COE 405

Design & Modeling of Digital Systems

Course Project

Simple RISC Computer

Due on: Sunday Jan. 5, 2004
In this project, you are to model a simple RISC processor with 32 general purpose, 32-bit registers, plus a program counter (PC) and an instruction register (IR). Although the main memory is organized as an array of bytes, only 32-bit words can be fetched from or stored into main memory. A word at address A is defined as the 4 bytes at that address and the succeeding three addresses. The byte at the lowest address contains the most significant 8-bits, the byte at the next address contains the next most significant 8 bits, and so on. The programmer’s model of the SRC machine is shown below. It has 23 instructions in 8 different formats:
· Load and Store instructions: There are four load instructions-- ld, ldr, la, and lar—and two store instructions– st and str.
· Branch instructions: There are two branch instructions, br and brl, that allow unconditional and conditional branches to an address contained in a specified register. The conditional branches test a register’s contents and branch when the register contents are
[image: image1.wmf]0

,

0

,

0

,

0

<

³

¹

=

. The instruction brl stores the PC in a specified register.

· Arithmetic instructions: There are four arithmetic instructions: add, addi, sub, and neg. All except addi take two register operands and place the result in a register. The instruction addi adds an immediate constant contained in the c2 field to a register and places the result in a register.
· Logical and shift instructions: There are nine logical and shift instructions: and, andi, or, ori, not, shr, sha, shl, and shc. The shift instructions can shift by a count contained as a constant in the instruction or by a count in a register.

· Miscellaneous instructions: There are two zero-operand instructions—nop and stop.

All instructions are 32 bits long. Because the SRC is of the load-store class of machine, operands in memory can be accessed only through load and store instructions. All instructions have a 5-bit opcode field, allowing 32 different instructions. Here we use only 23 of these instructions. The ra, rb, and rc fields are 5-bit fields and specify one of the 32 general purpose registers. A more detailed description of the processor is attached in the Appendix.

[image: image2.png]The SRC CPU Main memory

31 0

RO| 32 32-bit
general

purpose
registers

R31

e[~]
R]

Instruction formats

12726222117 16

1.1d, st, la, 3
addi, andi, ori m L

j=

Q
N

o

31 2726 22 21

2.1dr, str, lar E'.-I

31 2726222117 16 0

dnegnot [Oplra] \Jrc] unused |
unused

31 2726222117 16 1211 2 0

4. br [Op] Jrb [rc] (c3) unused Cond
unused

31 2726222117 16 1211 2 0
5. brl [Op[ra [ro [rc] (¢3) unused :Cond
6 add. sub, B 272622 2117 16 1211 0
'Z O’su © [Oplralm rc] unused |
and, or

o

31 2726222117 4

7a [Op [ra [b | (c8) unused 1Count

7. shr, shra
shl, she 31 2726222117 16 12

4
70 [OpJra [tb [rc] (c3) unused 0000

o

i

w
pot
N
~
M)
[
=

8. nop, stop E:I

R[7] means contents
of register 7

M[32] means contents
of memory location 32

Example
Id 3, A (R[3] = M{A])
1d r3, 4(r5) (R[3] = M[R[5] + 4])

addi r2, r4, 1 (R[2] = R[4] +1)

Idrr5, 8 (R[5] = M[PC + 8])
lar 16, 45 (R{6] = PC + 45)
neg r7, r9 (R[7] = - R[9])
brzr r4, r0

(branch to R[4] if R[0] == 0)

brinz r6, r4, r0
(R[6] = PC; branch to R[4] if R[Q] # 0)

add 10, r2, r4 (R[0] = R[2] + R[4])

shrr0, r1, 4
(R[0] = R[1] shifted right by 4 bits

shi r2, r4, 16
(R[2] = R[4] shifted left by count in R[6])

stop

(i) Write a behavioral model for the SRC machine modeling all its specified instruction set.

