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ABSTRACT 

 
The paper presents a novel approach to reduce the bit 
error rate (BER) in iterative belief propagation (BP) 
decoding of low density parity check (LDPC) codes. The 
behavior of the BP algorithm is first investigated as a 
function of number of decoder iterations, and it is shown 
that typical uncorrected error patterns can be classified 
into 3 categories: oscillating, nearly-constant, or random-
like, with a predominance of oscillating patterns at high 
Signal-to-Noise (SNR) values.  
A proposed decoder modification is then introduced 
based on tracking the number of failed parity check 
equations in the intermediate decoding iterations, rather 
than relying on the final decoder output (after reaching 
the maximum number of iterations). Simulation results 
with a rate ½ (1024,512) progressive edge-growth (PEG) 
LDPC code show that the proposed modification can 
decrease the BER by as much as 10-to-40%, particularly 
for high SNR values.   
 
 

Index Terms— LDPC codes, BER performance, 
Belief Propagation iterative decoding, Error correction 
coding.  

 
1. INTRODUCTION 

 
One of the leading families of error-correcting codes is 
known as Low Density Parity Check (LDPC) codes, 
which were first introduced by Gallager in [1].  LDPC 
codes have been found to rival other state-of-the-art 
coding families (such as Turbo Codes), and demonstrate 
performance that can asymptotically achieve the 
information-theoretic limits, while at the same time 
having the distinct advantage of low-complexity, near-
optimal soft message-passing iterative decoding based on 
the Belief Propagation (BP) algorithm (also known as  
the Sum-Product algorithm) [2,3].   
 
One of the advantageous features of LDPC codes is that 
error detection is always achieved as a by-product of the 
BP decoding, without the need of extra cyclic 
redundancy check-CRC codes (unlike other FEC 
families, like turbo, for example).  This is because 
decoder failures, after reaching a maximum pre-set 
number of iterations, are always known. From an error 
correcting perspective, decoder failures clearly lead to a 
frame (or packet) error, which also implies a number of 

bit errors. Typically, both frame error rate (FER) and bit 
error rate (BER) curves are used to characterize LDPC 
and other coding families. It should be pointed out that in 
the case of LDPC codes, the number of bit errors for a 
given frame error occurrence (after exhausting the 
maximum number of allowable iterations) can vary 
considerably with the intermediate iterations. Although 
most previous works consider performance results for a 
given number of maximum iterations (usually in the 
range of 100), a few researchers have addressed this bit 
error variation aspects, as in [4] where the bit error 
transitions probabilities are considered. Also, in [5], a 
modified BP decoding algorithm based on error 
oscillation is presented. 
 
In this paper, a more thorough categorization of the 
evolution of bit error patterns as a function of decoder 
iterations is first presented, particularly highlighting the 
importance of using intermediate decoder results to 
minimize BER. Following that, a simple approach for 
deciding at which stage to output decoded bits is 
presented. This is based on tracking the number of 
unsatisfied check node equations, which correlate 
strongly with increased bit error occurrences.  
 
The rest of this paper is organized as follows. First, in 
Section 2, a brief review of LDPC codes and their 
iterative decoding are introduced. In Section 3, we 
investigate the characteristics of error patterns resulting 
from BP decoding failures. Then in Section 5, the 
proposed method for improving BER is presented. 
Experimental results are given in Section 6, and final 
conclusions in Section 7. 
 

2. OVERVIEW OF LDPC CODES 
 
LDPC codes are a class of linear block codes that use a 
sparse, random-like parity-check matrix [1,2]. LDPC 
codes can also be represented by bi-partite factor graphs 
having two types of nodes:  variable bit nodes and check 
nodes, interconnected by edges whenever a given check 
bit appears in the parity check equation of the 
corresponding information bit. The iterative message-
passing belief propagation algorithm [2,3] can used for 
decoding LDPC codes, and is shown to achieve optimum 
performance when the underlying code graph is cycle-
free In the following, a brief description of this algorithm 
is given based on the notation in [2], and this will be 



subsequently used in discussing the codes’ BER 
performance characterization.  
 
