KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 306 Introduction to Embedded Systems

Term 171 Lecture Breakdown

Lec	Date	Topics	Ref.
#			
1	U17/9	Syllabus and Course Introduction.	
2	T 19/9	What is an Embedded System? Application Examples, Characteristics of Embedded Systems, Implementation Alternatives, Why Use Microprocessors? Platforms. Challenges in Embedded System Design.	1.1-1.2
3	TH 21/9	Challenges in Embedded System Design, Importance of Design Methodology, Embedded System Design Process, Requirements, Specification, Architecture Design. Designing Hardware and Software Components.	1.2-1.3
	U 24/9	National Day Holiday	
4	T 26/9	System Integration, Formal System Description: UML. Computer Architecture Taxonomy.	1.3 & 2.1-2.2
5	TH 28/9	RISC vs. CISC, Instruction Set Characteristics. Instruction Execution, ARM Instruction Set, ARM Processor Modes, The ARM Register Set, Program Status Registers, ARM Instruction Set Format, Conditional Execution.	2.2-2.3
6	U 1/10	Conditional Execution, Data Processing Instructions, Arithmetic Operations, Logical Operations, Comparisons, Data Movement.	2.3
7	T 3/10	The Barrel Shifter, Loading 32 bit constants. (Quiz#1)	2.3
8	TH 5/10	Loading 32 bit constants. Load / Store Instructions, Pre or Post Indexed Addressing, ARM ADR Pseudo-Op, ARM Branches and Subroutines, Control Flow: If Statement Example, Switch Statement.	2.3
9	S 7/10	For Loop, Examples of Conditional Execution. Examples of Conditional Execution, Block Data Transfer, Stack Operation, Stacks and Subroutines, Function Calls, ARM Procedure Call Standard (APCS). PICmicro.	2.3 & 2.4

	S 28/10	Major Exam I	
	TH 26/10	Last Day for Dropping with W	
		Configurations, ARM Bus.	
		(DMA), DMA Controller, System Bus	
		Device, Burst Read, Direct Memory Access	
		Followed by Write, Reading From A Slow	
10	111 20/10	Bus Protocols, Timing Diagrams, Read	
18	TH 26/10	Platform Software Components, The CPU bus.	4.3-4.4
1/	1 24/10	Components. (Quiz#2)	1.1 7.5
17	T 24/10	Computing Platforms Platform Hardware	4.1-4.3
		Strategies Power-Down Costs	
16	U 22/10	VIUIU-Level Page Tables, CPU Performance, CPU Power Consumption CPU Power Soving	3.3-3.1
		Virtual Memory System Example.	2527
		Multi-Level Page Tables, MMU in ARM.	
		Tasks, Segmentation, Paging, The Page Table,	
15	TH 19/10	Virtual Memory, Memory Management Unit	3.5
		Organizations & Policies, Virtual Memory.	
		access time, Multiple Levels of Cache, Cache	
		System Overview, Caches, Average memory	
		Exceptions, Traps. Co-Processors, Memory	
14	1 1//10	Interrupts in ARM7, Supervisor Mode.	5.1, 5.5
14	T 17/10	Interrupt Vectors. Interrupt Overhead	3.4.35
		Multiple I/O Devices. Interrupt Priorities	
13	U 15/10	Interrupt I/O Examples, Interrupts vs. Polling	3.2
		Examples. Interrupt I/O Examples Interrupts via Dalling	2.2
		(Polling) I/O, Interrupt I/O, Interrupt I/O	
12	TH 12/10	Input and Output (I/O) Devices, Busy-Wait	3.1-3.2
		and Procedure Calls, TI 64X DSP.	0.1.0.5
		Examples, Control Flow Instructions, Loops	
		Addressing Modes, C55x Data Instructions	
		Direct Addressing Modes. C55x Indirect	
		Addressing Modes, Absolute Addressing,	
		Unit (D Unit), Memory Organization. C55x	
		Data Flow Unit (A Unit), Data Computation	
		Unit) Program Flow Unit (P Unit) Address	
11	T 10/10	11 C55X Organization, 11 C55x	2.5-2.6
		Lookup Table.	2526
		Relative Addressing, PC Relative Addressing:	
		Instructions. PC Absolute Addressing, PC	
		Addressing Example, Control Flow	
		PIC16 Addressing Modes, Register Indirect	
		Program Counter, Instruction Set Overview.	
		Data Memory Organization, Status Register,	
10	0 8/10	Memory Organization, Register File Concept,	2.1
10	119/10	PICmicro PIC16F Instruction Set. Instruction	2.4