(ii) Write a behavioral model for the memory interfaced with the CPU. Assume that the CPU-Memory interface contains the following control signals: Read, Write, and MFC (Memory Function Complete). Both the CPU and Memory are synchronized by the same clock. When a Read or Write request is initiated by the CPU, it remains 1 until the memory indicates that it finished the requested operation by setting the MFC signal to 1. Assume that the MFC signal will remain 1 for 1 clock cycle. Also, assume that the MFC signal changes based on the falling edge of the clock while the CPU signals change on the rising edge of the clock.

(iii) Write a test bench to test your behavioral model of the SRC machine. The test bench should contain Memory, which contains an assembly program for the CPU to execute.

(iv) Partition your CPU into a data path unit and a control unit. Write a register transfer model for the designed CPU. The data path should be described structurally while the components in the data path, i.e. ALU, registers can be described in a behavioral or dataflow style. The control unit is to be modeled as a finite state machine, which can be modeled in a behavioral or dataflow style.

(v) In the modeling of the data path use the three-bus design given in the Appendix.
(vi) Use std_logic and std_logic_vector for all signals in the design.

(vii) Include all functions, procedures, and user-defined types and constants in a package to be used by the CPU.

(viii) For each entity that you model, test it and include simulation output indicating that it is working properly. The data-path should be tested before it is connected to the control unit. This way you can detect problems in the design and modeling early.

(ix) Assume that the CPU-Memory interface contains the following control signals: Read, Write, and MFC (Memory Function Complete). Both the CPU and Memory are synchronized by the same clock. When a Read or Write request is initiated by the CPU, it remains 1 until the memory indicates that it finished the requested operation by setting the MFC signal to 1. Assume that the MFC signal will remain 1 for 1 clock cycle. Also, assume that the MFC signal changes based on the falling edge of the clock while the CPU signals change on the rising edge of the clock.

(x) Test the register transfer model of the SRC machine using the same test bench used for the behavioral model.

(xi) If you manage to synthesize your CPU, map it to FPGA and demonstrate its proper operation, you will get a 5% bonus from your total mark in the course.

This project can be conducted by a team of a maximum of three students. If one student or two do the project they will be given a bonus. If you are a team of three students, you can divide the work such that one student does the behavioral model of the CPU, one models the data path and one models the control unit. You have to understand all the work done in the project, the part you do and the parts done by the other team members. Each student will be tested for the three parts and each student in the team will be given a separate grade.
Clearly state your assumptions and have your design well documented. Write a professional report indicating all design stages, modeling and testing of each component and the final design. Include both a hard copy and a soft copy of your report and all VHDL files. The grading policy for the project is shown below:

	Grading Criteria
	Mark

	Memory interface Modeling and Test
	5

	CPU Behavioral Description & Test Bench
	25

	Basic Components Modeling & Test
	10

	Data-path Design, Modeling & Test
	15

	Control Unit Design, Modeling & Test
	20

	Whole CPU Design, Modeling & Test
	20

	Report Organization
	5

	Total
	100

APPENDIX
[image: image3.png]50 Chapter 2 Machines, Machine Languages, and Digital Logic

direct addressing
mode

indirect address-
ing mode

register direct
mode

register indirect
mode

indexed, or
displacement,
or based mode

relative address-
ing mode

The previous code examples have used the direct addressing mode, shown
in Figure 2.8b. The address of the operand is specified as a constant contained
in the instruction.

In indirect addressing, shown in Figure 2.8c, a constant in the instruction
specifies not the address of the value, but the address of the address of the value.
An example of the use of indirect addressing is in implementing pointers, where
the pointer, which is an address, is stored in memory at the pointer address.
Thus, two memory references are required to access the value. The CPU must
first fetch the pointer, which is stored in memory; then, having that address, the
CPU accesses the value stored at that address.

In the register direct mode, shown in Figure 2.8d, the operand is contained
in the specified register. '

When the address of the operand is in a register, the mode is referred to as
the register indirect mode, shown in Figure 2.8e. This addressing mode is used
to sequentially access the elements of an array stored in memory. The starting
address of the array is stored in a register, an access made, and the register incre-
mented to point to the next element.

