An Efficient Test Relaxation Technique for Synchronous Sequential Circuits

Aiman El-Maleh and Khaled Al-Utaibi
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
emails{aimane, alutaifi@ccse.kfupm.edu.sa

Abstract values in the test set will improve the efficiency of these

Testing systems-on-a-chip (SOC) involves applying techniques. Similarly, run-length coding techniques [6]
huge amounts of test data, which is stored in the tester can specify the don’t care values in a way that will reduce
memory and then transferred to the circuit under test test vector aCtiVity (le the number of transitions from 0O to
(CUT) during test application. Therefore, practical tech- 1 and vice versa), which in tern improves the compression
niques, such as test compression and compaction, are re-efficiency.
quired to reduce the amount of test data in order to reduce Test compaction techniques can also benefit from a par-
both the total testing time and the memory requirements tially specified test. For example, when merging two test
for the tester. Relaxing test sequences can improve the effisequences using the overlapping compaction techniques
ciency of both test compression and test compaction. In ad-described in [7], a don’t care value, 'X’, can be merged
dition, the relaxation process can identify self-initializing With any one of the values: '0’, '1’, and 'X'. Therefore,
test sequences for synchronous sequential circuits. In thisincreasing the number of X's in a test set will reduce the
paper, we propose an efficient test relaxation technique for number of conflicts that may occur while merging two test
synchronous sequential circuits that maximizes the numbersequences, and hence, improves the efficiency of the com-
of unspecified bits while maintaining the same fault cover- paction process.

age as the original test set. Test-relaxation can also identify self-initializing test se-
. guences in synchronous sequential circuits. During the
1 Introduction test-relaxation process, if a memory-element is not re-

Rapid advancement in VLSI technology has lead to quired to justify any one of the detected faults, then it can
a new paradigm in designing integrated circuits where be relaxed (i.e setto an'X’). Then, any time frame with all
a system-on-a-chip (SOC) is constructed based on pre-memory-elements set to X’s is considered as the start of a
designed and pre-verified cores such as CPUs, digital sig-new self-initializing test sequence.
nal processors, and RAMs. Testing these cores requires a In this paper, we propose an efficient test relaxation
large a mount of test data which is continuously increasing technique for synchronous sequential circuits that maxi-
with the rapid increase in the complexity of SOC. This has mizes the number of unspecified bits while maintaining the
a direct impact on the total testing time and the memory re- same fault coverage as the original test set. The rest of this
guirements of the testing equipment. Hence, reducing the paper is organized as follows. Section 2 defines the tar-
amount of test data is considered as one of the challenginggeted problem, and summarizes previous work. Section 3
problems in testing. illustrates our idea with examples. Section 4 formally de-

Test compression and compaction techniques arescribes our test relaxation algorithm. Section 5 describes
widely used to reduce the storage and test time by reduc-the selection criteria used by our technique. Experimental
ing the size of the test data. Test compression techniqueg'€sults are given in section 6, and section 7 concludes the
can achieve better results if the test set is composed of tesPaper.
cubes (i.e. if the test set is partially specified). In fact, some o
compression techniques such as, LFSR-reseeding [1, 2],2 Problem Definition
require the test vectors to be partially specified. Even The problem of test relaxation for synchronous sequen-
those techniques which require fully specified test data tial circuits, i.e. extracting a partially specified test set from
can benefit from unspecified bits in the test set. For ex- a fully-specified one, has not been solved effectively in the
ample, variable-to-fixed-length coding [3] and variable-to- literature. This problem, which is targeted in this paper,
variable-length coding [4, 5] are known to perform better can be defined as follow&iven a synchronous sequential
for long runs of 0’s. Hence, assigning O’s to the don’t care circuit and a fully specified test set, generate a partially

Ow>

Figure 2: Circuit of Example 2.
Figure 1: Circuit of Example 1.

two inputs A and B will result in masking the faul'/1.

