnegative solution

G of the nonlinear matrix equation X =
P

+1

i=0
X

i
Ai is considered. This

problem arises in the numerical solution of M/G/1 type Markov chains,

where Ai, i � 0, are nonnegative k � k matrices such that
P

+1

i=0
Ai is

column stochastic. We analyze classical functional iteration methods, by

estimating the rate of convergence, in relation with spectral properties of

the starting approximation matrix X0. Based on these new convergence

results, we propose an e�ective method to choose a matrix X0, which

drastically reduces the number of iterations; the additional cost needed

to compute X0 is much less than the overall savings achieved by reducing

the number of iterations.

1 Introduction

Many queueing problems can be modeled by Markov chains of M/G/1 type,

that is, Markov chains whose probability transition matrix has the structure

P t =

0
BB@
B1 A0 

B2 A1 A0

B3 A2 A1 A0

...
...

. . .
. . .

. . .

1
CCA ; (1)

where Bi+1, Ai, i � 0, are k � k nonnegative matrices such that
P+1

i=1
Bi andP+1

i=0
Ai are column stochastic. One of the major problems in Markov chains

is the computation of the probability invariant vector �, i.e., the solution of

�Istituto di Matematica Computazionale del C.N.R., via S. Maria 46, 56127 Pisa, Italy.

E-mail: favati@imc.pi.cnr.it
yDipartimento di Matematica, via Buonarroti 2, 56127 Pisa, Italy. E-mail:
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the in�nite system � = P t
�, k�k1 = 1. For the matrices of structure (1),

the computation of � can be reduced (compare [16]) to the computation of the

minimal nonnegative solution G of the nonlinear matrix equation

X =

+1X
i=0

X iAi; (2)

where X is a k � k matrix. Indeed, once G is known, the vector � can be

recovered by means of the Ramaswami formula [17]. Moreover, the knowledge

of the matrix G is very important, due to its role in calculating performance

measures [16].

Recently, the analysis of numerical methods for computing the solution of the

matrix equation (2) has been largely developed. New quadratically convergent

methods have been proposed in [12], [13], [11], [3], [4], [5]; classical linearly con-

vergent methods based on functional iterations have been improved and studied

in details in [8], [14]. The latter methods, unlike most of the quadratically con-

vergent methods, are very easy to implement. They are based on the recursion

Xn+1 = F (Xn); n � 0; (3)

where

F (X) = K(X)(I �H(X))�1; (4)

and H(X) =
P+1

i=0
X iHi, K(X) =

P+1

i=0
X iKi are such that Hi � O, Ki � O,

i � 0, and
P+1

i=0
ziAi = z

P+1

i=0
ziHi +

P+1

i=0
ziKi [8], [14]. It can be proved

that, by suitable choosing the starting approximation X0, the sequence (3)

linearly converges to the solution G of (2); moreover, the rate of convergence

is strongly related to the choice of X0. More precisely, we associate with any

function F (�) of (4) a suitable nonnegative k2 � k2 matrix bRF . In the case

where X0 = 0 in [14] it is shown that the asymptotic rate of convergence of

fXng coincides with the spectral radius of bRF . Moreover, in the case where

X0 is any column stochastic matrix, it is shown that at each step n, the vector

ên, obtained by the column-wise arrangement of the entries of the matrix G �
Xn, is orthogonal to the nonnegative left eigenvector vT associated with the

spectral radius of the matrix bRF . From this property, it follows that the rate of

convergence of Xn is less than or equal to the spectral radius of the matrix M1

obtained by projecting bRF onto a suitable subspace V1.
From the above results it follows that, if the matrix bRF is irreducible, then

the mean asymptotic rate of convergence of the sequence Xn is:

{ equal to the spectral radius of bRF , if X0 = O;

{ less than or equal to the second largest modulus eigenvalue of bRF , if X0

is a column stochastic matrix.

The better rate of convergence, when X0 is a stochastic matrix, is mainly

due to the fact that both G and X0 have the eigenvalue 1 and associated left

eigenvector et = (1; : : : ; 1).

2



In this paper, in order to further improve the rate of convergence, we consider

starting approximations X0 that share with G more eigenvalues, and the corre-

sponding left eigenvectors, in addition to the eigenvalue 1 and the eigenvector

e
t.