To access arrays, or components of the C st ruct, or the Pascal record
(which by definition are stored at a fixed offset from the start address of the
structure), the indexed mode, sometimes called displacement or based address-
ing, is used, as shown in Figure 2.8f. The memory address is formed by adding
a fixed constant, usually contained within the instruction, to the address value
contained in a register. The term indexed is normally used when the constant val-
ue is the base of an array in memory, added to the “index” stored in a register.
The term displacement is used when the base of a struct is held in a register
and added to the constant offset, or displacement, of the field in the st ruct.

The relative addressing mode, shown in Figure 2.8g, is similar to indexed,
but the base address is held in the PC rather than in another register. This allows
the storage of memory operands at a fixed offset from the current instruction.

The previous discussion is only to provide a flavor for the complexity of
addressing modes. A formal description of addressing modes is given in
Section 2.5. '

2.3 | Informal Description of the Simple
RISC Computer, SRC

In this section we provide an informal description of SRC, and in the next section
we provide a formal description. This example machine is sufficiently simple and
lacking in the complications necessary in real machines that in Chapters 4 and 5
it will serve as an example of detailed machine hardware design.

2.3.1

Figure 2.9 shows the programmer’s model of the SRC machine. It is a general
register machine, with 32 general purpose, 32-bit registers, plus a program
counter (PC) and an instruction register (IR). Although the main memory is or-

Register and Memory Structure

[image: image4.png]FIGURE 2.9

Informal Description of the Simple RISC Computer, SRC 51

Programmer’s Model of the SRC

The SRC CPU Main memory

31 0

32 32-bit
general
purpose
registers

Instruction formats

1.1d. st la 31 27 26 22 21 17 16

0
addiandionloplralm e]

3t 2726 22 21

o}
2idrstrtar [Opfral et]

31 2726222117 16

3. neg. not m-

unused

31 2726222117 16 1211

4.br [Op] Jro]rc] (c3) unused Gond

unused

31 2726222117 16 1211

2 0
5 brl [Op[ra [rb[rc] (c3) unused :Cond

31 2726222117 16 1211

6.add.sub. [GpTra b Jrc] unused |

and, or
3127262221 17 4 0
7a[Op[ra]ro | (c3) unused ‘Count
7. shr, shra
shi, she 31 2726222117 16 12

4 0
70 [Opfrarb Jre] (c3) unused 00000

31 2726

O o T E—

R[7] means contents
of register 7

M[32] means contents
of memory location 32

Example
Id 13, A (R{3] = M[A])
id 13, 4(r5) (R[3] = M[R[5] + 4])

addi r2, 4, 1 (R[2] = R[4] +1)

Idr 15, 8 (R[5] = M[PC + 8})
lar r6, 45 (R[6] = PC + 45)
negr7, 9 (R[7] = - R[9]D)
brzrrd, 10

- (branch to R[4] if R[0] ==

brinz 16, r4, r0
(R[6] = PC; branch to R[4] if R[O] = 0)

add r0, r2, r4 (R[0] = R{2] + R[4])

shrr0, r1, 4
(R[0] = R{1] shifted right by 4 bits

shlr2,r4, 16
(R[2] = R[4] shifted left by count in R[6])

stop

PPN

—

[image: image5.png]52

Chapter 2 Machines, Machine Languages, and Digital Logic

ganized as an array of bytes, only 32-bit words can be fetched from or stored
into main memory. Its memory operand access follows the load-store model de-
scribed above. A word at address A is defined as the 4 bytes at that address and
the succeeding three addresses. The byte at the lowest address contains the most
significant 8 bits, the byte at the next address contains the next most significant
8 bits, and so on.

2.3.2 Instruction Formats

Figure 2.9 shows 23 instructions in 8 different formats:

I Load and store instructions: There are four load instructions—Id, Idr, la,
and lar—and two store instructions—st and str.

