
USING INPUT/OUTPUT QUEUES TO INCREASE
 LDPC DECODER PERFORMANCE

Esa Alghonaim, Aiman El-Maleh and Adnan Al-Andalusi

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

ABSTRACT

The paper presents a novel approach to increase the
performance and/or throughput of iterative belief
propagation (BP) decoding of low density parity check
(LDPC) codes. The proposed approach is based on
utilizing the decoder idle time by introducing two queue
s: one at the decoder input and the other at the decoder
output. At the presence of an input queue, the decoder
runs extra iterations beyond the maximum allowable
iterations as long as the input queue is not full. The
function of the output queue is to preserve decoder
timing, guaranteeing frames to be decoded within a fixed
time similar to a conventional LDPC decoder, making it
practical for real time applications.
Simulation results for a rate ½ (1024,512) progressive
edge-growth (PEG) LDPC code show that the proposed
approach can increase the decoder performance up to
69% keeping the same throughput, or doubling the
throughput while keeping performance almost the same.

Index Terms— LDPC codes, Belief Propagation
iterative decoding, Error correction coding.

1. INTRODUCTION

One of the leading families of error-correcting codes is
known as Low Density Parity Check (LDPC) codes,
which were first introduced by Gallager in [1]. LDPC
codes have been found to rival other state-of-the-art
coding families (such as Turbo Codes), and demonstrate
performance that can asymptotically achieve the
information-theoretic limits, while at the same time
having the distinct advantage of low-complexity, near-
optimal soft message-passing iterative decoding based on
the Belief Propagation (BP) algorithm (also known as
the Sum-Product algorithm) [2,3].

One of the advantageous features of LDPC codes is that
error detection is always achieved as a by-product of the
BP decoding, without the need of extra cyclic
redundancy check-CRC codes (unlike other FEC
families, like turbo, for example). This is because
decoder failures, after reaching a maximum pre-set
number of iterations (usually in the range of 100), are
always known.

The selection of the value of the decoder maximum
iterations has a direct effect on both decoder error
correction performance and decoder throughput.
Increasing maximum iterations increases error correction
performance but decreases throughput, and vice versa.
Figure 1 shows an example of a PEG (1024,512) decoded
with 64 maximum iterations. It can be seen that at the
point 2.5dB, decoder is active 10% of the time and
becomes idle waiting for the next frame for 90% of the
time. In other words, at point 2.5dB, on the overage,
frames are decoded within 6.4 iterations out of the
maximum 64 iterations.
In this research we utilize the inherent decoder feature of
error detection to allow for decoding iterations beyond
the maximum iterations without affecting decoder
throughput. We accomplish this target by introducing two
queues: one at the decoder input and one at the decoder
output.
Several previous works implemented similar technique to
increase LDPC decoder performance. In [4], the authors
showed that adding additional buffering at the input of an
iterative decoder increased the throughput of the decoder.
They implemented a buffer at the input of a turbo
decoder with additional cyclic redundancy check (CRC)
as a stopping criterion. In [5], an input buffer is used at
the input of an LDPC decoder to decrease the overall
complexity of the decoding circuit. In [7], they did a
similar approach as in [4] but for an LDPC decoder. They
did the analysis and simulation using the decoder for the
next generation satellite digital video broadcasting
(DVB-S2) as a case study.
According to our knowledge, all previous works are
based on implementing input buffers (queue) to increase
the throughput or decrease the decoder complexity. Their
approach suffers from a major problem: the big variance
of decoding time, which makes their approach not
practical, especially for real time applications, such as
DVB-S2.
In this paper, we could solve this problem by introducing
another queue, same size as the input queue, at the output
of the LDPC decoder. Given a conventional LDPC
decoder with a pre-set number of maximum decoding
iterations, using input/output queues, frames are ensured
to be decoded within the maximum decoding iterations.
It should be also mentioned that although the added
output queue has same size as the input queue, its cost is
less than the input queue. The reason is in the size of

2 2.25 2.5 2.75 3
0

5

10

15

20

25

SNR (dB)

D
ec

od
er

 a
ct

iv
e

tim
e

pe
rc

en
ta

ge
 (%

)

elements of each queue: input queue elements are
numbers (integer or floating-point), while output queue
elements are binary numbers. For example, for a 6-bit
quantized LDPC decoder, output queue has a cost equal
to 1/6 of the input queue.

The rest of the paper is organized as follows. First, in
Section 2, a brief review of LDPC codes and their
iterative decoding are introduced. In Section 3, we
describe the proposed decoder. Experimental results are
given in Section 4, and final conclusions in Section 5.