More precisely, let �1 = 1; �2; : : : ; �h, h � k, be eigenvalues of the matrix G

such that the corresponding left eigenvectors wt
1 = e

t;wt
2; : : : ;w

t
h
are linearly

independent. Suppose that the matrix X0 satis�es

w
t
iX0 = �iw

t
i; i = 1; : : : ; h; (5)

that is, it shares with G the eigenvalues �1; �2; : : : ; �h and the corresponding

left eigenvectors. Then we prove that the rate of convergence of the sequence

Xn is bounded from above by �(Mh), where �(A) denotes the spectral radius of

the matrix A and Mh is the matrix obtained by projecting bRF onto a suitable

subspace Vh. Moreover, we show that �(Mh) � �(M1), for any h 2 f1; : : : ; kg.
In this way the rate of convergence can be substantially reduced.

Once the eigenvalues �1; �2; : : : ; �h, and the corresponding eigenvectors

w
t
1; : : : ;w

t
h
are known, a matrix X0 satisfying (5) can simply be obtained by

means of the equation X0 = V Diag(�1; : : : ; �h)W
t, whereW is the k�h matrix

whose columns are the vectors w1; : : : ;wh, and V is the generalized inverse of

W t. When h = k, i.e., all the eigenvalues, and the corresponding left eigenvec-

tors, are known, the matrix V coincides with the inverse of W t. In this case

some authors [9], [15] have proposed to approximate G by simply computing

W�tDiag(�1; : : : ; �k)W
t. In practice, due to the roundo� errors generated in

the computation, the matrix eG obtained in this way can be a poor approxima-

tion of G; we propose to improve this approximation by choosing X0 = eG and

by applying few steps of the functional iteration method (3).

We have performed several numerical experiments. We have �rst computed

eigenvalues and corresponding left eigenvectors, for di�erent values of h. Then

a matrix X0 satisfying (5) has been computed and functional iteration has been

applied. From the many results, we have observed a drastic reduction of the

number of iterations needed to approximate G when h > 1, with respect to the

case where h = 1, or X0 is a generic column stochastic matrix. On the other

hand, the time needed to approximate the eigenvalues, and the corresponding

left eigenvectors, when they are not known, is negligible with respect to the time

needed to perform functional iterations.

The paper is organized as follows: in Section 2 we prove the main convergence

results, by estimating the rate of convergence, in relation with the starting

approximation X0; in Section 3 we propose a method for computing a matrix

X0 satisfying (5); in Section 4 we present numerical results and comparisons.
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2 Convergence rate and starting approximation

In this section we extend the convergence results proved in [14] for functional

iteration methods based on the recursion (3), for solving the nonlinear matrix

equation (2); these new convergence results suggest how to choose the starting

approximation matrix X0 in order to drastically reduce the number of iterations

needed to approximate the solution G.

Let us denote by ên the vector obtained by column-wise arranging the entries

of the matrix G�Xn. It can be shown [14] that the error ên+1 is related to the

error ên by means of the recursion

ên+1 = bRnên (6)

where

bRn =

+1X
j=0

Yj;n 
Gj (7)

and
Y0;n =

P+1

i=1

�
X i�1

n Ki(I �H(Xn))
�1
�t

Yj;n =
P+1

i=j

�
X i�j

n Ai+1(I �H(Xn))
�1
�t
; j � 1:

Denote by

bRF =

+1X
j=0

Yj 
Gj

where
Y0 =

P+1

i=1

�
Gi�1Ki(I �H(G))�1

�t
Yj =

P+1

i=j

�
Gi�jAi+1(I �H(G))�1

�t
; j � 1:

Observe that, if limnXn = G, then bRF = limn
bRn. In the following we denote

by ei, i = 1; : : : ; k, the k-dimensional vector having the i-th entry equal to 1,

and the remaining ones equal to 0.