B Branch instructions: There are two branch instructions, br and brl, that al-
low unconditional and conditional branches to an address contained in a
specified register. The conditional branches test a register’s contents and
branch when the register contents are = 0, # 0, 2 0, or < 0. The instruction
brl stores the PC in a specified register.

B Arithmetic instructions: There are four arithmetic instructions: add, addi,
sub, and neg. All except addi take two register operands and place the result
in a register. The instruction addi adds an immediate constant contained in
the c2 field to a register and places the result in a register.

1 Logical and shift instructions: There are nine logical and shift instructions:
and, andi, or, ori, not, shr, sha, shl, and shc. The shift instructions can shift
by a count contained as a constant in the instruction or by a count in a
register.

I Miscellaneous instructions: There are two zero-operand instructions: nop
and stop.

All instructions are 32 bits long. Because the SRC is of the load-store class
of machine, operands in memory can be accessed only through load and store
instructions. All instructions have a S-bit opcode field, allowing 32 different in-
structions. Here we define only 23 of these instructions. The ra, rb, and rc fields
are 5-bit fields that specify one of the 32 general purpose registers. Constants c1,
c2, c3, Cond, and Count are used in various ways that we will describe as we
discuss the individual instructions. We first discuss the memory addressing
modes and then each of the 23 instructions. As we describe each instruction, we
include a comment field beginning with a semicolon that describes the operation
of the instruction in pseudo C code. The notation M([x] means the value stored
at word x in memory.

Notice that there are many unused “holes” in the instructions that waste
memory space. This willingness to trade off less efficient use of memory for hav-
ing all instructions be exactly one word long is a feature of most modern RISC
machines. This issue is discussed in more detail in Chapter 3.

[image: image6.png]direct addressing
withrb =0

direct address
restrictions

Informal Description of the Simple RISC Computer, SRC 53

2.3.3 Accessing Memory: The Load and Store Instructions

The load and store instructions are the only SRC instructions to access operands
in memory.

Load and Store Instructions

1d ra, c2 ;Direct addressing: R[ra] = M[c2]

1d ra, c2(rb) ;Indexed addressing(rb # 0); R[ra] = M[c2 + R[rb]]
st ra, c2 ;Direct addressing: M[c2] = R]ra]

st ra, c2(rb) ;Indexed addressing(rb # 0); M[c2 + R[rb]] = R[ra]
la ra, c2 ;Load displacement address: R[ra} = ¢2

Tla ra, c2(rb) ;Load displacement address: R[ra}] = c2 + R[rb]

These instructions use format 1 from Figure 2.9. The register to be loaded or
stored is specified in the 5-bit field ra, and the address is specified as the 17-bit
value in the c2 field. The rb field serves double duty. If rb = 0 (that is, if the
value of the 5-bit field is zero, specifying r0), this serves as a signal to the machine
control unit that the memory address is just the value of c2 as a sign-extended
2’s complement number. If any of the other 31 registers are specified—that is, if
b # O—then the memory address is formed by adding R[rb] + c2, resulting in
the based, or displacement, addressing mode. Be aware that the addition of c2
to R[rb] takes place when the instruction is executing, that is, at run time. Notice
that when c2 is set to 0, the addressing mode becomes register indirect.

Thus the 1d instruction loads into register R[ra] the operand stored at ad-
dress c2 (direct addressing) if rb = 0, or at address c2 + R[rb] if rb # 0 (indexed
or displacement addressing); the st instruction does the reverse, storing the op-
erand in R[ra] at address c2 when tb = 0, or at address ¢2 + R[rb} when rb # 0.

The la (load address) instruction calculates the operand address as above,
but then rather than fetching the operand, it stores the calculated value in R[ra].
Operationally, it loads the value of c2 or c2 + R[rb} itself into a register. This
allows complex address calculations to be performed explicitly. In this way, ad-
dressing modes not available in the instruction set can be simulated by a series
of explicit arithmetic steps.

