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Abstract
Testing systems-on-a-chip (SOC) involves applying

huge amounts of test data, which is stored in the tester
memory and then transferred to the circuit under test
(CUT) during test application. Therefore, practical tech-
niques, such as test compression and compaction, are re-
quired to reduce the amount of test data in order to reduce
both the total testing time and the memory requirements
for the tester. Relaxing test sequences can improve the effi-
ciency of both test compression and test compaction. In ad-
dition, the relaxation process can identify self-initializing
test sequences for synchronous sequential circuits. In this
paper, we propose an efficient test relaxation technique for
synchronous sequential circuits that maximizes the number
of unspecified bits while maintaining the same fault cover-
age as the original test set.

1 Introduction
Rapid advancement in VLSI technology has lead to

a new paradigm in designing integrated circuits where
a system-on-a-chip (SOC) is constructed based on pre-
designed and pre-verified cores such as CPUs, digital sig-
nal processors, and RAMs. Testing these cores requires a
large a mount of test data which is continuously increasing
with the rapid increase in the complexity of SOC. This has
a direct impact on the total testing time and the memory re-
quirements of the testing equipment. Hence, reducing the
amount of test data is considered as one of the challenging
problems in testing.

Test compression and compaction techniques are
widely used to reduce the storage and test time by reduc-
ing the size of the test data. Test compression techniques
can achieve better results if the test set is composed of test
cubes (i.e. if the test set is partially specified). In fact, some
compression techniques such as, LFSR-reseeding [1, 2],
require the test vectors to be partially specified. Even
those techniques which require fully specified test data
can benefit from unspecified bits in the test set. For ex-
ample, variable-to-fixed-length coding [3] and variable-to-
variable-length coding [4, 5] are known to perform better
for long runs of 0’s. Hence, assigning 0’s to the don’t care

values in the test set will improve the efficiency of these
techniques. Similarly, run-length coding techniques [6]
can specify the don’t care values in a way that will reduce
test vector activity (i.e. the number of transitions from 0 to
1 and vice versa), which in tern improves the compression
efficiency.

Test compaction techniques can also benefit from a par-
tially specified test. For example, when merging two test
sequences using the overlapping compaction techniques
described in [7], a don’t care value, ’X’, can be merged
with any one of the values: ’0’, ’1’, and ’X’. Therefore,
increasing the number of X’s in a test set will reduce the
number of conflicts that may occur while merging two test
sequences, and hence, improves the efficiency of the com-
paction process.

Test-relaxation can also identify self-initializing test se-
quences in synchronous sequential circuits. During the
test-relaxation process, if a memory-element is not re-
quired to justify any one of the detected faults, then it can
be relaxed (i.e set to an ’X’). Then, any time frame with all
memory-elements set to X’s is considered as the start of a
new self-initializing test sequence.

In this paper, we propose an efficient test relaxation
technique for synchronous sequential circuits that maxi-
mizes the number of unspecified bits while maintaining the
same fault coverage as the original test set. The rest of this
paper is organized as follows. Section 2 defines the tar-
geted problem, and summarizes previous work. Section 3
illustrates our idea with examples. Section 4 formally de-
scribes our test relaxation algorithm. Section 5 describes
the selection criteria used by our technique. Experimental
results are given in section 6, and section 7 concludes the
paper.

2 Problem Definition
The problem of test relaxation for synchronous sequen-

tial circuits, i.e. extracting a partially specified test set from
a fully-specified one, has not been solved effectively in the
literature. This problem, which is targeted in this paper,
can be defined as follows.Given a synchronous sequential
circuit and a fully specified test set, generate a partially
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Figure 1: Circuit of Example 1.

specified test set that maintains the same fault coverage
as the fully specified one while maximizing the number of
unspecified bits. One obvious way to solve this problem
is to use a bitwise-relaxation technique, where we test for
every bit in the test set whether changing it to an ’X’ re-
duces the fault coverage or not. Obviously, this technique
is O(nm) fault simulation runs, wheren is the width of
one test vector, andm is the number of test vectors. Ob-
viously, this technique is impractical for large circuits. A
partially specified test set can also be obtained using dy-
namic ATPG compaction. In dynamic compaction, every
test vector is processed immediately after its generation in
order to specify unspecified primary inputs (PIs). This fea-
ture can be disabled to obtain a compact and relaxed test
set. However, this technique does not solve the problem of
relaxing an already existing test set. In addition, this tech-
nique cannot benefit from random test pattern generation,
because it is fault oriented.

