COE 405, Term 122
 Design & Modeling of Digital Systems
HW# 5 Solution
Due date: Monday, April 15
Q.1. It is required to design an unsigned 4-bit sequential multiplier. The multiplier is assumed to have an 8-bit register to hold the result, a 4-bit register to hold the multiplicand and a 3-bit counter. When reset is 1, the multiplicand, the product and counter registers are reset. When operation is started, the multiplicand register is loaded with word1 while the least significant 4-bits of the product are loaded with word2. The block diagram and the ASMD chart of the sequential multiplier are given below. Ready signals that the unit is ready to accept a command to multiply. If word1 or word2 are 0, Empty is set to 1. Flush loads the product with 0. C_is_mx is set when the counter is equal to 3. P0 is the least significant bit of the product i.e. product[0].
[image: image1.jpg]reset

multiplicand <= word1
product[L_word — 1: 0] <= word?2
word2

Empty word]

c_is_mx

PO

{ Load_words

Flush
Add Shift

Control_unit Shift Datapath_unit

|1

clock reset product

Start >

Ready <—]

_max,

product <= {product|2*L_word: L_word) +
multiplicand, product[L_word — 1: 0]} >> 1
counter <= counter + 1

product <= product >> 1
counter <= counter + 1

Note:

c_is_max denotes the condition that counter = L_word — 1
pO0 denotes product|[0]

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

(i) Write a Verilog model to model the data-path.

module Multiplier_DPU #(parameter word_size=4)(

output [2*word_size-1: 0] product,

output Empty, c_is_mx, p0,

input [word_size-1:0] word1, word2,

input Load_words,Flush, Add_shift, Shift, Ready, clock, reset

);

reg [word_size-1:0] multiplicand;

reg [2*word_size:0] tproduct;

reg [1:0] counter;

assign product = tproduct[2*word_size-1:0];

assign p0 = tproduct[0];

assign w1z = ~| word1;

assign w2z = ~| word2;

assign Empty = w1z | w2z;

assign c_is_mx = & counter;

always @ (posedge clock)

 if (reset == 1'b1) counter <= 0;

 else if (Shift || Add_shift) counter <= counter + 1;

always @ (posedge clock)

 if (reset || Flush) tproduct <= 0;

 else if (Load_words) begin

 tproduct[word_size-1:0] <= word2;

 end

 else if (Shift) tproduct <= tproduct >> 1;

 else if (Add_shift)

 tproduct <= {tproduct[2*word_size:word_size]+{1'b0,multiplicand}, product[word_size-1:0]} >>1;

always @ (posedge clock)

 if (Load_words) multiplicand <= word1;

endmodule

(ii) Write a Verilog model to model the control unit based on the ASMD chart i.e. not based on equations.

module Multiplier_CU (output reg Load_words,

Flush, Add_shift, Shift, Ready,

input Start, p0, c_is_mx, Empty, clock, reset);

parameter S_idle = 1'b0, S_running=1'b1;

reg state, next_state;

 always @(posedge clock)

 if (reset) state <= S_idle;

 else state <= next_state;

 always @(state, Start, p0, c_is_mx, Empty) begin

 Load_words=0; Flush=0; Add_shift=0; Shift=0; Ready=0;

 case (state)

 S_idle: begin

 Ready=1;

 if (Start) begin

 if (Empty) begin

 next_state=S_idle; Flush=1; end

 else begin

 next_state=S_running; Load_words=1; end

 end

 else next_state=S_idle;

 end

 S_running:

if (p0) begin

 Add_shift=1;

 if (c_is_mx) next_state=S_idle;

 else next_state=S_running;

end

else begin

 Shift=1;

 if (c_is_mx) next_state=S_idle;

 else next_state=S_running;

 end

 endcase

 end

endmodule
(iii) Write a Verilog test bench to test the correctness of a 4-bit sequential multiplier.
module Multiplier #(parameter word_size=4)(

output [2*word_size-1: 0] product,

output Ready,

input [word_size-1:0] word1, word2,

input Start, clock, reset

);

Multiplier_CU M1 (Load_words,Flush, Add_shift, Shift, Ready,

Start, p0, c_is_mx, Empty, clock, reset);

Multiplier_DPU M2 (product, Empty, c_is_mx, p0, word1, word2,

Load_words, Flush, Add_shift, Shift, Ready, clock, reset);

endmodule
module t_Multiplier ();

wire [7: 0] product;

wire Ready;

reg [3:0] word1, word2;

reg Start, clock, reset;

Multiplier M1 (product, Ready, word1, word2, Start, clock, reset);

initial #220 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial fork

#10 word1 = 'd5;

#10 word2 = 'd8;

#10 reset = 0; // Power-up reset

#20 reset = 1;

#40 reset = 0;

#50 Start = 1;

#60 Start = 0;

#130 reset = 1;

#140 reset = 0;

#150 word1 = 'd8;

#150 word2 = 'd10;

#150 Start = 1;

#160 Start = 0;

join

endmodule
[image: image2.png]P R 1 o 0])5 B8 33 J80]

(iv) Implement the 4-bit sequential multiplier using FPGA and demonstrate its correctness.

Input = 3 Output=9
[image: image3.png]

Input = 5 Output=25
[image: image4.png]