specified test set that maintains the same fault coverage ' avoid fault masking, the first technique justifies all the
as the fully specified one while maximizing the number of inputs of G1, while the second technique justifies the the
unspecified bits One obvious way to solve this problem assignment ortz1 through an input that is not reachable
is to use a bitwise-relaxation technique, where we test for from the faultC'/1. In this case, either one of the two as-
every bit in the test set whether changing it to an 'X’ re- Signmentsd = 0 or B = 0 can be selected.
duces the fault coverage or not. Obviously, this technique It is clear that the second technique results in more re-
is O(nm) fault simulation runs, where is the width of laxation. However, there are some situations, as will be
one test vector, angh is the number of test vectors. Ob- shown in the next example, where it is possible to justify
viously, this technique is impractical for large circuits. A the required value from a reachable line without masking
partially specified test set can also be obtained using dy-any of the detected faults.
namic ATPG compaction. In dynamic compaction, every Example 2: Consider the circuit shown in Figure 2 under
test vector is processed immediately after its generation inthe fault B/1. The assignment® = 0 andG1 = 0 are
order to specify unspecified primary inputs (PIs). This fea- required to excite and propagate this fault to the primary-
ture can be disabled to obtain a compact and relaxed testoutput. According to the second technique, the assignment
set. However, this technique does not solve the problem of G1 = 0 can't be justified throughB because this input
relaxing an already existing test set. In addition, this tech- is reachable from the faulB/1. However, if we relax4
nique cannot benefit from random test pattern generation,(4 = X), we find that the fault is still detected (i.e. the
because it is fault oriented. fault has not been masked). The reason is that the faulty
Recently, two test relaxation techniques for combi- value ofB (i.e. 1) is considered as a controlling value for
national and full-scan sequential circuits were proposed the gate=2. Thus, the fauli3 /1 will propagate to primary-
in [8, 9]. The main idea of both techniques is to determine output regardless of the faulty-value propagating through
logic values in the fully-specified test set that are necessaryG1. This limitation can be avoided if we consider both
to cover (i.e. detect) all faults which are detectable by this fault-free and faulty values of the circuit when justifying a
test set. Unnecessary logic values are set to X’s. However,given fault. In Figure 2, the circuit lines have the following
as far as synchronous sequential circuits are concerned, theombinations of fault-free/faulty valuest = 0/0, B =
only existing solution to the problem of relaxing a given 0/1, G1 = 0/0 andG2 = 0/1. In order to justify the

test set is the bitwise-relaxation method. fault B/1, itis enough to justify the fault-free/faulty values
. on the primary-outpuz2. So, the assignmeri2 = 0/1
3 lllustrative Examples can be satisfied by the assignmefts= 0/1 andG1 =

The techniques proposed in [8, 9] justify detected faults 0/X. Notice that the faulty-value off1 is not required
based on logical values only, which may result in fault (i.e. setto 'X’). Hence, either one of the two inputsor
masking. Each one of these techniques handles this prob-B can satisfy this assignment. SinBehas been selected
lem in a different manner. In the first technique, when a to satisfy the assignment on the primary-output, it can be
fault effect is propagated to at least one input of a gate, selected as well to satisfy the assignmenth In this
then all inputs of this gate are justified. The second tech- case, we can relaA.
nique, on the other hand, uses some rules based on fault- Qur proposed technique extends the fault-free/faulty
reachability analysis to avoid fault masking. The two ap- values justification to handle synchronous sequential cir-

proaches are illustrated in the following example. cuits. A synchronous sequential circuit can be represented
Example 1: Consider the circuit shown in Figure 1 un- as a linear iterative array of combinational cells. Each cell
der the faultC/1. The assignment§’ = 0 andG1 = 0 represents one time frame in which the current states of the

are necessary to excite this fault and propagate it to theflip-flops become pseudo-inputs;), and the next states
primary-output. The assignme6tl = 0 can be satisfied become pseudo-output¥;j. So, we need to fault simu-
by any one of the assignments= 0, B = 0 or C' = 0. late the circuit under the given test set to determine faults
However, selecting the assignmént= 0 and relaxing the detected in every time frame. Then, we can justify fault-

Rt g1 TimeFramei and B = 1/1. Since the fault-free/faulty values of both
! inputs are required, none of these inputs can be relaxed in
this time frame.

4 Proposed Technique
Before describing the proposed technique, we give the
following definitions.

Definition 1 The good value of a gate g, denoted by Good-
Value(g), is the value of the gate under the fault-free ma-
chine.