Recently, two test relaxation techniques for combi-
national and full-scan sequential circuits were proposed
in [8, 9]. The main idea of both techniques is to determine
logic values in the fully-specified test set that are necessary
to cover (i.e. detect) all faults which are detectable by this
test set. Unnecessary logic values are set to X’s. However,
as far as synchronous sequential circuits are concerned, the
only existing solution to the problem of relaxing a given
test set is the bitwise-relaxation method.

3 Illustrative Examples
The techniques proposed in [8, 9] justify detected faults

based on logical values only, which may result in fault
masking. Each one of these techniques handles this prob-
lem in a different manner. In the first technique, when a
fault effect is propagated to at least one input of a gate,
then all inputs of this gate are justified. The second tech-
nique, on the other hand, uses some rules based on fault-
reachability analysis to avoid fault masking. The two ap-
proaches are illustrated in the following example.
Example 1: Consider the circuit shown in Figure 1 un-
der the faultC/1. The assignmentsC = 0 andG1 = 0
are necessary to excite this fault and propagate it to the
primary-output. The assignmentG1 = 0 can be satisfied
by any one of the assignmentsA = 0, B = 0 or C = 0.
However, selecting the assignmentC = 0 and relaxing the
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Figure 2: Circuit of Example 2.

two inputsA andB will result in masking the faultC/1.
To avoid fault masking, the first technique justifies all the
inputs ofG1, while the second technique justifies the the
assignment onG1 through an input that is not reachable
from the faultC/1. In this case, either one of the two as-
signmentsA = 0 or B = 0 can be selected.

It is clear that the second technique results in more re-
laxation. However, there are some situations, as will be
shown in the next example, where it is possible to justify
the required value from a reachable line without masking
any of the detected faults.
Example 2: Consider the circuit shown in Figure 2 under
the faultB/1. The assignmentsB = 0 andG1 = 0 are
required to excite and propagate this fault to the primary-
output. According to the second technique, the assignment
G1 = 0 can’t be justified throughB because this input
is reachable from the faultB/1. However, if we relaxA
(A = X), we find that the fault is still detected (i.e. the
fault has not been masked). The reason is that the faulty
value ofB (i.e. 1) is considered as a controlling value for
the gateG2. Thus, the faultB/1 will propagate to primary-
output regardless of the faulty-value propagating through
G1. This limitation can be avoided if we consider both
fault-free and faulty values of the circuit when justifying a
given fault. In Figure 2, the circuit lines have the following
combinations of fault-free/faulty values:A = 0/0, B =
0/1, G1 = 0/0 andG2 = 0/1. In order to justify the
fault B/1, it is enough to justify the fault-free/faulty values
on the primary-outputG2. So, the assignmentG2 = 0/1
can be satisfied by the assignmentsB = 0/1 andG1 =
0/X. Notice that the faulty-value ofG1 is not required
(i.e. set to ’X’). Hence, either one of the two inputsA or
B can satisfy this assignment. SinceB has been selected
to satisfy the assignment on the primary-output, it can be
selected as well to satisfy the assignment onG1. In this
case, we can relaxA.

Our proposed technique extends the fault-free/faulty
values justification to handle synchronous sequential cir-
cuits. A synchronous sequential circuit can be represented
as a linear iterative array of combinational cells. Each cell
represents one time frame in which the current states of the
flip-flops become pseudo-inputs (yi), and the next states
become pseudo-outputs (Yi). So, we need to fault simu-
late the circuit under the given test set to determine faults
detected in every time frame. Then, we can justify fault-
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Figure 3: Circuit of Example 3.

free/faulty values necessary to detected these faults starting
from the last time frame backwards. The justification pro-
cess is performed frame by frame. In every time frame
i, all fault-free/faulty values necessary to detect a newly
detected fault are justified starting from primary-outputs
towards primary-inputs and/or memory-elements. If the
fault-free/faulty value of a primary-input is required to jus-
tify any one of the newly detected faults, then the value of
this primary-input should be specified in the test set. On
the other hand, required values on the memory-elements
need to be justified when the next time frame,i− 1, is pro-
cessed. The general behavior of the proposed technique is
illustrated by the following example.