10	U 20/10	Solution of Major Exam 1. Advanced High-	4.3-4.4
19	0 29/10	Performance Bus (AHB).	
20	T 31/10	Advanced High-Performance Bus (AHB),	4.3-4.4
	101/10	AHB Arbitration, AHB Signals, Overview of	
		AMBA AHB operation, AHB Basic Transfer,	
		AHB Pipelining, AHB Pipelined Burst	
		Transfers.	
21	TH 2/11	AHB Burst Types, AHB Control Signals, AHB	4.4
		Split Transfers, AHB Bus Master Interface,	
		AHB Bus Slave Interface, AHB Arbiter	
		Interface, AMBA Advanced Peripheral Bus	
		(APB).	
22	U 5/11	AMBA Advanced Peripheral Bus (APB), APB	4.5
		ADD Dridge Interfacing ADD to AUD: Dood	
		APD bridge, internacing APD to AFD: Read, Burst Bood and Write Transford SDBAM	
		Operation Memory Controllers Memory	
		Channels and Banks Platform Examples	
		Choosing a Platform. Development	
		Environment.	
23	T 7/11	Platform-Level Performance, Bandwidth as	4.7
23	1 // 11	Performance, Bus Bandwidth Modeling,	
		Memory Performance, Bus Performance	
		Bottlenecks. Pulse Width Modulation	
		Definition.	
24	TH 9/11	Pulse Width Modulation Definition, Pulse	
		Width Modulation Types, Generation of PWM,	
		PWM Applications, LPC1/6x/5x PWM.	
25	U 12/11	LPC1/6X/5X PWM.	
26	T 14/11	Embedded Software Components, Software	5.1-5.2
		State Machine, Seat Belt Controller, An	
		Elevator System Controller.	5150
27	TH 16/11	Implementation of An Elevator System	5.1-5.2
20	11.10/11	(Ouiz#3)	
28	U 19/11	Quality)	5 0
29	T 21/11	Producer/Consumer Systems Types of Data	5.2
		Transmission: Serial vs. Parallel Synchronous	
		vs. Asynchronous Transmission.	
30	TH 23/11	Asynch. Transmission: Data Word and Control	
50	111 43/11	Bits, Simplex vs Duplex, BAUD & Bit Rates,	
		Serial Peripheral Interface (SPI), SPI	
		Operation, SPI Clock Polarity and Phase, SPI	
		Slave Configurations.	
	TH 23/11	Last Day for Dropping all Courses with W	
31	U 26/11	Serial Peripheral Interface (SPI), SPI	
		Operation, SPI Clock Polarity and Phase, SPI	

		Slave Configurations, SPI Applications, SPI	
		Advantages & Disadvantages, LPC176x/5x	
		SPI Interface Implementation.	
32	T 28/11	LPC176x/5x SPI Interface Implementation.	
52	1 20/11	Inter-Integrated Circuit (I2C) Bus, I2C Bus	
		Characteristics, I2C Bus Definitions, I2C	
		Electrical Aspects, Bit Transfer on the I2C Bus,	
		Start and Stop Conditions1st Byte in Data	
		Transfer on I2C Bus, Acknowledgements.	
	W 29/11	Major Exam II	
33	TH 30/11	I2C Addressing, Acknowledgements, Data	
00		Transfer on the I2C Bus, Data Formats.	
		Solution of Major Exam II.	
34	U 3/12	Multi-Master I2C Systems, Arbitration	
		Between Two Masters, I2C Bus Advantages &	
		Disadvantages, Example – EEPROM.	
35	T 5/12	Using mbed and project introduction.	
36	TH 7/12	LPC176x/5x I ² C Interface.	
37	U 10/12	LPC176x/5x I ² C Interface. Universal	
		Asynchronous Receiver Transmitter (UART),	
		Asynchronous Serial Transmission,	
		Asynchronous Serial Reception, UART Error	
		Conditions, DCE and DTE, Normal 9-Wire	
		Serial Cable.	
38	T 12/12	LPC176x/5x UART Interface.	
39	TH 14/12	Processes and Operating Systems, Tasks and	6.1-6.3
		Processes, Multi-Rate Systems, Real-Time	
		Systems. Types of Process Timing	
		Requirements, Process Execution	
		Characteristics.	
40	U 17/12	CPU Utilization, Running Periodic Processes,	6.3-6.5
		Real-Time Operating Systems, State of a	
		Process, Preemptive Execution, Context	
		Switching, FREERTOS. The Scheduling	
		Problem, Scheduling Feasibility, Hyperperiod	~ •
41	T 19/12	Round-Robin Scheduling, Priority-Based	6.5
		Scheduling, Scheduling Metrics, Rate	
		Monotonic Scheduling (RMS). (Quiz#4)	~ =
42	TH 21/12	Kate Monotonic Scheduling (RMS), RMS CPU	6.5
		utilization, RMS- Schedulability Check,	
		Earliest-Deadline-First Scheduling, EDFS -	
		Dropping of Courses with WD(WD	
	TH 21/12	Dropping an Courses with wP/WF	
43	U 24/12	EDFS – Overload Conditions, FreeRTOS,	
		Task States in FreeRTOS, FreeRTOS Task	
		Functions, Creating Tasks, Running a Periodic	
		Task. Analog-Digital Converter (ADC), A/D	

		Conversion Process, ADC-Error Possibilities:	
		Aliasing, Quantization Error.	
44	T 26/12	Quantization Error & Effective Number of	
		Bits, Conversion Time & Converter Rate,	
		Types of ADC Techniques, Counter or	
		Tracking ADC, Flash ADC.	
45	TH 28/12	Flash ADC, Half-Flash ADC, Successive	
		Approximation ADC, Single Slope Integration	
		ADC, Dual Slope ADC, Delta-Sigma ADC,	
		ADC Types Comparison.	