Relation (6) allows us to prove the following convergence result [14]:

Theorem 1 Let

r = lim
n

n

p
kênk

be the mean asymptotic rate of convergence of the sequence Xn+1 = F (Xn),

where F (�) is de�ned by (4) and k � k is any vector norm. The following results

hold:

{ if X0 = 0 then r = �( bRF );

{ if X0 is a stochastic matrix then r � �(T t
1
bRFT1), where T1 is the k2 �

(k2 � k) matrix whose columns complete the set of vectors

1p
k
(ei 
 e); i = 1; : : : ; k; (8)

to an orthonormal basis of Rk
2

.
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The reduction of the rate of convergence, in the case where X0 is a column

stochastic matrix, is mainly due to the fact that X0 has the eigenvalue 1 and

associated left eigenvector et, as well as the matrixG. In fact, from this property

it follows that the vector ên is orthogonal to the nonnegative left eigenvector

associated with the spectral radius of the matrix bRF .

This fact suggests us to choose a starting approximationX0 that shares with

G some other eigenvalues and the corresponding left eigenvectors, in addition

to the eigenvalue equal to 1 and the eigenvector et.

Denote by � = f�1; : : : ; �kg the set of the eigenvalues of the matrix G, and
with wt

1; : : : ;w
t
k
the corresponding left eigenvectors, where �1 = 1 and wt

1 = e
t.

Let �h a subset of h eigenvalues of �, 1 � h � k, such that:

1. �1 2 �h;

2. if � 2 �h, then �� 2 �h, where �� denotes the complex conjugate of �;

3. the left eigenvectors corresponding to the eigenvalues in �h are linearly

independent.

Throughout, we suppose, without loss of generality, that �h = f�1; : : : ; �hg.
Denote by Uh the subspace generated by the k2{dimensional vectors ei
wj ,

i = 1; : : : ; k, j = 1; : : : ; h, and let Vh = U?
h
. Let Sh = I 
 Eh a k2 � hk

matrix whose columns are an orthonormal basis of Uh, and let Th = I 
 Fh a

k2� (k2�hk) matrix whose columns are an orthonormal basis of Vh. Then the

following result holds:

Theorem 2 Let Xn, n � 0, be a convergent sequence generated by Xn+1 =

F (Xn), where F (�) is de�ned by (4). Denote by

r = lim
n

n

p
kênk

the mean asymptotic rate of convergence, where k � k is any vector norm. Let

1 � h � k and �h � � satisfying properties 1, 2, 3. Suppose that X0 veri�es

w
tX0 = �wt; (9)

for any � 2 �h, where w
t is the corresponding left eigenvector of G. Then it

holds r � �(T t
h
bRFTh).

Proof. First observe that ên 2 Vh, for n � 0. In fact, for n = 0, this

property follows from the relations wt(G � X0) = �wt � �wt = 0, for any

� 2 �h; for n � 1, the property follows from (6) and from the fact that, if

u 2 Uh, then ut bRn 2 Uh, for any n � 0.

Let P = (ShjTh). From (6) it follows that

P t
ên+1 =

�
0

fn+1

�
= (P t bRnP )(P

t
ên) = (P t bRnP )

�
0

fn

�
; (10)
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where fn = T t
h
en. Since S

t
h
bRnTh = O, it follows that

P t bRnP =

0
@St

h

�
T t
h

1
A bRn (ShjTh) =

�
Vn O

Tn Zn

�
; (11)

where Zn = T t
h
bRnTh. From (10) and (11), the recurrence (6) can be rewritten

in the form

fn+1 = Znfn (12)

and

r = lim
n

n

p
kênk = lim

n

n

p
kfnk:

By following the same lines of the proof of Theorem 15 in [14], we easily arrive

at r � �(T t
h
bRFTh). 2

From the above theorem it follows that, by starting with a matrixX0 sharing

with G more than one eigenvalue, the rate of convergence can be reduced. In

fact, the following result holds:

Theorem 3 Under the hypotheses of Theorem 2, the eigenvalues of the matrix

T t
h
bRFTh are given by the set

k[
i=h+1

f� : � is eigenvalue of Qig

where Qi =
P
1

j=0
�
j

iYj , i = 1; : : : ; k.