Example 3: Consider the iterative-array-model shown in
Figure 3. This model represents two time frames of a syn-
chronous sequential circuit under two test vectors:ti = 01
andti+1 = 00. Assume that the only newly detected fault
is A/1, i.e., other faults are either previously detected by
earlier test vectors, or not part of the fault list. Inti, the
faultA/1 is excited and propagated to the memory element
G5, but is not yet detected. Inti+1, the faultA/1 is prop-
agated to the primary-output,G4, where it gets detected.
So, in order to justify this fault, it is enough to justify the
fault-free/faulty values on the primary-output,G4, in ti+1.
The assignmentG4 = 1/0 can be satisfied by the two as-
signmentsG2 = X/0 andG3 = 1/0. Next, we justify the
assignmentG2 = X/0. This can be satisfied by the assign-
mentG1 = X/0, which in turn can be satisfied by either
one of the two inputsA or B (i.e one of these inputs can
be relaxed). The assignmentG3 = 1/0, on the other hand,
needs to be justified throughG5. SinceG5 is a memory-
element, its fault-free/faulty values should be justified in
the previous time frame (ti). Therefore, we need to justify
the faulty-free/faulty values ofG5 in time frameti. These
values can be satisfied by the two assignmentsA = 0/1

andB = 1/1. Since the fault-free/faulty values of both
inputs are required, none of these inputs can be relaxed in
this time frame.

4 Proposed Technique
Before describing the proposed technique, we give the

following definitions.

Definition 1 The good value of a gate g, denoted by Good-
Value(g), is the value of the gate under the fault-free ma-
chine.

Definition 2 The faulty value of a gate g, denoted by
FaultyValue(g), is the value of the gate under the faulty
machine.

Definition 3 The justify value of a gate g, denoted by Jus-
tifyValue(g), is the fault-free/faulty assignment that needs
to be justified by g.

Due to the nature of sequential circuits (i.e. feed-
back from memory-elements), a fault excited in one time
frame might propagate through several time farms before
it gets detected. Hence, several time frames need to be
traced back to justify such faults. Therefore, we need to
store enough information about fault propagation, detec-
tion and justification in order to perform the justification
process frame by frame. Five lists are used to store the the
required information:POJustificationList, PPOJustifica-
tionList, MEJustificationList, FaultPropagationList, and
EventList. The purpose of each one of these four lists is
explained below.

The purpose of thePOJustificationListis to store newly
detected faults in every time frame. These faults will be
justified backwards starting from the time frames where
they first get detected. During fault simulation, if a fault
f propagates to one or more memory-elements, then these
memory-elements and their faulty values are added to the
MEPropagationList. The PPOJustificationListis used to
store faults that can’t be completely justified during a cer-
tain time frame. Notice that if one or more memory-
elements are required to justify a faultf during some time
frame i, thenf can’t be completely justified during this
time frame. Hence, these memory-elements will be added
to MEJustificationList[f ], and the justification off will
continue during time framei − 1. The EventListkeeps
track of the gates that need to be justified for a certain fault.
Gates are inserted in event list according to their levels in
the circuit.

Algorithm 1 shows an outline of the proposed test re-
laxation technique which consists of three phases. The first
phase initializes the five lists. TheRelaxedTestSet, as the
name indicates, represents the relaxed test set. Initially,
all the bits in this set are X’s. However, more bits will be



specified throughout the relaxation process in order to jus-
tify the detected faults.

Fault simulation is performed in the second phase to
identify newly detected faults. These faults are stored in
POJustificationList[i] for every test vectori. During fault
simulation, if a faultf propagates to one or more memory-
elements, then these memory-elements together with their
faulty values are added toFaultPropagationList[f ]. The
information in this list will be used to compute faulty val-
ues of the circuit during the justification phase. It is impor-
tant to point out here that we need to store the logical val-
ues of the memory-elements for all the time frames. This
will enable the third phase to perform logic simulation in a
certain time frame independent of the other time frames.

The third phase starts from the last time frame down to
the first one. In every time frame,i, the algorithm performs
the following. First, it logic simulates the circuit under
the test vectori to determine the good value of every gate.
Then, it checksPPOJustificationList[i] for any fault that
has not been completely justified in time framei + 1. Un-
justified faults are removed from the list and justified one
by one. Next, it checksPOJustificationList[i] for newly
detected faults and justifies them. Justifying a fault,f , in-
volves two operations: (1) Computing the faulty-values of
the circuit under the faultf and (2) Backward justification.
These operations are described bellow.