Definition 2 The faulty value of a gate g, denoted by
FaultyValue(g), is the value of the gate under the faulty
machine.

Figure 3: Circuit of Example 3.

Definition 3 The justify value of a gate g, denoted by Jus-
tifyValue(g), is the fault-free/faulty assignment that needs

. to be justified by g.
free/faulty values necessary to detected these faults starting

from the last time frame backwards. The jUStification pro- Due to the nature of Sequentia] circuits (|e feed-

cess is performed frame by frame. In every time frame pack from memory-elements), a fault excited in one time
7, all fault-free/faulty values necessary to detect a neWIy frame m|gh[propagate through several time farms before
detected fault are justified starting from primary-outputs it gets detected. Hence, several time frames need to be
towards primary-inputs and/or memory-elements. If the traced back to justify such faults. Therefore, we need to
fault-free/faulty value of a primary-input is required to jus- store enough information about fault propagation, detec-
tify any one of the newly detected faults, then the value of tjon and justification in order to perform the justification
this primary-input should be specified in the test set. On process frame by frame. Five lists are used to store the the
the other hand, required values on the memory-elementsrequired information: POJustificationList PPOJustifica-

need to be justified when the next time frame, 1, is pro- - tionList, MEJustificationList FaultPropagationList and
cessed. The general behavior of the proposed technique istventList The purpose of each one of these four lists is
illustrated by the following example. explained below.

Example 3: Consider the iterative-array-model shown in The purpose of thBOJustificationLists to store newly
Figure 3. This model represents two time frames of a syn- detected faults in every time frame. These faults will be
chronous sequential circuit under two test vecteys: 01 justified backwards starting from the time frames where
andt; 1 = 00. Assume that the only newly detected fault they first get detected. During fault simulation, if a fault
is A/1, i.e., other faults are either previously detected by f propagates to one or more memory-elements, then these
earlier test vectors, or not part of the fault list. i) the memory-elements and their faulty values are added to the
fault A/1 is excited and propagated to the memory element MEPropagationList The PPOJustificationLisis used to

G5, but is not yet detected. I+, the faultA/1 is prop- store faults that can’'t be completely justified during a cer-
agated to the primary-outputj4, where it gets detected. tain time frame. Notice that if one or more memory-
So, in order to justify this fault, it is enough to justify the elements are required to justify a faylduring some time
fault-free/faulty values on the primary-outp@4, in ¢, 1. frame i, then f can’'t be completely justified during this
The assignmentr4 = 1/0 can be satisfied by the two as- time frame. Hence, these memory-elements will be added
signments72 = X/0 andG3 = 1/0. Next, we justify the to MEJustificationLidtf], and the justification off will
assignmen@2 = X/0. This can be satisfied by the assign- continue during time frameé — 1. The EventListkeeps
mentG1 = X/0, which in turn can be satisfied by either track of the gates that need to be justified for a certain fault.
one of the two inputsd or B (i.e one of these inputs can Gates are inserted in event list according to their levels in
be relaxed). The assignmef8 = 1/0, on the other hand, the circuit.

needs to be justified through5. SinceGb5 is a memory- Algorithm 1 shows an outline of the proposed test re-
element, its fault-free/faulty values should be justified in laxation technique which consists of three phases. The first
the previous time frame). Therefore, we need to justify phase initializes the five lists. THeelaxedTestSeas the

the faulty-freeffaulty values af'5 in time framet;. These name indicates, represents the relaxed test set. Initially,
values can be satisfied by the two assignmehts: 0/1 all the bits in this set are X’s. However, more bits will be

specified throughout the relaxation process in order to jus-

tify the detected faults.

Fault simulation is performed in the second phase to
identify newly detected faults. These faults are stored in
POJustificationLidt] for every test vectoi. During fault
simulation, if a faultf propagates to one or more memory-

elements, then these memory-elements together with their

faulty values are added teaultPropagationLigtf]. The
information in this list will be used to compute faulty val-
ues of the circuit during the justification phase. It is impor-
tant to point out here that we need to store the logical val-
ues of the memory-elements for all the time frames. This
will enable the third phase to perform logic simulation in a
certain time frame independent of the other time frames.