Figure 1: Example illustrates decoder active time percentage
for a PEG code (1024,512) with 64 maximum iterations

2. OVERVIEW OF LDPC CODES

LDPC codes are a class of linear block codes that use a
sparse, random-like parity-check matrix [1, 2]. LDPC
codes can also be represented by bi-partite factor graphs
having two types of nodes: variable bit nodes and check
nodes, interconnected by edges whenever a given
information bit appears in the parity check equation of
the corresponding check bit, see figure 2. The iterative
message-passing belief propagation algorithm [2,3] is
used for decoding LDPC codes, and is shown to achieve
optimum performance when the underlying code graph is
cycle-free.
In this section, we review the belief propagation (BP)
algorithm used for decoding LDPC codes presented in
Gallager's work [1]. It is also called sum-product
algorithm (SPA). Assume a binary (N,K) LDPC code is
described by a sparse parity check matrix (called H
matrix) of size M N× , where M is the number of
parity-checks corresponding to the parity-check nodes in
a bipartite graph, and N is the number of variable nodes
corresponding to the encoded symbols.
Before discussing the BP algorithm, we introduce some
terms that will be used throughout the discussion of the
algorithm [8]:
• For the thj row in an H matrix, the set of column

locations of the 1’s is given by { : 1}j jiR i h= = . The

set of column locations of the 1’s, excluding location
i is given by \ { : 1}j i jiR i h ′′= = \ {i}.

• For the thi column in an H matrix, the set of row
locations of the 1’s is given by { : 1}i jic j h= = . The

set of row locations of the 1’s, excluding the location
j is given by \ { : 1}i j j ic j h ′′= = \ {j}

• ()ijq b : Message (extrinsic information) to be passed

from variable node iv to check node jf regarding

the probability that ic b= , {0,1}b∈ , as shown in
Figure 2(a). It equals the probability that ic b= given
extrinsic information from all check nodes, except
node jf .

• ()jir b : Message to be passed from check node jf to

variable node iv , which is the probability that the
thj check equation is satisfied given bit ic b= and

the other bits have separable (independent)
distribution given by { }ij j jq ′ ′≠ , as shown in Figure

2(b).
• ()iQ b = the probability that ic b= , {0,1}b∈

• Pr(1 |) Pr(0 |)
() log log

Pr(1 |) Pr(1 |)
i i i i

i
i i i i

x y c y
L c

x y c y
= + =

≡ =
= − =

•
(0)

() log
(1)

ji
ji

ji

r
L r

r
≡ and

(0)
() log

(1)
ij

ij
ij

q
L q

q
≡

• (0)
() log

(1)
i

i
i

Q
L Q

Q
≡

The BP algorithm involves one initialization step and
three iterative steps as shown below:

Initialization step: Set the initial value of each variable
node signal as follows: 2() () 2 /ij i iL q L c y σ≡ = , where

2σ is the variance of noise in the AWGN channel.

Iterative steps: The three iterative steps are as follows:

(I) Update check nodes as follows:

jf

iv

()ijq b

Figure 2 (a) Variable-to-check message, (b) Check-to-
variable message.

iv

()jir b
jf

(a) (b)

\\

() ()
j ij i

ji i j i j
i Ri R

L r α φ φ β′ ′
′′ ∈∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ×
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑∏

(1)

Where (())i j ijsign L qα ′ = , ()ij ijL qβ =

1() log(tanh(/ 2)) log
1

x

x
ex x
e

φ +
= − =

−

(II) Update variable nodes as follows:

\

() () ()
i j

ij i j i
j C

L q L c L r ′
′∈

= + ∑ (2)

(III) Compute estimated variable nodes as follows:

() () ()
i

i i ji
j C

L Q L c L r
∈

= + ∑ (3)

Based on ()iL Q , the estimated value of the received bit
(îc) is given by:

1 () 0
ˆ

0
i

i
if L Q

c
else

<⎧
= ⎨
⎩

Stopping Criterion: The decoded vector ĉ is used to
check if ˆH c is zero, in which case it is declared as a
valid codeword. If not, iterative decoding continues until
it is eventually successful, or a preset number of
maximum iterations (m) is reached. The check equation

ˆH c has a simple implementation in hardware, each
check node perform a logical XOR function on the
estimated values of the connected variable nodes, for a
check node j :

ˆ
j

j i
i R

check c
∈

= ⊕∑

Then a logical OR function is performed on the results of
all check nodes (jcheck) to get the final result ˆH c .