Local fault simulation is used to compute the faulty-
values of the circuit under a given faultf . The process
starts by injecting the faultf at its corresponding line in
the circuit. Then, it sets the faulty-values of the memory-
elements according to the faulty-values propagating from
time framei − 1. Next, the fault effects on the faulty-
line and memory-elements are forward propagated to de-
termine the faulty-values of all gates in the circuit.

Algorithm 2 shows the justification process of a faultf
in time framet. In this algorithm, the event list is pro-
cessed level by level starting from the maximum level.
In each level, the the required values on a gateg (i.e.
JustifyValue(g)) are satisfied according to the following
procedure. First, the algorithm determines the correspond-
ing values (v1/v2) on the input(s) of the gateg. For exam-
ple, if the required values on the output of aninverterare
0/1, then the corresponding requirements on the input of
this gate are1/0. The next step is to justifyv1/v2 through
the input(s) ofg as follows.

If g is a primary-input (PI), then we need to specify its
value whenever the required fault-free/faulty value is not
’X’.

A requirement on a memory-element (DFF) can’t be
justified in the current time frame (i). Therefore, the
memory-element is added toMEJustificationList[f ], and
the faultf is added to the justification list of the next time

frame (i− 1).

Algorithm 1 Main Algorithm
(*Initialization phase*)
for every fault, f , in the fault list of the given circuitdo

Let FaultPropagationList[f ] ← φ
Let MEJustificationList[f ] ← φ

for every test vectori do
Let POJustificationList[i] ← φ
Let PPOJustificationList[i] ← φ
for every level, l, of the given circuitdo

Let EventList[l] ← φ
for every primary input jdo

Let RelaxedTestSet[i][j] ← ’X’
(*Fault simulation phase*)
for i ← 1 to n do

Fault simulate the circuit under test vectori
for every fault, f , newly detected ini do

Add f to POJustificationList[i]
for every fault f propagating to time framei + 1 do

Add all memory-elements reachable from the fault
f together with their faulty values toFaultPropaga-
tionList[f ]

(*Fault justification phase*)
for i ← n downto 1 do

Logic simulate the circuit under the test vectori
while PPOJustificationList[i] 6= φ do

Removef from PPOJustificationList[i]
Compute faulty values of the circuit under the fault
f
for every memory-element, d, whose fault-
free/faulty values are required to justifyf in time
framei + 1 do

Removed from MEJustificationList[f ]
Let j be the input ofd
Add j to EventList[level(j)]

Justify(f , i)
while POJustificationList[i] 6= φ do

Removef from POJustificationList[level(j)]
Compute faulty values of the circuit under the fault
f
Let j be a primary-output at which the faultf gets
detected
Add j to EventList[level(j)]
Justify(f , i)

If g is an inverter (NOT) or a buffer (BUF), then its input
is required to justifyv1/v2. Hence, the input ofg is added
to the proper level in the event list. If the fault-free/faulty
value of anXORor XNORgate is required, then the fault-
free/faulty values on every input of the gate are required as
well.

If g is anAND, OR, NANDor NORgate, then we have
four different possibilities. First, bothv1 andv2 are con-
trolling values ofg. In this case, the algorithm searches for
an input that satisfies both values and adds it to the event



Algorithm 2 Justify(f , i)
for every level, l, of the circuitdo

while EventList[l] 6= φ do
Remove gateg from theEventList[l]
Let (v1,v2)←JustifyValue(g)
if g is (NOT|NAND|NOR) then

Let (v1,v2)← (v̄1,v̄2)
caseg is

(1) PI:
if v1 6=’X’ then

Let RelaxedTestSet[i][g]← v1

else ifv2 6=’X’ then
Let RelaxedTestSet[i][g]← v2

(2) DFF:
Add f to PPOJustificationList[i− 1]
Add g to MEJustificationList[f ]

(3) BUF|NOT:
Let j be the input ofg
Let JustifyValue(j)←(v1, v2)
Add j to EventList[level(j)]

(4) XOR|XNOR:
for every input,j, of g do

Let v1 ← GoodValue(j)
Let v2 ← FaultyValue(j)
Let Justifyvalue(j)← (v1, v2)
Add j to EventList[level(j)]