The third phase starts from the last time frame down to
the first one. In every time framé,the algorithm performs
the following. First, it logic simulates the circuit under
the test vectoi to determine the good value of every gate.
Then, it checkPPOJustificationLigt] for any fault that
has not been completely justified in time frame 1. Un-
justified faults are removed from the list and justified one
by one. Next, it check®OJustificationLidi] for newly
detected faults and justifies them. Justifying a fafijtin-
volves two operations: (1) Computing the faulty-values of
the circuit under the faulf and (2) Backward justification.
These operations are described bellow.

Local fault simulation is used to compute the faulty-
values of the circuit under a given fauft The process
starts by injecting the faulf at its corresponding line in
the circuit. Then, it sets the faulty-values of the memory-

elements according to the faulty-values propagating from

time frame: — 1. Next, the fault effects on the faulty-

line and memory-elements are forward propagated to de-

termine the faulty-values of all gates in the circuit.
Algorithm 2 shows the justification process of a fafilt
in time framet. In this algorithm, the event list is pro-
cessed level by level starting from the maximum level.
In each level, the the required values on a gaté.e.
JustifyValueg)) are satisfied according to the following

procedure. First, the algorithm determines the correspond-

ing values {1/v5) on the input(s) of the gate For exam-
ple, if the required values on the output of iamerterare

0/1, then the corresponding requirements on the input of

this gate ard /0. The next step is to justify, /vy through
the input(s) ofg as follows.

If g is a primary-input Pl), then we need to specify its
value whenever the required fault-free/faulty value is not
X'

A requirement on a memory-elememKF) can't be
justified in the current time framei)(Therefore, the
memory-element is added tdEJustificationLigtf], and
the fault f is added to the justification list of the next time

frame ¢ — 1).

Algorithm 1 Main Algorithm
(*Initialization phase*)
for every fault, f, in the fault list of the given circuitio
Let FaultPropagationLigtf] < ¢
Let MEJustificationLigtf] « ¢
for every test vector do
Let POJustificationLigt] < ¢
Let PPOJustificationLigt] < ¢
for every level,, of the given circuido
Let EventLisfl] — ¢
for every primary input jdo
Let RelaxedTestSe}[5] — "X
(*Fault simulation phase*)
for i — 1ton do
Fault simulate the circuit under test vector
for every fault, f, newly detected in do
Add f to POJustificationLidt]
for every fault f propagating to time framé+ 1 do
Add all memory-elements reachable from the fault
f together with their faulty values tBaultPropaga-
tionList f]
(*Fault justification phase*)
for ¢ <— n downto 1 do
Logic simulate the circuit under the test vector
while PPOJustificationLigt] £ ¢ do
Removef from PPQOJustificationLigt]
Compute faulty values of the circuit under the fault
f
for every memory-element, d, whose fault-
free/faulty values are required to justiff/ in time
framei + 1 do
Removed from MEJustificationLidtf]
Let 5 be the input of]
Add j to EventLisflevely)]
Justify(f, 7)
while POJustificationLidt] # ¢ do
Removef from POJustificationLidievel;)]
Compute faulty values of the circuit under the fault
f
Let 7 be a primary-output at which the fauftgets
detected
Add j to EventListlevely)]

Justify(f, 7)

If g is an inverter NOT) or a buffer BUF), then its input
is required to justifyv; /vo. Hence, the input of is added
to the proper level in the event list. If the fault-free/faulty
value of anXORor XNORgate is required, then the fault-
free/faulty values on every input of the gate are required as
well.

If g is anAND, OR, NAND or NORgate, then we have
four different possibilities. First, both; andvy are con-
trolling values ofg. In this case, the algorithm searches for
an input that satisfies both values and adds it to the event