Proof. Observe that the matrix ZF = T t
h
bRFTh can be written as

ZF = (I 
 F t
h)
bRF (I 
 Fh) =

1X
j=0

Yj 
 F t
hG

jFh:

Whence, the matrix ZF is similar to the matrix
P
1

j=0
F t
h
GjFh 
 Yj , which is

similar to
P
1

j=0
U j 
 Yj , where U is the Schur canonical form of F t

h
GFh. Since

the eigenvalues of F t
h
GFh are �h+1; : : : ; �k, U is an upper triangular matrix

whose diagonal entries are �h+1; : : : ; �k . In this way we �nd that ZF is similar

to a block upper triangular matrix whose diagonal blocks are the matrices Qi,

i = h+ 1; : : : ; k. 2

From the above theorem it follows that:

Corollary 4 Under the hypotheses of Theorem 2 it holds that

�(T t
h
bRFTh) � �(T t

1
bRFT1)

for any 1 � h � k.
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In practice, we are not able to establish in advance the optimal number

of eigenvalues/eigenvectors h to be shared in order to obtain the best rate of

convergence. The optimal number h is strongly related to the spectral properties

of G, and thus to the speci�c problems.

In the above theorems we have presented conditions on the starting matrix

X0 to increase the rate of convergence of the sequence Xn+1 = F (Xn), under

the hypothesis that X0 is such that the sequence Xn is convergent. In the case

where the matrix X0 is stochastic, the sequence is obviously convergent. In the

more general case whereX0 is not necessarily nonnegative, the local convergence

is guaranteed by the classical results on functional iteration methods [18], since

�( bRF ) < 1.

3 Choosing the starting approximation

Based on the results of Section 2, in order to �nd a good starting matrix X0,

we need �rst to know eigenvalues and left eigenvectors of the matrix G. The

eigenvalues �1; : : : ; �k of G are given by the zeros of the function

'(z) = det(zI �
+1X
j=0

Ajz
j) (13)

lying in the closed unit circle of the complex plane (compare [9]), and the left

eigenvectors are the solutions of the linear systems

w
t
i(�iI �

+1X
j=0

Aj�
j

i
) = 0; i = 1; : : : ; k: (14)

The zeros of the function '(z) can be computed by means of any algorithm

for approximating the zeros of a polynomial, for example by means of Aberth's

method [7], [1]; the left eigenvectors can be computed by solving the above

homogeneous linear systems.

In the applications, it may be convenient to approximate only the eigenvalues

that can be computed in a few numbers of iterations, and then to compute the

corresponding matrix X0.

Suppose we know a subset �h = f�1; : : : ; �hg of � satisfying properties 1,

2, 3 of Section 2; denote by wt
1; : : : ;w

t
h the corresponding left eigenvectors. Let

Wh be the k � h matrix whose columns are the vectors w1; : : : ;wh and let Vh
be a k � h matrix such that

V t
hWh = Ih; (15)

where Ih is the h dimensional identity matrix. Then, the matrix

X0 = VhDiag(�1; : : : ; �h)W
t
h (16)
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veri�es conditions (9). A simple way to obtain a matrix Vh satisfying (15) is to

compute the generalized inverse of W t
h
, say by means of QR or SVD method

[10], or by means of the relation Vh = (WhW
t
h)
�1Wh, that holds since Wh is a

full rank matrix. Since � 2 �h implies �� 2 �h, the matrix X0 obtained in this

way is real. If, in addition, Vh is such that

VhDiag(�1; : : : ; �h)W
t
h � 0; (17)

then X0 is stochastic, since X0 � 0 and wt
1X0 = w

t
1, and w

t
1 = e

t.

A matrix Vh satisfying both conditions (15) and (17) can be viewed as a

solution of a linear programming problem. However the computation of a solu-

tion, if it exists, can require a long time. On the other hand, in many numerical

experiments, even if the starting matrix X0, obtained by means of the general-

ized inverse, has negative entries after few steps the matrix Xn is nonnegative.

Whence, the use of generalized inverse, leads to an advantageous choice of X0.

Suppose we know all the eigenvalues �1; : : : ; �k of G and the corresponding

left eigenvectors wt
1; : : : ;w

t
k
. If the above eigenvectors are linearly independent,

then it is well known [9], [15] that an approximation of the matrix G can be

obtained by means of the relation

G =W�t

k
Diag(�1; : : : ; �k)W

t
k : (18)

However, due to errors generated in the computation, the matrix obtained by

calculating W�t

k
Diag(�1; : : : ; �k)W

t
k
can be a not su�ciently accurate approxi-

mation of G. In this case, in order to improve the approximation of G, we apply

the functional iteration method, starting with X0 = W�t

k
Diag(�1; : : : ; �k)W

t
k.