3. DECODER DESCRIPTION

Assume we are given a conventional LDPC decoder with
maximum decoding iterations (m). Frames arrive at the
input of the decoder at a fixed frame rate (FR). Frames
are dispatched from the decoder output at the same rate
(FR). Usually, the maximum decoding iterations value
(m) is chosen so that the time needed for m iterations
equals the frame inter-arrival time, which is 1/ FR .
Our proposed idea is to improve the error correction
performance of the decoder and keep frame output
throughput at the same fixed rate FR. This is
accomplished by introducing two queues, both of size q:
one queue at the input of the LDPC decoder and the other
at the output of the decoder, as shown in Figure 3.
Frames are received from channel at a fixed rate (FR) and
stored in the input queue. The LDPC decoder receives a
frame from the input queue, performs decoding iterations

and then stores the decoded frame at the output queue.
Frames are dispatched from the output queue at the same
fixed rate (FR) in which frames are received at the input
queue.
The decoder runs over two phases: Setup phase, in
which output queue is being filled with decoded frames,
and normal phase in which decoded frames are
dispatched from the output queue at a fixed rate (FR).
Following is a description for each phase:
Setup phase: when the decoding process starts running,
both input and output queues are empty. As soon as the
input queue receives a frame, it is dispatched to the
LDPC decoder which decodes it and sends the decoded
frame to the output queue. This phase continues until the
decoder finishes from decoding (q+1) frames, q frames at
the output queue and one frame at the decoder. Two main
properties of this phase are: (1) Maximum decoding
iterations is set the conventional value (m). (2) No frames
are dispatched from the output queue. At the end of this
phase, state of the queues looks like the one shown in
figure 4(a).
This phase takes a starting latency of q frames for filling
the output queue plus one frame in the decoder which is a
total of (q+1)/FR sec. Comparing this latency with the
conventional decoder latency of 1/FR, this is a
disadvantage for our proposal, but is acceptable in most
applications such as satellite broadcasting.

Figure 3: LDPC decoder with the input and output queues

DLPC
Decoder

Frames Arrival
 (Fixed rate, FR)

Frames dispatched from input
queue (variable rate)

Decoded frames
(Variable rate)

Frames dispatched from output queue
(Fixed rate, FR)

Input
queue

Output
queue

Size = q

Size = q

2 2.25 2.5 2.75 3
10-7

10-6

10-5

10-4

10
-3

10
-2

10-1

SNR (dB)

Fr
am

e
E

rro
r R

at
e

(F
E

R
)

M=16
M=32
M=64
M=128
M=256
M=512
M=1024

Normal phase: In this phase, frames are dispatched from
the output queue at a fixed rate FR. Since the input queue
arrival rate has the same fixed rate FR as the output
queue departure, the total frames in the system (decoder
and queues) in any time is constant and equal to q+1
frames. At any time, there is one frame in the decoder
(either being decoded or finished from decoding) and q
frames distributed between input and output queues.
Because the average number of decoding iterations
required per a frame is less than the conventional
maximum iterations (m), most of the time the state of
input/output queues is: input queue is empty and output
queue is full, as shown in figure 4(a). When the decoder
is in this state, an arrived new frame can use m iterations
(the conventional value) plus extra iterations until the
input queue becomes full. Since time for filling input
queue is equal to the time for m q× iterations, the
maximum possible iterations a frame can use is given by:
m m q+ × iterations. When a frame consumes iterations
more than m, received frames are stored in the input
queue, and the input queue starts growing at the same
rate RF as the output queue is decaying, see figure 4(b).
In this state, the maximum allowed decoding iterations
for a given frame is given by (1)m q n× + − , where n is
the number of frames in the input queue just after the
start of frame decoding.
The worst case is when the input queue is full (saturated),
as shown in figure 4(c). In this state, the maximum
possible decoding iterations is equal to the conventional
value m.

4. EXPERIMENTAL RESULTS

In order to verify the effectiveness of the proposed idea,
extensive simulations have been performed. Since
simulation of LDPC is time consuming, especially at high
SNR, a parallel computing simulation platform was

developed to run the LDPC simulations on 170
processing nodes on a departmental LAN network.
First, we studied the effect of the maximum iterations
value (m) on the performance of an LDPC decoder. We
did a simulation for a PEG matrix [6] of size (1024, 512)
using different maximum decoding iterations m,
specifically: 16, 32, 64, 128, 256, 512 and 1024
iterations. The performance results are shown in figure 5.
It is clear from the figure that the performance difference
between two values of m is large when m is small. For
example, the performance difference between m=16 and
m=32 is much higher than the performance difference
between m=512 and m=1024. Another important
observation is that increasing the value of m has a more
significant effect on the performance as the value of SNR
increases. On the other hand, as SNR increases, average
decoding iterations decreases, this increases decoder idle
time and allows for efficient utilization of the proposed
input/output queues scheme.