Several points should be made about these instructions. First, because c2 is
a 17-bit value, only operands stored in the first or last 216 bytes of memory can
be accessed using the direct addressing mode, or, in the case of the 1a instruction,
only positive or negative constants with magnitudes smaller than 216 can be
loaded. To access operands stored elsewhere in memory, the displacement or reg-
ister indirect addressing modes must be used, with the value in R[rb] serving as
the base and the value of €2 serving as an offset. (Recall that the register indirect
addressing mode can be achieved by setting c2 equal to 0.) Note also that the
address addition is 2’s complement, so the 17-bit displacement must be sign-
extended to 32 bits before the address addition. See Chapter 6 for a more thor-
ough discussion of 2’s complement arithmetic.

[image: image7.png]54 Chapter 2 Machines, Machine Languages, and Digital Logic

TABLE 2.4 Example SRC Load and Store Instructions

e P PN P I S
R I N N I
I A O R T

N

“n
~

Relative addressing computes the operand address as an address relative to
the PC.

Load and Store Relative

1dr ra, cl ;Load register relative: R[ra] = M[PC + c1]
str ra, cl ;Store register relative: M[PC + c1] = R[ra]
lar ra, cl ;Load relative address: Rlra} =PC + ¢l

The effective address is formed by the run-time addition, c1+PC. These rel-
relocatable ative addressing modes make the instructions relocatable. Because the address of
instructions the data is specified as a value that is a constant offset from the PC, and hence

from the current instruction, the entire module of program and data can be
moved, or relocated, anywhere in the machine memory without changing the
values of the displacements. This is in contrast to the direct addressing mode,
which specifies addresses as absolute memory locations. Because the displace-
ment constant €1 has 22 bits, addresses within 22! of the current instruction
can be specified.

Table 2.4 provides examples of the assembly language and resulting machine
encoding of several load and store instructions. You should study it until you un-
derstand each entry. The operation codes for each instruction are given in the op
column.

®» Example 2.2: Binary Encoding of an SRC Instruction As an example of SRC
instruction encoding, let us encode the second instruction in Table 2.4, which is
1d r22, 24(r4). Working from the msb, the encoding will be

op=1 ra=22 rb=4 cl1=24
00001 10110 00100 20000000000011000 = OD8SOOLSH

Bl A A A A A AL T AAS

You should verify this encoding and try several examples for yourself.

[image: image8.png]Informal Description of the Simple RISC Computer, SRC 55

2.3.4 Arithmetic and Logic Instructions

This class of instructions uses the ALU of the SRC machine to do arithmetic,
logical, and shift operations. We first cover the “1-operand” instructions not
and neg.

1-Operand ALU Instructions

neg ra, rc ;Negate: Rfra] = -R{rc]
not ra, rc ;Not: Rfra] = Rfrc]

These format 3 instructions take one register operand and provide one register
result. The instruction neg (op = 15) takes the 2’s complement of the contents of
register Rfrc] and stores it in register R[ra]. The not (op = 24) instruction takes
the logical (1’s) complement of the contents of register R[rc] and stores it in reg-
ister R[ra]. All other fields in the instruction are unused.

The instructions add (op = 12), sub (op = 14), and (op = 20), and or (op
= 22) are 2-operand, 1-result instructions. All must be in the general purpose
registers. They are specified using format 6. Notice that the least significant
12 bits are unused, because the first 4 fields are sufficient to describe the entire
operation.

2-Operand ALU Instructions

add ra, rb, rc ;2 complement addition: R[ra] = R[rb] + R[rc]
sub ra, rb, rc ;2’scomplement subtraction: R[ra] = R{rb] — Rrc]
and ra, rb, rc ;Logical AND: R[ra] = R[rb]aR{rc]

or ra, rb, rc ;lLogical OR: R{ra] = R{rb]JvR[rc]

There are three ALU instructions that use the immediate addressing mode:
addi (op = 13), andi (op = 21), and ori (op = 23). The constant is contained
in the 17-bit c2 field and is sign-extended to a 32-bit value before the arithmetic
operation is performed. All of these instructions use format 1.

