
IMPROVING BER PERFORMANCE OF LDPC CODES
BASED ON INTERMEDIATE DECODING RESULTS

Esa Alghonaim, Mohamed Adnan Landolsi, and Aiman El-Maleh

King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

ABSTRACT

The paper presents a novel approach to reduce the bit
error rate (BER) in iterative belief propagation (BP)
decoding of low density parity check (LDPC) codes. The
behavior of the BP algorithm is first investigated as a
function of number of decoder iterations, and it is shown
that typical uncorrected error patterns can be classified
into 3 categories: oscillating, nearly-constant, or random-
like, with a predominance of oscillating patterns at high
Signal-to-Noise (SNR) values.
A proposed decoder modification is then introduced
based on tracking the number of failed parity check
equations in the intermediate decoding iterations, rather
than relying on the final decoder output (after reaching
the maximum number of iterations). Simulation results
with a rate ½ (1024,512) progressive edge-growth (PEG)
LDPC code show that the proposed modification can
decrease the BER by as much as 10-to-40%, particularly
for high SNR values.

Index Terms— LDPC codes, BER performance,
Belief Propagation iterative decoding, Error correction
coding.

1. INTRODUCTION

One of the leading families of error-correcting codes is
known as Low Density Parity Check (LDPC) codes,
which were first introduced by Gallager in [1]. LDPC
codes have been found to rival other state-of-the-art
coding families (such as Turbo Codes), and demonstrate
performance that can asymptotically achieve the
information-theoretic limits, while at the same time
having the distinct advantage of low-complexity, near-
optimal soft message-passing iterative decoding based on
the Belief Propagation (BP) algorithm (also known as
the Sum-Product algorithm) [2,3].

One of the advantageous features of LDPC codes is that
error detection is always achieved as a by-product of the
BP decoding, without the need of extra cyclic
redundancy check-CRC codes (unlike other FEC
families, like turbo, for example). This is because
decoder failures, after reaching a maximum pre-set
number of iterations, are always known. From an error
correcting perspective, decoder failures clearly lead to a
frame (or packet) error, which also implies a number of

bit errors. Typically, both frame error rate (FER) and bit
error rate (BER) curves are used to characterize LDPC
and other coding families. It should be pointed out that in
the case of LDPC codes, the number of bit errors for a
given frame error occurrence (after exhausting the
maximum number of allowable iterations) can vary
considerably with the intermediate iterations. Although
most previous works consider performance results for a
given number of maximum iterations (usually in the
range of 100), a few researchers have addressed this bit
error variation aspects, as in [4] where the bit error
transitions probabilities are considered. Also, in [5], a
modified BP decoding algorithm based on error
oscillation is presented.

In this paper, a more thorough categorization of the
evolution of bit error patterns as a function of decoder
iterations is first presented, particularly highlighting the
importance of using intermediate decoder results to
minimize BER. Following that, a simple approach for
deciding at which stage to output decoded bits is
presented. This is based on tracking the number of
unsatisfied check node equations, which correlate
strongly with increased bit error occurrences.

The rest of this paper is organized as follows. First, in
Section 2, a brief review of LDPC codes and their
iterative decoding are introduced. In Section 3, we
investigate the characteristics of error patterns resulting
from BP decoding failures. Then in Section 5, the
proposed method for improving BER is presented.
Experimental results are given in Section 6, and final
conclusions in Section 7.

2. OVERVIEW OF LDPC CODES

LDPC codes are a class of linear block codes that use a
sparse, random-like parity-check matrix [1,2]. LDPC
codes can also be represented by bi-partite factor graphs
having two types of nodes: variable bit nodes and check
nodes, interconnected by edges whenever a given check
bit appears in the parity check equation of the
corresponding information bit. The iterative message-
passing belief propagation algorithm [2,3] can used for
decoding LDPC codes, and is shown to achieve optimum
performance when the underlying code graph is cycle-
free In the following, a brief description of this algorithm
is given based on the notation in [2], and this will be

subsequently used in discussing the codes’ BER
performance characterization.

The elements of a codeword c are referred to as bits, and
the rows of the parity matrix H are designated as checks.
The set of bits l that participate in check m is denoted by

, and the set of checks involving bit
l is denoted by . A set in
which bit l is excluded is denoted by , and
likewise refers to without check m.
The decoding algorithm has two alternating parts in
which soft information and associated with each
nonzero element of H are iteratively updated. The
quantity can be thought of as the probability that bit

node l sends to check node m indicating

{ 1:)(== mlHlmL }
{ }1:)(== mlHmlM)(mL

lmL \)(
mlM \)()(lM

mlq mlr

i
mlq

Pr()lx i= with

i=0, 1. On the other hand, the quantity is meant to be
the probability that the mth check node gathers about the
lth bit of x being when the other bits have

probabilities given by . The
iterative steps of the BP algorithm are summarized next.

i
mlr

ixl =
{ lmLlq lm \)(: ∈′′ }

1. Initialization: The variables and are

initialized to the probabilities and that code bit

 is 0 or 1, respectively. Then, for every non-zero entry

in the matrix H, we have the following: .