Algorithm 2 Justify(f, 1)

for every level, [, of the circuitdo
while EventLisfl]# ¢ do
Remove gatg from theEventLisf]
Let (v1,v2)«JustifyValuég)
if g is (NOT|NAND|NOR) then
Let (’U1,’U2) — (171,172)
caseg is
Q) PI:
if v1 X’ then
Let RelaxedTestSe} g]«— v1
else ifuy X’ then
Let RelaxedTestSel[g]«— v2
(2) DFF:
Add f to PPOJustificationLigt — 1]
Add g to MEJustificationLidtf]
(3) BUF|NOT:
Let j be the input ofy
Let JustifyValugj)«—(v1, v2)
Add j to EventLisflevel(;)]
(4) XOR|XNOR:
for every input, j, of g do
Letv; < GoodValuéj)
Let vy « FaultyValugy)
Let Justifyvalugj) <« (v1, v2)
Add j to EventLisflevely)]
(5) AND|OR|NAND|NOR:
if v1 and vy are controlling values ofy
then
Find an input, of g that satisfyv,
Find an inputk, of g that satisfyv,
if j=k then
Let Justifyvalué€j)«(v1,v2)
else
Let JustifyValuéj)«—(v1,X")
Let JustifyValuék)«—('X’, v2)
Add j to EventLisflevely)]
Add k to EventLisflevelk)]
else ifv; is a controlling value ofy then
Find an input, of g that satisfyv;
Let JustifyValu€j)«(v1,v2)
Add j to EventLisflevely)]
for every inputk of g such thak # j
do
Let JustifyValuék)«—('X’, v2)
Add k to EventLisflevelk)]
else ifvs is a controlling value of; then
Find an input, of g that satisfyv,
Let JustifyValu€j)«—(v1,v2)
Add j to EventLisflevely)]
for every inputk of g such thak # j
do
Let JustifyValugk)«(v1,’X")
Add k to EventLisflevelk)]

else
for every input, j, of g do
Let JustifyValu€j)«(v1,v2)
Add : to EventLisfleve(5)]

list. If v1/vy can't be satisfied by a single input, then it
will be justified through two different inputs. In case only
v1 is a controlling value ofy, the algorithm will find an
input j with a fault-free value that satisfies. Sincevs is

a non-controlling value (or an 'X’), then all inputs gfare
required to justify this value. Therefore, inplis added to
the event list to justify the value; /vs, while other inputs
are added to the event list to justify the valuex/In the
third case, onlyv, is controlling value ofg. This can be
handled exactly as done in the previous case exceptihat
is justified through one input, while, is justified through
all the inputs ofg. Finally, if neitherv; nor v, is a con-
trolling value ofg, then all the inputs of are required to
justify the valuev, /vo. Hence, all inputs of are added to
the event list.

5 Selection Criteria

When justifying a controlling value through the inputs
of a given gate, there could be more than one choice. In
this case the priority is given to the input that is already se-
lected to justify other gates. Otherwise, cost functions are
used to guide the selection. The cost functions give a rel-
ative measure on the number of primary inputs required to
justify a given value. Hence, they can guide the relaxation
procedure to justify the required values with the smallest
number of assignments on the primary inputs.

The cost functions proposed in [9] combine tegu-
lar recursive controllability cost functions [10] with new
cost functions callethnout-basedost functions. The reg-
ular cost functions are computed as follows. For every gate
g, we compute two cost functiors, .40 (g) andCreg1(g).
For example, ifg is an AND gate withi inputs, then the
cost functions are computed as:

C’r‘egO (g) = miin C’regO(i)

C'reg1(g) = Z Cregl(i)

These costs functions are computed for other gates in a
similar manner. The fanout-based cost functions can be
computed for an AND gate as follows. Letbe an AND
gate with: inputs. LetF'(g) denotes the number of fanout
branches ofy. Then, the fanout-based cost functions are
computed as:

min; Cyan0(4)

Cramnl®) =)
Cfanl(g) = W

The regular cost functions are accurate for fanout-free cir-
cuits. However, when fanouts exist, regular cost functions
do not take advantage of the fact that a stem can justify

Time Fram 1 ure 4. The controllability values of each gate are shown as

(2,3/2)

a tuple of two values. The first value represents the regu-
lar cost, while the second value represents the fanout-based
cost. Let the regular and fanout-based costs of all primary
inputs equal to 1. Assume that the regular and fanout-based
costs of the memory-element in the first time frame equal
to 1 and0.5 respectively. Then, in the first time frame,

Tire Frame 2 the regular and fanout-based costs@B(= 1) are4 and
679 1.5 respectively. After 10 time frames, the regular cost of
(G3 = 1) becomes3070, while the fanout-based cost be-
comes2T ~ 2.