(5) AND|OR|NAND|NOR:
if v1 and v2 are controlling values ofg
then

Find an input,j, of g that satisfyv1

Find an input,k, of g that satisfyv2

if j=k then
Let Justifyvalue(j)←(v1,v2)

else
Let JustifyValue(j)←(v1,’X’)
Let JustifyValue(k)←(’X’, v2)

Add j to EventList[level(j)]
Add k to EventList[level(k)]

else ifv1 is a controlling value ofg then
Find an input,j, of g that satisfyv1

Let JustifyValue(j)←(v1,v2)
Add j to EventList[level(j)]
for every inputk of g such thatk 6= j
do

Let JustifyValue(k)←(’X’, v2)
Add k to EventList[level(k)]

else ifv2 is a controlling value ofg then
Find an input,j, of g that satisfyv2

Let JustifyValue(j)←(v1,v2)
Add j to EventList[level(j)]
for every inputk of g such thatk 6= j
do

Let JustifyValue(k)←(v1,’X’)
Add k to EventList[level(k)]

else
for every input,j, of g do

Let JustifyValue(j)←(v1,v2)
Add i to EventList[level(j)]

list. If v1/v2 can’t be satisfied by a single input, then it
will be justified through two different inputs. In case only
v1 is a controlling value ofg, the algorithm will find an
input j with a fault-free value that satisfiesv1. Sincev2 is
a non-controlling value (or an ’X’), then all inputs ofg are
required to justify this value. Therefore, inputj is added to
the event list to justify the valuev1/v2, while other inputs
are added to the event list to justify the value X/v2. In the
third case, onlyv2 is controlling value ofg. This can be
handled exactly as done in the previous case except thatv2

is justified through one input, whilev1 is justified through
all the inputs ofg. Finally, if neitherv1 nor v2 is a con-
trolling value ofg, then all the inputs ofg are required to
justify the valuev1/v2. Hence, all inputs ofg are added to
the event list.

5 Selection Criteria
When justifying a controlling value through the inputs

of a given gate, there could be more than one choice. In
this case the priority is given to the input that is already se-
lected to justify other gates. Otherwise, cost functions are
used to guide the selection. The cost functions give a rel-
ative measure on the number of primary inputs required to
justify a given value. Hence, they can guide the relaxation
procedure to justify the required values with the smallest
number of assignments on the primary inputs.

The cost functions proposed in [9] combine theregu-
lar recursive controllability cost functions [10] with new
cost functions calledfanout-basedcost functions. The reg-
ular cost functions are computed as follows. For every gate
g, we compute two cost functionsCreg0(g) andCreg1(g).
For example, ifg is an AND gate withi inputs, then the
cost functions are computed as:

Creg0(g) = min
i

Creg0(i)

Creg1(g) =
∑

i

Creg1(i)

These costs functions are computed for other gates in a
similar manner. The fanout-based cost functions can be
computed for an AND gate as follows. Letg be an AND
gate withi inputs. LetF (g) denotes the number of fanout
branches ofg. Then, the fanout-based cost functions are
computed as:

Cfan0(g) =
mini Cfan0(i)

F (g)

Cfan1(g) =
∑

i Cfan1(i)
F (g)

The regular cost functions are accurate for fanout-free cir-
cuits. However, when fanouts exist, regular cost functions
do not take advantage of the fact that a stem can justify
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several required values. In general, the fanout-based cost
functions provide better selection criterion than the regu-
lar fanout cost functions. However, there are some cases
where the regular fanout cost functions can perform better
than the fanout-based cost functions [9]. To take advantage
of both cost functions, a weighted sum cost function of the
two cost functions was proposed in [9]. The combined cost
functions are defined as follows:

C0(g) = A · Creg0(g) + B · Cfan0(g)
C1(g) = A · Creg1(g) + B · Cfan1(g)

In synchronous sequential circuits, the controllability
values of the circuit in one time frame depend on the con-
trollability values computed in the current frame as well as
the values computed in the previous frames. Therefore, the
controllability values should be computed in an iterative
manner starting from the first time frame. However, the it-
erative computation of the controllability values may cause
the regular cost to grow much faster than the fanout-based
cost such that the effect of the second cost in the weighted
sum becomes negligible. This is illustrated in the following
example.
Example 4: Consider the iterative model shown in Fig-

ure 4. The controllability values of each gate are shown as
a tuple of two values. The first value represents the regu-
lar cost, while the second value represents the fanout-based
cost. Let the regular and fanout-based costs of all primary
inputs equal to 1. Assume that the regular and fanout-based
costs of the memory-element in the first time frame equal
to 1 and0.5 respectively. Then, in the first time frame,
the regular and fanout-based costs of (G3 = 1) are4 and
1.5 respectively. After 10 time frames, the regular cost of
(G3 = 1) becomes3070, while the fanout-based cost be-
comes2047