0
mlq 1

mlq
0
lp 1

lp

lx
i
l

i
ml pq =

 2. Horizontal Step: Each check node m gathers all
information , and updates the belief on the lth bit

ased on other bits that participate in check equation m.

i
mlq

b
∑ ∏
∈′ ∈′

′′
′

′×==
lmLlx lmLl

x
lmll

i
ml

l

lqixxPr
\)(: \)(

),|}({ H (1)

for i=0,1. The exclusion of the term in the

computation of is necessary in order to only keep
“extrinsic” information about the lth bit from the m parity
check equation. The function is an
ndicator function given by:

mlq

mlr

),|}({ HixxP ll =′

i
{ }

⎩
⎨
⎧ =⊕

== ∑ ′
′ otherwise

ixif
ixxP l

ll ,0
0,,1

),|}({ H
(2)

where represents modulo-2 summation. ∑⊕

3. Vertical Step: The computed values are used to
update information that each bit node l propagates back
to check node m. In doing so, the information coming
rom check node m itself is not be included, giving

i
mlq

f

∏
∈′

′=
mlMm

i
lm

i
lml

i
ml rpq

\)(

α (3)

for i=0,1. The term mlα is used as a normalization factor

to ensure Each bit l collects probability
information from the check nodes that connect to it, and

pdates its a posteriori probabilities (APP):

.110 =+ mlml qq

u
∏
∈

=
)(lMm

i
ml

i
ll

i
l rpq α (4)

for i=0,1. The term lα is chosen such that .
It is noted that two parts contribute to the APP: intrinsic
information from , and an extrinsic one from the
terms. After each vertical-horizontal iteration, a hard
decision is made on each bit APP , resulting in a

tentative decoded vector . This is then used to decide
whether to stop the decoding algorithm as outlined next.

110 =+ ll qq

lp mlr

lq
ĉ

4. Stopping Criterion: The decoded vector is used to
check if

ĉ
ˆ 0H c = , in which case it is declared as a valid

codeword. If not, iterative decoding continues until it is
eventually successful, or a preset number of maximum
iterations is reached.

An illustration of the iterative LDPC decoding algorithm
is shown in Figure 1. A log-domain implementation
(omitted here for brevity) of this algorithm can also used
to further reduce computational requirements.

Figure 1: Illustration of LDPC Decoding by BP algorithm.

3. ERROR PATTERNS OF BP-LDPC DECODING

As a first step to characterize the BER performance of
LDPC BP decoding, we performed extensive simulations
with a rate ½ (1024,512) progressive-edge-growth (PEG)
LDPC code [6] over AWGN channels for various SNR
values. We point out here that we also considered other
random-like LDPC code constructions as well, and

similar conclusions were observed. Hence, for brevity,
we only present results with the PEG LDPC code
example. A block is considered to be in error if the
maximum decoding iteration is reached without
satisfying the check equations, i.e. the syndrome ĉ H⋅ is
non-zero. With the help of simulation results, frame
errors could be classified into three patterns, described as
follows:

I- Oscillating error pattern: with a nearly periodic
change between maximum and minimum values. An
important feature of this error pattern is the high
variation in bit error count as a function of decoding
iteration number.

II- Nearly-constant error pattern: where the bit error
count becomes quasi-constant after only a few
decoding iterations.

III- Random-like error pattern: where the error count
evolution follows a random shape, characterized by
low variation range.

Figure 2 shows one example for each of the three error
patterns obtained from simulation results of a (1024, 512)
LDPC code.

Figure 2. Illustration of the three error patterns

It is of interest to investigate the relative fraction of these
error patterns, and this is illustrated in Table 1 for the
(1024,512) PEG code that we consider in this paper. It is
seen that that the oscillating error pattern increases with
SNR, and becomes clearly dominant around 3dB. Since
the oscillating error pattern has maximum variation in the
number of uncorrected codeword bits (i.e. maximum
peak to peak difference), it is therefore expected that this
error pattern that will be most critical for optimizing
overall BER performance. For example, as shown in
Figure 2, if we set the number of maximum iterations to
60, then decoding failure gives around 30 bits in error.
On the other hand, setting the maximum iterations to 50
results in nearly 210 bit errors. This observation
motivates the search for a way to get the best
intermediate error bits for a given frame decoding error.

In the following section, we further discuss this idea in
detail.

Table 1. Percentage of error patterns among total frame errors

 Error pattern type
 SNR

(dB)
Oscillating Near-constant Random-like

 2.25 4 % 0 % 96 %
 2.50 12 % 0 % 88 %
 2.75 24 % 1 % 75 %
 3.00 63 % 3 % 34 %

4. PROPOSED IMPROVEMENT

The proposed improvement to the BP decoding algorithm
is based on the use of intermediate decoding results. For
each decoder iteration, we compute the number of bits in
error and we store the estimated bit values corresponding
to the minimum number of bits in error. As an example,
consider the decoding of a block that gave the oscillating
pattern shown in Figure 1. Iteration 74 corresponds to
minimum number of bits in error. In this example, the
proposed algorithm returns estimated bits () resulting
from iteration 74 (not from the last iteration, as with
common decoding). However, from a practical
perspective, a normal question arises, namely: since we
do not know the correct values of bits, how we decide
when to pick the intermediate results (in order to achieve
minimum bit error count)?. In this work, our extensive
numerical results show that, by tracking the evolution of
the failed check equations (check nodes in the bipartite
graph), we can get a very good indication on how to
optimally produce bit error estimates. Indeed, it is found
that there is a strong correlation between the non-zero
entries in the syndrome

îc

ˆH c and the number of bit errors.
Figure 3 illustrates this fact for the case of oscillating
error patterns (as discussed previously), and similar
observations also applied for the other cases as well.