The huge difference between the two costs in the previ-
ous example is due to the reconverging fanout branches of
G5. Therefore, the regular cost of a memory-element with
reconverging fanout branches should be adjusted to reduce
the difference between the two costs. This can be done
as follows. Letg be a memeory-element with fanout
branches. Assume that out of then fanout branches re-
converge at some gate in the circuit, then the regular cost
of every one of these branches equals to the regular cost
of ¢ divided bym. In Figure 4, both branches of the flip-
flop G5 reconverge at the gat&@3. Therefore, the regular
cost of each branch is computed as the regular cost of the
memory-element divided bg. After adjusting the regu-
lar costs on the fanout branches@4, the regular cost of
(G3 = 1) becomes} in the first time frame andl1 in the

Figure 5: Circuit of Example 5. 10th time frame.
The cost functions described so far compute the con-

trollability values of a gate assuming general values on the
several required values. In general, the fanout-based cosiate inputs. Controllability values computed based on this
functions provide better selection criterion than the regu- assumption are less accurate than those computed based on
lar fanout cost functions. However, there are some casesthe actual logical values. This is illustrated in the following
where the regular fanout cost functions can perform better example.
than the fanout-based cost functions [9]. To take advantageExample 5: Consider the circuit shown in Figure 5. If
of both cost functions, a weighted sum cost function of the we compute cost of 1({;) for each gate assuming gen-

two cost functions was proposed in [9]. The combined cost eral values on the input lines, then we get the following

functions are defined as follows: values: C1(G1) = 3, C1(G2) = 1, C1(G3) = 2, and
C1(G4) = 1. These values suggest to justify the assign-
Co(g) = A - Crego(9) + B - Crano(9) mentG4 = 1 throughG2 which results in three assign-
Ci(g) = A Cregi(g) + B - Crani(9) ments on the primary inputs. Now, if we compute the con-

trollability values based on the actual logical values, then
In synchronous sequential circuits, the controllability e get the following valuesCy (G1) = 3, C1(G2) = 3,
values of the circuit in one time frame depend on the con- ¢, (G3) = 2, andC;(G4) = 2. In this caseG3 = 1

trollability values computed in the current frame as well as || be selected to justify the assignme@tt = 1. This

the values Computed in the pl’eviOUS frames. Therefore, theassignment requires Only two assignments on the primary
controllability values should be computed in an iterative jnputs.

manner starting from the first time frame. However, the it- |5 our work, cost functions are computed based on the
erative computation of the controllability values may cause zctyal values.

the regular cost to grow much faster than the fanout-based

cost such that the effect of the second cost in the weighted® Experimental Results

sum becomes negligible. This is illustrated in the following In order to demonstrate the effectiveness of our pro-
example. posed test relaxation technique, we have performed some
Example 4: Consider the iterative model shown in Fig- experiments on a number of the ISCAS89 benchmark cir-

Table 1: Test relaxation comparison between the proposed technique and the bitwise-relaxation method.

Percentage ofX'’s CPU Time (seconds)
Bitwise- Proposed Bitwise- Proposed
Circuit Relaxation Technique Diff. Relaxation | Technique
s1423 | 69.922/74.392] 63.020 6.902/11.37 943 1.750
s1488 | 76.154/81.090, 72.244 3.910/8.846 12553 2.417
s1494 | 76.295/82.962 72.741 3.554/10.22 13146 3.100
s3271 | 83.894/85.527| 81.908 1.986/3.619 87726 8.033
s3330 | 87.738/90.082] 85.506 2.232/4.576| 115585 5.633
s3384 | 78.579/81.655| 77.755 0.824/3.900 16549 2.533
s4863 | 84.832/87.542| 81.735 3.097/5.807| 162894 7.800
s5378 | 87.738/88.969, 86.056 1.682/2.913| 218137 20.35
AVG. 80.644/84.027| 77.621 3.023/6.406