 Figure 5: Effect of maximum iterations (M) on LDPC
decoder performance

Figure 6 shows the effect of the proposed input/output
queues scheme on LDPC decoder performance. Focusing
on the two curves: m=64 without queues (conventional
decoder) and m=64 with queue size of 1, it is obvious
that the performance is increased remarkably without any
effect on the throughput. At SNR=3dB, the conventional
FER is decrease by 69% when using input/output queues
of size 1 each.
The second (m=128, no queues) and third (m=64, q=1)
curves in Figure 6 indicate that we could implement the
proposed input/output queues to increase the LDPC
decoder throughput keeping almost the same error
correcting performance.
Finally, Figure 7 illustrates the effect of increasing the
queues size on the performance of the LDPC decoder. It
is obvious from the figure that the decoder performance
increases as the size of queues increases. However,
increasing the queues size has two negative impacts:
increasing hardware cost and increasing initial latency
time. A good balance in the choice of the values for m

LDPC
Decoder

Input queue
size = 0 (empty)

Output queue
size = q (full)

LDPC
Decoder

Input queue
size = n

Output queue
size = q-n

LDPC
Decoder

Input queue
size = q (full)

Output queue
size = 0 (empty)

(a)

(b)

(c)

Figure 4: Three different states of input/output queues

2 2.25 2.5 2.75 3
10-7

10
-6

10-5

10-4

10
-3

10-2

10-1

SNR (dB)

Fr
am

e
E

rro
r R

at
e

(F
E

R
)

M=16 , no queues
M=16 , q=1
M=16 , q=2
M=16 , q=4
M=16 , q=8
M=16 , q=16

2 2.25 2.5 2.75 3
10-6

10-5

10-4

10-3

10-2

10-1

SNR (dB)

Fr
am

e
E

rro
r R

at
e

(F
E

R
)

M=64 no queues
M=128 no queues
M=64 , q=1
M=32 , q=2

and q could provide the best trade-off between cost and
performance.

 Figure 6: Effect of the proposed input/output queue scheme
on LDPC decoder performance

 Figure 7: LDPC decoder performance using different
input/output queues sizes

5. CONCLUSION

In this paper, we introduced the concept of input/output
queues to increase the performance and/or throughput of
an LDPC decoder. Unlike previous approaches, our
proposed idea ensures that the frames are decoded within
a maximum time interval, similar to the conventional
decoders. This property makes our proposal practical for
real time applications, such as digital video broadcasting.
However, our proposal requires an initial latency time
proportional to the input/output queues size, which is
acceptable in most practical applications.

ACKNOWLEDGMENT
The authors thank King Fahd University of

Petroleum & Minerals for support of this work.

REFERENCES
[1] R. G. Gallager, “Low Density Parity-Check Codes”. MIT
Press, Cambridge, MA, 1963.

[2] D.J.C. MacKay, “Good error-correcting codes based on very
sparse matrices,” IEEE Trans. Inform. Theory, vol.45, pp.399-
431, March 1999.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, San Mateo: CA, Morgan
Kaufmann, 1988.

[4] J. Vogt and A. Finger, "Increasing throughput of iterative
decoders", ELECTRONICS LETTERS, 7th June 2001, Vol. 37,
No. 12

[5] Gabriella Bosco, Guido Montorsi and Sergio Benedetto, ,
"Decreasing the Complexity of LDPC Iterative Decoders",
IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 7, JULY
2005

 [6] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive
edge-growth Tanner graphs”, in Proc. IEEE GLOBECOM
2001, San Antonio, TX, Nov. 2001, pp. 995–1001.

[7] Massimo Rovini and Alfonso Martinez, "On the Addition of
an Input Buffer to an Iterative Decoder for LDPC Codes",
Vehicular Technology Conference, 2007. VTC2007-Spring.
IEEE 65th

[8] William Ryan, “A Low-Density Parity-Check Code Tutorial,
Part II - The Iterative Decoder”, ECE dept. The University of
Arizona, April 2002.