Immediate Addressing ALU Instructions

addi ra, rb, c¢2 ;Immediate 2’s compl. addition: R[ra]} = R{rb] + ¢2
andi ra, rb, c¢2 ;Immediate logical and: Rfra] = R[rb]Aac2
ori ra, rb, ¢2 ;Immediate logical or: R[ra] = R[rb]vc2

The shift instructions shift the operand in R[rb] right, left, or “circularly,” from
1 to 32 bits, and place the result in R[ra]; the amount of the shift is governed by
an encoded 5-bit unsigned integer, so shifts from 0 to 31 bits are possible. The
integer representing the shift count is stored either as an immediate value in the
5 least significant bits in the instruction (format 7a), or, if that value is 0, then
the shift count is taken from the least significant § bits of register Rfrc]
(format 7b).

[image: image9.png]56 Chapter 2 Machines, Machine Languages, and Digital Logic

subroutine
return link

There are two forms of right shift, shr and shra (op = 26 and 27, respec-
tively). The first form shifts zeros in from the left as the value is shifted right, and
the second form, the so-called arithmetic shift, continually shifts copies of the
msb into the word on the left as the contents are shifted right. This arithmetic
form of the shift preserves the arithmetic sign of 2’s complement numbers during
the shift operation.

The left shift, sh1 (op = 28), shifts zeros in on the right as the value in the
register is shifted left. The circular shift, shc (op = 29), shifts the value left by
count bits, but the value shifted out of the register on the left is placed back into
the register on the right. The assembly language forms are shown below.

Shift Instructions

shr ra, rb, rc ;Shift R{rb] right into R[ra] by count in R[zc]
shr ra, rb, count ;Shift R[rb] right into R{ra] by count in c3
shra ra, rb, rc ;AShift R[rb]right into R{ra] by count in R[rc]
shra ra, rb, count ;AShift R[rb] right into R{ra] by count in ¢3
sh1l ra, rb, rc ;Shift R[rb] left into R[ra] by count in R[rc]
shl ra, rb, count ;Shift R[rb] left into R{ra] by count in c3

shc ra, rb, rc ;Shift R[rb] circ. into R[ra] by count in R]rc]

shc ra, rb, count ;Shift R[rb] circ. into R[ra] by count in c3

All of these instructions are encoded using format 7 from Figure 2.9. If the
count field # 0 (format 7a), then the shift count is taken to be the 5 least signifi-
cant bits (Isbs), of the c3 field, called “count” in the figure. If the count field = 0
(format 7b), then the shift count is taken from the register encoded in bits
12-16 of the instruction, called rc in format 7 of Figure 2.9.

2.3.5 Branch Instructions

The branch instructions br (op = 8) and br1 (op = 9) are encoded using formats
4 and S. Format 4, br, is used to specify a branch instruction that replaces the
PC with the target address of the branch. Format 5, brl, is used for the branch
and link instruction, which copies the PC into a so-called linkage register prior
to the branch. This link register allows return from subroutine calls and is used
to implement high-level language procedures and functions. Notice that the PC
is copied into the linkage register regardless of whether the branch is taken.
These two instructions allow branching under five different branch conditions.
We mentioned in the previous discussion of branch instructions that many ma-
chines maintain a set of condition codes in a status register within the CPU that
can be tested as part of a conditional branch. SRC does not use this approach.
Rather, it allows any of the 32 general purpose registers to hold a value to be
tested for conditional branching. The branch condition to be tested is specified
by the least significant 3 bits of field c3, €3(2..0), as shown in Table 2.5. A two-
letter code, nv, zr, nz, p1, or mi, appended to the mnemonic is converted by the
assembler to the branch condition code in ¢3. The meaning of the ra, rb, and rc
fields in the branch instructions is shown on the next page.