cuits. The experiments were run on a SUN Ultra60 (Ultra- tion. As can be seen from the table, the use of cost func-
Sparc Il 450MHz) with a RAM of 512MB. We have used tions results in higher percentage of X’s. Also, it is worth
test sets generated by HITEC[11]. In addition to that, we mentioning here that neither the adjusted regular cost func-
have used the fault simulator HOPE[12] for fault simula- tion nor the fanout-based cost function consistently per-
tion purposes. forms better for all the circuits. However, when both cost
In Table 1, we compare the proposed test relaxation functions are combined, better results are obtained. The ta-
technique with the bitwise-relaxation method. The two ble, also, shows that a weight of 1 for the adjusted regular
techniques are compared in terms of the percentage ofcost function and a weight of 90 for the fanout-based cost
X's extracted, and the CPU time taken for relaxation. It function seems to be a good heuristic as it gives the highest
is important to point out here that in order to have a fair percentage of X’s on average.
comparison between our technique and the bitwise-relaxa- Table3 shows the percentage of X's obtained using un-
tion method, we have constrained the bitwise-relaxation adjusted cost functions with different weights. The results
method such that all faults detected at a particular time obtained for most of the circuits are close to those in Ta-
frame remain detected in the same time frame after relax- ble 2 except for the circuits1488ands1494 These two
ation. However, the results obtained by both constrained circuits show inconsistent results as compared to the other
and unconstrained bitwise-relaxation are shown in Table 1. circuits. To see this clearly, let's consider the percentage
It is clear that, for all the circuits, the CPU time taken 0f X’s obtained using the weightsA = 0, B = 1} and
by our technique is less than that of the bitwise-relaxation {4 = 1, B = 50}. While the weight{A = 1, B = 50}
method by several orders of magnitude. The bitwise-re- result in an enormous drop in the percentage of X’s for
laxation method requires enormous CPU times, and hencethese two circuits, they improve the results obtained for
is impractical for large circuits. the remaining circuits. This inconsistency occurs because
The percentage of X’s Obtained by our technique is aISO the regular cost function in these two circuits gI‘OWS much
close to the percentage of X’s obtained by the bitwise-re- faster than the fanout-based cost function. This problem
laxation method for most of the circuits. The difference can be avoided by adjusting the regular cost function to
in the percentage of X’s ranges between 1% and 7% (3% account for reconverging fanouts in memory-elements as
and 11% when compared with the unconstrained bitwise- €xplained in Example 4.
relaxation method), while the average difference is about)
3% (6% when compared with the unconstrained bitwise- 7 Conclusion
relaxation method). It should be observed that the bitwise- |n this paper, we have proposed an efficient test relax-
relaxation method implicitly chooses the output for detect- ation technique for synchronous sequential circuits. Com-
ing a fault that maximizes the number of X's according to parison between our technique and the bitwise-relaxation
the order used. However, our technique does not do any op-method for a number of ISCAS89 benchmarks showed that
timization in selecting the best output for detecting a fault. our technique is faster by several orders of magnitude. The
This can be investigated in future work. percentage of X's obtained by our technique is close to
Table 2 shows the effect of varying the weights of the the percentage of X's obtained by the bitwise-relaxation
regular and fanout-based cost functions on the percentagenethod. The difference is about 3% on average. Having
of X's. Note that weightA is for the adjusted regular cost a relaxed test set increases the effectiveness of both com-
function and weightB is for the fanout-based cost func- pression and compaction techniques. Also, the proposed

Table 2: Cost function effect on the extracted percentage’'sf

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1

Circuit B=0 B=1 B=0 B=10 | B=30 | B=50 | B=70 | B=90
s1423 | 37.882| 50.863 | 57.059 | 62.431| 63.686 | 63.961 | 64.093 | 63.020
s1488 | 44.448 | 72.457 | 56.624 | 66.218 | 69.968 | 71.767 | 71.571| 72.244
s1494 | 43.515| 72.661| 57.410| 66.687 | 70.502 | 71.767 | 72.098 | 72.741
s3271 | 57.361| 78.860 | 82.060 | 82.017 | 82.033 | 81.979| 81.892 | 81.908
s3330 | 66.548| 85.251 | 84.805 | 85.446| 85.407 | 85.484 | 85.506 | 85.506
s3384 | 69.247 | 71.703 | 77.755| 77.799 | 77.784 | 77.755| 77.755| 77.755
s4863 | 72.114| 78.934 | 83.406 | 82.846| 82.582 | 82.393 | 82.038 | 81.735
s5378 | 77.788| 85.692 | 82.130| 84.110| 85.053 | 85.085| 85.094 | 86.056
Avg. 58.613 | 74.553 | 72.656 | 75.944 | 77.127| 77.459 | 77.499 | 77.621

Table 3: Percentage df’s obtained using different weights of the unadjusted cost functions.