In most applications, the matrix X0 is nonnegative and generates a sequence

Xn which rapidly converges to G.

4 Numerical results

We have performed numerical experiments in order to test the behavior of the

rate of convergence with di�erent starting approximations X0. Since the matrix

X0 of (16) is not necessarily nonnegative, the matrices Xn could have negative

entries and the matrices I � H(Xn) of (4) could be singular, for small values

of n. Thus, in order to avoid possibly singular matrix inversions, we use the

standard functional iteration method Xn+1 =
P+1

i=0
X i

nAi, n � 0.

We have chosen matrices X0 sharing with G one, two, or more eigenval-

ues and corresponding left eigenvectors. We have stopped iterations when the

residual error jjXn �
P+1

i=0
X i

nAijj1 was less than � = 10�11.

We have implemented our method in Fortran 77; the program has been run

on a Ultra Sparc Workstation.

We have considered two problems; Problem 1 arises from the mathematical

modeling of a metropolitan queueing network (Metaring MAC Protocol) [2],
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h Iterations Time (s.)

1 2763 197.3

2 34 4.9

4 26 4.4

5 25 4.4

6 20 4.0

8 20 4.0

9 20 4.0

10 20 4.1

12 20 4.1

14 20 4.1

15 19 4.0

16 19 4.0

Table 1: Metaring MAC Protocol

where the blocks Ai have dimension 16; Problems 2 models a teletra�c system

as a continuous time QBD Markov chain, where the blocks Ai have dimension

24.

For Problem 1 we have approximated the eigenvalues of the matrix G by

means of Aberth's method, applied to the function (13), and the left eigenvectors

by solving the linear systems (14). The time needed to approximate all the

eigenvalues, and the corresponding left eigenvectors, was 2.5 seconds, and 0.02

seconds, respectively. We have sorted the eigenvalues in such a way that j�1j �
j�2j � : : : � j�kj, and we have chosen di�erent subsets �h = f�1; : : : ; �hg, where
h is such that properties 1, 2, and 3 of Section 2 are satis�ed. Table 1 reports:

the number h of eigenvalues shared by X0 with G; the number of iterations

needed by the functional iteration method to reach the required accuracy; the

total time (in seconds) needed to compute the matrix X0 and to perform the

functional iterations. Figure 1 reports the logarithm (to the base 10) of the

residual error for h = 1; 2; 16.

For this problem, the time needed to reach the required accuracy with the

faster functional iteration Xn+1 = A0(I �
P+1

i=1
X i�1

n Ai)
�1 [14] and X0 = I

is 207.3 seconds, with 2943 iterations. It is worth pointing out the substantial

reduction of the number of iterations (and of the total time) when h passes from

1 to 2, and the strong advantage with respect to the faster functional iteration

method starting with the identity matrix.

For Problem 2 we have computed the eigenvalues of the matrix G, by ap-

proximating the eigenvalues of an auxiliary 2k� 2k matrix, as suggested in [6],

and the eigenvectors, by solving the linear systems (14). The time needed was

0.01 seconds. The eigenvalues, which are real and distinct for this problem, are

9
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Figure 1: Metaring MAC Protocol

sorted in such a way that j�1j � j�2j � : : : � j�k j. We have chosen X0 with

eigenvalues �1; : : : ; �h, and left eigenvectors wt
1; : : : ;w

t
h, for di�erent values of

h in f1; : : : ; kg. Table 2 reports: the number h of eigenvalues shared by X0

with G; the number of iterations needed by the functional iteration method to

reach the required accuracy; the total time (in seconds) needed to compute the

matrix X0 and to perform the functional iterations.

From Table 2 and Figure 2, we can observe a substantial reduction of the

number of iterations for increasing values of h. When h = 24, i.e., when all the

eigenvalues and the corresponding left eigenvectors are known, the matrix X0 is

a poor approximation of G, that is re�ned in few steps of functional iteration.
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