Figure 3. Correlation between uncorrected codeword bits and
number of failed parity check equations

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Iteration Number

300

Number of bit errors
Number of failed check equations

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Oscillating error pattern
Near Constant error pattern
Random-like error pattern250

N
um

be
r o

f e
rro

r b
its

Iteration

To summarize, a formal description of the proposed
method to improve the BP decoding based on
intermediate decoding iteration results is given below:

BP-LDPC (conventional) decoding
Initialize variable nodes
Loop
 Update check and variable nodes
 Compute estimated variable nodes vector ĉ
 Compute syndrome vector: ˆHc
Until =0 or maximum iterations reached ˆHc
Return ĉ

BP-LDPC decoding with the proposed improvement
Initialize variable nodes
Set Minimum = number of check nodes
Loop
 Update check and variable nodes
 Compute estimated variable nodes vector ĉ
 Compute syndrome vector: ˆHc
 Check Errors = number of non-zero elements in ˆHc
 If Check Errors < Minimum then
 Minimum = Check Errors
 ˆ ˆm c=
Until Check Errors = 0 or maximum iterations reached
Return m̂

5. NUMERICAL RESULTS

We performed extensive simulations to verify the
effectiveness of the proposed idea. Since simulation of
LDPC is time consuming, especially at high SNR, a
parallel computing simulation platform was developed to
run the LDPC simulations on 130 nodes on a
departmental LAN network.
Figure 4 shows the simulation results for a PEG code of
block size 1024 and a rate of ½. This code, free of 4 and
6 cycles and with minimized 8 cycles [6], was chosen as
a representative example, but similar observations
applied with other constructions, as will be reported in
future work. From Figure 4, it is seen that the difference
in BER achieved from the proposed method increases
with SNR. This is because the percentage of the
oscillating patterns increases as SNR increases, as shown
in Table 1.

6. CONCLUSION

The paper presented a method to improve the residual
BER level in belief propagation decoding of LDPC
codes. A thorough categorization of the evolution of bit
errors as a function of decoder iterations was presented,
and results showed that uncorrected error patterns can be
classified into 3 categories: oscillating, nearly-constant,
or random-like, with a predominance of oscillating
patterns at high SNR.

2.25 2.5 2.75 3
10-8

10-7

10-6

10-5

10-4

10-3

SNR (dB)

B
it

E
rro

r R
at

e
(B

E
R

)

BER with conventional decoding
BER with the proposed improvement

Figure 4. BER results for the (1024,512) PEG LDPC code,
with and without the proposed improvement.

These observations highlighted the importance of
using intermediate decoder results to minimize BER.
A simple approach for deciding at which stage to output
decoded bits was introduced based on tracking the
number of unsatisfied check node equations, which
correlate well with bit error occurrences. Numerical
results with rate ½, block size 1024 PEG code were used
to demonstrate the effectiveness of the proposed method,
and it was found that BER reduction of to 40% can be
achieved, for SNR levels around 3dB.

ACKNOWLEDGMENT

The authors thank King Fahd University of
Petroleum & Minerals for support of this work under
project no. EE/DENSITY/387.

REFERENCES
[1] R. G. Gallager, “Low Density Parity-Check Codes”. MIT
Press, Cambridge, MA, 1963.

[2] D.J.C. MacKay, “Good error-correcting codes based on very
sparse matrices,” IEEE Trans. Inform. Theory, vol.45, pp.399-
431, March 1999.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, San Mateo: CA, Morgan
Kaufmann, 1988.

[4] S.H. Lee et al, "Bit probability transition characteristics of
LDPC code," in Proc. 10th Int’l. Conf. on Telecommunications
2003, ICT’03, vol.1, pp.553–557, 2003.

[5] S. Gounai, T. Ohtsuki, and T. Kaneko, ”Modified Belief
Propagation Decoding Algorithm for Low-Density Parity
Check Code Based on Oscillation,” in Proc. IEEE
Vehic. Tech. Conf. Spring 2006. Vol. 3, pp. 1467-1471.

 [6] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive
edge-growth Tanner graphs,” in Proc. IEEE GLOBECOM
2001, San Antonio, TX, Nov. 2001, pp. 995–1001.

	1. INTRODUCTION
	2. OVERVIEW OF LDPC CODES
	3. ERROR PATTERNS OF BP-LDPC DECODING
	4. PROPOSED IMPROVEMENT
	5. NUMERICAL RESULTS
	6. CONCLUSION
	ACKNOWLEDGMENT
	
	REFERENCES