1024 ≈ 2.
The huge difference between the two costs in the previ-

ous example is due to the reconverging fanout branches of
G5. Therefore, the regular cost of a memory-element with
reconverging fanout branches should be adjusted to reduce
the difference between the two costs. This can be done
as follows. Letg be a memeory-element withn fanout
branches. Assume thatm out of then fanout branches re-
converge at some gate in the circuit, then the regular cost
of every one of these branches equals to the regular cost
of g divided bym. In Figure 4, both branches of the flip-
flop G5 reconverge at the gateG3. Therefore, the regular
cost of each branch is computed as the regular cost of the
memory-element divided by2. After adjusting the regu-
lar costs on the fanout branches ofG5, the regular cost of
(G3 = 1) becomes3 in the first time frame and21 in the
10th time frame.

The cost functions described so far compute the con-
trollability values of a gate assuming general values on the
gate inputs. Controllability values computed based on this
assumption are less accurate than those computed based on
the actual logical values. This is illustrated in the following
example.
Example 5: Consider the circuit shown in Figure 5. If
we compute cost of 1 (C1) for each gate assuming gen-
eral values on the input lines, then we get the following
values: C1(G1) = 3, C1(G2) = 1, C1(G3) = 2, and
C1(G4) = 1. These values suggest to justify the assign-
mentG4 = 1 throughG2 which results in three assign-
ments on the primary inputs. Now, if we compute the con-
trollability values based on the actual logical values, then
we get the following values:C1(G1) = 3, C1(G2) = 3,
C1(G3) = 2, andC1(G4) = 2. In this case,G3 = 1
will be selected to justify the assignmentG4 = 1. This
assignment requires only two assignments on the primary
inputs.

In our work, cost functions are computed based on the
actual values.

6 Experimental Results
In order to demonstrate the effectiveness of our pro-

posed test relaxation technique, we have performed some
experiments on a number of the ISCAS89 benchmark cir-



Table 1: Test relaxation comparison between the proposed technique and the bitwise-relaxation method.
Percentage ofX ’s CPU Time (seconds)

Bitwise- Proposed Bitwise- Proposed
Circuit Relaxation Technique Diff. Relaxation Technique
s1423 69.922/74.392 63.020 6.902/11.37 943 1.750
s1488 76.154/81.090 72.244 3.910/8.846 12553 2.417
s1494 76.295/82.962 72.741 3.554/10.22 13146 3.100
s3271 83.894/85.527 81.908 1.986/3.619 87726 8.033
s3330 87.738/90.082 85.506 2.232/4.576 115585 5.633
s3384 78.579/81.655 77.755 0.824/3.900 16549 2.533
s4863 84.832/87.542 81.735 3.097/5.807 162894 7.800
s5378 87.738/88.969 86.056 1.682/2.913 218137 20.35
AVG. 80.644/84.027 77.621 3.023/6.406

cuits. The experiments were run on a SUN Ultra60 (Ultra-
Sparc II 450MHz) with a RAM of 512MB. We have used
test sets generated by HITEC[11]. In addition to that, we
have used the fault simulator HOPE[12] for fault simula-
tion purposes.

In Table 1, we compare the proposed test relaxation
technique with the bitwise-relaxation method. The two
techniques are compared in terms of the percentage of
X’s extracted, and the CPU time taken for relaxation. It
is important to point out here that in order to have a fair
comparison between our technique and the bitwise-relaxa-
tion method, we have constrained the bitwise-relaxation
method such that all faults detected at a particular time
frame remain detected in the same time frame after relax-
ation. However, the results obtained by both constrained
and unconstrained bitwise-relaxation are shown in Table 1.

It is clear that, for all the circuits, the CPU time taken
by our technique is less than that of the bitwise-relaxation
method by several orders of magnitude. The bitwise-re-
laxation method requires enormous CPU times, and hence
is impractical for large circuits.