The elements of a codeword c are referred to as bits, and 
the rows of the parity matrix H are designated as checks. 
The set of bits l that participate in check m is denoted by 

, and the set of checks involving bit 
l is denoted by . A set  in 
which bit l is excluded is denoted by , and 
likewise  refers to  without check m. 
The decoding algorithm has two alternating parts in 
which soft information  and  associated with each 
nonzero element of H are iteratively updated. The 
quantity  can be thought of as the probability that bit 

node l sends to check node m indicating 
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the probability that the mth check node gathers about the 
lth bit of x being  when the other bits have 

probabilities given by . The 
iterative steps of the BP algorithm are summarized next. 
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 2. Horizontal Step: Each check node m gathers all 
information , and updates the belief on the lth bit 

ased on other bits that participate in check equation m. 
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for i=0,1. The exclusion of the term  in the 

computation of  is necessary in order to only keep 
“extrinsic” information about the lth bit from the m parity 
check equation. The function  is an 
ndicator function given by: 
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where  represents modulo-2 summation. ∑⊕
 
3. Vertical Step: The computed values  are used to 
update information that each bit node l propagates back 
to check node m. In doing so, the information coming 
rom check node m itself is not be included, giving 
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for i=0,1. The term mlα  is used as a normalization factor 

to ensure  Each bit l collects probability 
information from the check nodes that connect to it, and 

pdates its a posteriori probabilities (APP): 
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for i=0,1. The term lα  is chosen such that .  
It is noted that two parts contribute to the APP: intrinsic 
information from , and an extrinsic one from the  
terms. After each vertical-horizontal iteration, a hard 
decision is made on each bit APP , resulting in a 

tentative decoded vector . This is then used to decide 
whether to stop the decoding algorithm as outlined next. 
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4. Stopping Criterion: The decoded vector   is used to 
check if

ĉ
ˆ 0H c = , in which case it is declared as a valid 

codeword. If not, iterative decoding continues until it is 
eventually successful, or a preset number of maximum 
iterations is reached. 
 
An illustration of the iterative LDPC decoding algorithm 
is shown in Figure 1. A log-domain implementation 
(omitted here for brevity) of this algorithm can also used 
to further reduce computational requirements.  

 
Figure 1: Illustration of LDPC Decoding by BP algorithm. 

 
 
3. ERROR PATTERNS OF BP-LDPC DECODING 
 
As a first step to characterize the BER performance of 
LDPC BP decoding, we performed extensive simulations 
with a rate ½ (1024,512) progressive-edge-growth (PEG) 
LDPC code [6] over AWGN channels for various SNR 
values. We point out here that we also considered other 
random-like LDPC code constructions as well, and 



similar conclusions were observed. Hence, for brevity, 
we only present results with the PEG LDPC code 
example. A block is considered to be in error if the 
maximum decoding iteration is reached without 
satisfying the check equations, i.e. the syndrome ĉ H⋅ is 
non-zero. With the help of simulation results, frame 
errors could be classified into three patterns, described as 
follows: 

I- Oscillating error pattern: with a nearly periodic 
change between maximum and minimum values. An 
important feature of this error pattern is the high 
variation in bit error count as a function of decoding 
iteration number.  

II- Nearly-constant error pattern:  where the bit error 
count becomes quasi-constant after only a few 
decoding iterations.  

III- Random-like error pattern: where the error count 
evolution follows a random shape, characterized by 
low variation range.  

 
Figure 2 shows one example for each of the three error 
patterns obtained from simulation results of a (1024, 512) 
LDPC code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Illustration of the three error patterns 
 
It is of interest to investigate the relative fraction of these 
error patterns, and this is illustrated in Table 1 for the 
(1024,512) PEG code that we consider in this paper. It is 
seen that that the oscillating error pattern increases with 
SNR, and becomes clearly dominant around 3dB.  Since 
the oscillating error pattern has maximum variation in the 
number of uncorrected codeword bits (i.e. maximum 
peak to peak difference), it is therefore expected that this 
error pattern that will be most critical for optimizing 
overall BER performance. For example, as shown in 
Figure 2, if we set the number of maximum iterations to 
60, then decoding failure gives around 30 bits in error. 
On the other hand, setting the maximum iterations to 50 
results in nearly 210 bit errors. This observation 
motivates the search for a way to get the best 
intermediate error bits for a given frame decoding error. 

In the following section, we further discuss this idea in 
detail. 