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
Circuit B=0 B=1 B=0 B=10 | B=30 | B=50 | B=70 | B=90
s1423 | 37.882| 50.863 | 60.314 | 64.157 | 66.000 | 66.784 | 66.902 | 66.980
s1488 | 43.515| 72.521 | 45.288 | 47.714 | 48.152 | 48.942 | 48.622 | 48.248
s1494 | 44.448| 72.671| 47.500 | 50.050| 50.512 | 51.396 | 51.084 | 50.552
s3271 | 57.361| 81.062 | 82.060 | 82.315| 82.445| 82.478 | 82.494 | 82.462
s3330 | 66.548 | 85.251 | 85.182 | 85.169| 85.342 | 85.476| 85.536 | 85.584
§3384 | 69.247| 71.790| 77.755| 77.799 | 77.784 | 77.755| 77.755| 77.755
s4863 | 72.114| 77.630| 83.406 | 83.287| 83.173| 83.169 | 83.126 | 83.094
s5378 | 77.788 | 85.692| 84.771| 86.075| 86.350 | 86.347 | 86.269 | 86.241
AVG. 58.613 | 74.685| 70.785| 72.071| 72.470| 72.793 | 72.724 | 72.615

technique can be used for extracting self-synchronizing test [6] T. Yamaguchi, M. Tilgner, M. Ishida and D. S. Ha, “An
sequences. This will be investigated in future work.

Acknowledgment

The authors would like to thank King Fahd University of
Petroleum and Minerals for support.

References

(1]

(2]

(3]

(4]

(5]

B. Koenemann, “LFSR-Coded Test Patterns for Scan De-
signs”, inProc. European Test Conferend®91, pp. 237—
242.

S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Gen-
eration of Vector Patterns Through Reseeding of Multiple-
Polynomial Feedback Shift Registers”, IBEE Interna-
tional Test Conferen¢c&ep. 1992, pp. 120-129.

A.Jas and N. Touba, “Test Vector Decompression via Cycli-
cal Scan Chains and Its Application to Testing Core-Based
Designs”, inProc. International Test Conferenc&998, pp.
458-464.

A. Chandra and K. Chakrabarty, “Test Data Compression
for System-On-a-Chip using Golomb Codes”, Rroc. of
IEEE VLSI Test Symposiy2000, pp. 113-120.

A. Chandra and K. Chakrabarty, “Frequency-directed run-
length (FDR) codes with application to system-on-a-chip
test data compression ", tBth IEEE Proceedings on. VTS
2001, pp. 42-47.

[8] S. Kajihara and K. Miyase,

(10]

(11]

(12]

Efficient Method for Compressing Test Data”, Bmoc. In-
ternational Test Conferencdlov. 1997, pp. 79-88.

[7] R. Roy, T. Niermann, J. Patel, J. Abraham, and R. Saleh,

“Compaction of ATPG-Generated Test Sequences for Se-
quential Circuits”, Nov. 1988, pp. 382—385.

“On Identifying Don't Care
Inputs of Test Patterns for Combinational Circuits”Piroc.
IEEE ICCAD, Nov. 2001, pp. 364-369.

[9] A.El-Maleh and A. Al-Suwaiyan, “An Efficient Test Relax-

ation Technique for Combinational & Full-Scan Sequential
Circuits”, in Proc. IEEE VLSI Test Symposiu2002, pp.
53-59.

M. Abramovici, M. Breuer and A. Friedmamigital System
Testing and Testable DesigiEEE Press, 1990.

Thomas M. Niermann and Janak H. Patel, “HITEC: A test
generation package for sequential circuits”, Rroc. of
the European Conference on Design Automation (EDAC)
1991, pp. 214-218.

H. K. Lee and D. S. Ha, “HOPE: An Effecient Paral-
lel Fault Simulator for Synchronous Sequential Circuits”,
IEEE Trans. on Computer Aided Desijgml. 15, no. 9, pp.
1048-1058, Sep. 1996.