[image: image10.png]TABLE 2.5

no operation:
nop

Informal Description of the Simple RISC Computer, SRC 57

Branch Conditions and Encoding

Assembly Language Branch Condition

brav, brinv

br, bril

brzr, brilzr

brnz, brinz 3 IfRfrc]# 0

brpl, bripl 4 If R[rcK31) = 0 (R[rc] = 0)

brmi, brimi 5 If R[rcK31) = 1 (R[rc] negative)

Always (unconditional)

IfR[rc] =0

Branch Instructions

br rb, rc, c3 ;Branch to Rrb] if R[ré] meets condition in ¢3
brl ra, rb, rc, c3 ;R[ra] « PC; branch as above

Table 2.6 shows examples of the forms and encoding of all the branch in-
structions. The assembler is responsible for converting the branch mnemonic
and appended two-letter code of column 1 of the table to operation codes 8 and
9 of br and br1 instructions, respectively, as well as the correct ¢X2..0) field val-
ue selecting the branch condition. The fields that the assembler will assemble
into the 32-bit instruction are given in the table: op, ra, rb, rc, and ¢X2..0). The
form in the first column will fix the op and ¢3(2..0) fields, and the remaining op-
erands will fix the ra, rb, and rc fields. Note that in some cases one or more of
these fields are unused, indicated by a long dash in the corresponding table entry.

2.3.6 Miscellaneous Instructions

In addition to the instructions mentioned above, there are two instructions: nop
(op = 0), whose purpose is to do nothing, and stop (op = 31), whose purpose is
to halt the machine. The nop instruction is used as a placeholder or as a time
waster and is very important in pipelined implementations (see Chapter 5). The
stop instruction is used to halt the machine at a specified point in program ex-
ecution. It is useful in debugging, as it can be inserted at problematical points in
the program, and if the stop instruction is reached, the person doing the debug-
ging can examine the machine state at his or her leisure.

Example 2.3: SRC Assembly Code for a C Conditional Statement In present-
ing SRC code, we will assume some assembly language conventions that are
summarized in Appendix C. Let us encode the C conditional statement,

#define Cost 125
if (X<0) X = -X;

originally discussed on page 39, using SRC assembly language:

[image: image11.png]58 Chapter 2 Machines, Machine Languages, and Digital Logic

TABLE 2.6 Forms and Formats of the br and brl Instructions

Assembly Example c3 Condi-
Language Instruction Meaning ra rb (2..0) tion
S N O B S O

- N O R K e T
S BN

brzr brzr r5,rl f (R[1]=0) PC « R[5] zero

br1zr brizr R[] « PC; 010 zero
r'7 rs5,rl f (R[1]=0) PCe R[5

e e :ln

brinz brinz R[2] « PC; 2 011 nonzero
r2,ri,ro if (R[0]#0) PCe R[1]

bripl bripl R[4] « PC; 3 2 100 plus
r4d,r3,r2 if (R[2]20) PCe R[3]
1 101 i

brimi brimi R[3] « PC;
r3,ro,rl if (r1<0) PC« R[0]

Cost: .equ 125 ;Define symbolic constant
.org 1000 ;Next word will be loaded at address 10004
X: .dw 1 ;Reserve 1 word for variable X
.org 5000 ;Program will be loaded at location 5000,
lar ro, Over ;Load address of jump location if expression is false

1d rl, X ;Get value of X into rl
brp1 r0, rl ;Branchto Overifr120
neg rl, rl ;Negate value

Over:

The three “pseudo ops,” .equ, .org, and .dw, are instructions to the as-
sembler and program loader, and do not result in any executable code. The pseu-
do op .equ allows the programmer to specify constants symbolically, in almost
exact analogy to the #define operation of C; .org specifies the locations of
data and program in memory; and .dw reserves space for program variables.

Data Path Design

C Bus

B Bus

A Bus

C

B

A

ALU

Y

SHIFTER

MDR

MAR

PC

IR

R31

R2

R1

R0

_1131925834.unknown