The percentage of X’s obtained by our technique is also
close to the percentage of X’s obtained by the bitwise-re-
laxation method for most of the circuits. The difference
in the percentage of X’s ranges between 1% and 7% (3%
and 11% when compared with the unconstrained bitwise-
relaxation method), while the average difference is about
3% (6% when compared with the unconstrained bitwise-
relaxation method). It should be observed that the bitwise-
relaxation method implicitly chooses the output for detect-
ing a fault that maximizes the number of X’s according to
the order used. However, our technique does not do any op-
timization in selecting the best output for detecting a fault.
This can be investigated in future work.

Table 2 shows the effect of varying the weights of the
regular and fanout-based cost functions on the percentage
of X’s. Note that weightA is for the adjusted regular cost
function and weightB is for the fanout-based cost func-

tion. As can be seen from the table, the use of cost func-
tions results in higher percentage of X’s. Also, it is worth
mentioning here that neither the adjusted regular cost func-
tion nor the fanout-based cost function consistently per-
forms better for all the circuits. However, when both cost
functions are combined, better results are obtained. The ta-
ble, also, shows that a weight of 1 for the adjusted regular
cost function and a weight of 90 for the fanout-based cost
function seems to be a good heuristic as it gives the highest
percentage of X’s on average.

Table3 shows the percentage of X’s obtained using un-
adjusted cost functions with different weights. The results
obtained for most of the circuits are close to those in Ta-
ble 2 except for the circuitss1488ands1494. These two
circuits show inconsistent results as compared to the other
circuits. To see this clearly, let’s consider the percentage
of X’s obtained using the weights{A = 0, B = 1} and
{A = 1, B = 50}. While the weights{A = 1, B = 50}
result in an enormous drop in the percentage of X’s for
these two circuits, they improve the results obtained for
the remaining circuits. This inconsistency occurs because
the regular cost function in these two circuits grows much
faster than the fanout-based cost function. This problem
can be avoided by adjusting the regular cost function to
account for reconverging fanouts in memory-elements as
explained in Example 4.

7 Conclusion
In this paper, we have proposed an efficient test relax-

ation technique for synchronous sequential circuits. Com-
parison between our technique and the bitwise-relaxation
method for a number of ISCAS89 benchmarks showed that
our technique is faster by several orders of magnitude. The
percentage of X’s obtained by our technique is close to
the percentage of X’s obtained by the bitwise-relaxation
method. The difference is about 3% on average. Having
a relaxed test set increases the effectiveness of both com-
pression and compaction techniques. Also, the proposed



Table 2: Cost function effect on the extracted percentage ofX ’s.
A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1

Circuit B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90
s1423 37.882 50.863 57.059 62.431 63.686 63.961 64.093 63.020
s1488 44.448 72.457 56.624 66.218 69.968 71.767 71.571 72.244
s1494 43.515 72.661 57.410 66.687 70.502 71.767 72.098 72.741
s3271 57.361 78.860 82.060 82.017 82.033 81.979 81.892 81.908
s3330 66.548 85.251 84.805 85.446 85.407 85.484 85.506 85.506
s3384 69.247 71.703 77.755 77.799 77.784 77.755 77.755 77.755
s4863 72.114 78.934 83.406 82.846 82.582 82.393 82.038 81.735
s5378 77.788 85.692 82.130 84.110 85.053 85.085 85.094 86.056
Avg. 58.613 74.553 72.656 75.944 77.127 77.459 77.499 77.621

Table 3: Percentage ofX ’s obtained using different weights of the unadjusted cost functions.
A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1

Circuit B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90
s1423 37.882 50.863 60.314 64.157 66.000 66.784 66.902 66.980
s1488 43.515 72.521 45.288 47.714 48.152 48.942 48.622 48.248
s1494 44.448 72.671 47.500 50.050 50.512 51.396 51.084 50.552
s3271 57.361 81.062 82.060 82.315 82.445 82.478 82.494 82.462
s3330 66.548 85.251 85.182 85.169 85.342 85.476 85.536 85.584
s3384 69.247 71.790 77.755 77.799 77.784 77.755 77.755 77.755
s4863 72.114 77.630 83.406 83.287 83.173 83.169 83.126 83.094
s5378 77.788 85.692 84.771 86.075 86.350 86.347 86.269 86.241
AVG. 58.613 74.685 70.785 72.071 72.470 72.793 72.724 72.615

technique can be used for extracting self-synchronizing test
sequences. This will be investigated in future work.
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