 
Table 1. Percentage of error patterns among total frame errors 

  Error pattern type  
 SNR 

(dB) 
Oscillating Near-constant Random-like  

 2.25 4 % 0 % 96 %  
 2.50 12 % 0 % 88 %   
 2.75 24 % 1 % 75 %  
 3.00 63 % 3 % 34 %  

 
 

4. PROPOSED IMPROVEMENT  
 
The proposed improvement to the BP decoding algorithm 
is based on the use of intermediate decoding results. For 
each decoder iteration, we compute the number of bits in 
error and we store the estimated bit values corresponding  
to the minimum number of bits in error. As an example, 
consider the decoding of a block that gave the oscillating 
pattern shown in Figure 1. Iteration 74 corresponds to 
minimum number of bits in error. In this example, the 
proposed algorithm returns estimated bits ( ) resulting 
from iteration 74 (not from the last iteration, as with 
common decoding). However, from a practical 
perspective, a normal question arises, namely: since we 
do not know the correct values of bits, how we decide 
when to pick the intermediate results (in order to achieve 
minimum bit error count)?. In this work, our extensive 
numerical results show that, by tracking the evolution of 
the failed check equations (check nodes in the bipartite 
graph), we can get a very good indication on how to 
optimally produce bit error estimates. Indeed, it is found 
that there is a strong correlation between the non-zero 
entries in the syndrome 

îc

ˆH c  and the number of bit errors. 
Figure 3 illustrates this fact for the case of oscillating 
error patterns (as discussed previously), and similar 
observations also applied for the other cases as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Correlation between uncorrected codeword bits and  
number of failed parity check equations 
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To summarize, a formal description of the proposed 
method to improve the BP decoding based on 
intermediate decoding iteration results is given below: 
 
BP-LDPC (conventional) decoding  
Initialize variable nodes  
Loop  
  Update check and variable nodes  
  Compute estimated variable nodes vector  ĉ
  Compute  syndrome vector:  ˆHc
Until =0 or maximum iterations reached ˆHc
Return  ĉ
 
BP-LDPC decoding with the proposed improvement 
Initialize variable nodes 
Set Minimum = number of check nodes 
Loop  
  Update check and variable nodes  
  Compute estimated variable nodes vector  ĉ
  Compute  syndrome vector:  ˆHc
  Check Errors = number of non-zero elements in  ˆHc
   If    Check Errors < Minimum    then  
             Minimum = Check Errors 
             ˆ ˆm c=
Until  Check Errors = 0 or maximum iterations reached 
Return   m̂

 
 

5. NUMERICAL RESULTS  
 
We performed extensive simulations to verify the 
effectiveness of the proposed idea. Since simulation of 
LDPC is time consuming, especially at high SNR, a 
parallel computing simulation platform was developed to 
run the LDPC simulations on 130 nodes on a 
departmental LAN network.  
Figure 4 shows the simulation results for a PEG code of 
block size 1024 and a rate of ½. This code, free of 4 and 
6 cycles and with minimized 8 cycles [6], was chosen as 
a representative example, but similar observations 
applied with other constructions, as will be reported in 
future work. From Figure 4, it is seen that the difference 
in BER achieved from the proposed method increases 
with SNR.  This is because the percentage of the 
oscillating patterns increases as SNR increases, as shown 
in Table 1.  
 

6. CONCLUSION 
 
The paper presented a method to improve the residual 
BER level in belief propagation decoding of LDPC 
codes. A thorough categorization of the evolution of bit 
errors as a function of decoder iterations was  presented, 
and results showed that uncorrected error patterns can be 
classified into 3 categories: oscillating, nearly-constant, 
or random-like, with a predominance of oscillating 
patterns at high SNR.  
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Figure 4. BER results for the (1024,512) PEG LDPC code, 
with and without the proposed improvement. 

 
These observations highlighted the importance   of   
using   intermediate    decoder   results to minimize BER. 
A simple approach for deciding at which stage to output 
decoded bits was introduced based on tracking the 
number of unsatisfied check node equations, which 
correlate well with bit error occurrences.  Numerical 
results with rate ½, block size 1024 PEG code were used 
to demonstrate the effectiveness of the proposed method, 
and it was found that BER reduction of to 40% can be 
achieved, for SNR levels around 3dB.  
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