COE 306, Term 161

Introduction to Embedded Systems

Assignment\# 3 Solution

Due date: Sunday, Nov. 20, 2016
Q.1. Assume an A/D converter is supplying samples at 44.1 kHz .
(a) How much time is available per sample for CPU operations?

Time per sample $=1 / 44.1 \mathrm{k}=0.0227 \mathrm{~ms}$
(b) If the interrupt handler executes 100 instructions obtaining the sample and passing it to the application routine, what is the CPU utilization of a 20 MHz RISC processor that executes 1 instruction per cycle?

CPU can execute ($20 * 1000000$) instructions in one second.
Each sample needs 100 instructions.
In one second, $44100 * 100=4410000$ instructions need to be executed for the samples.
CPU utilization $=4410000 /(20000000)=22.05 \%$.
Q.2. A memory device is read by putting a read request on the bus for a single bus cycle using a R/W' signal. The memory device then puts the read data on the bus 2 bus cycles after receiving the request. The memory asserts a Ready signal to indicate that the data is ready. We would like to read two consecutive 32-bit words at memory addresses 0x1000 and 0×1004. Assume that the data bus is 32 -bit wide.
(a) Use a timing diagram to show the bus signals required to read the two locations using non-burst requests. Show the bus clock, the address, the read data, and any other required signals.

(b) Assuming a fixed burst size of 2, use a timing diagram to show the required bus signals to read the two locations using burst requests. Assume that an active-low burst signal must be asserted for a single cycle only for each burst read request. Assume that each consecutive data in a burst will be ready two cycles after the previous data.

Q.3. We would like to investigate the performance of a bus system in relation to a digital audio application. Digital audio is specified by three main parameters:

1. Number of channels, e.g. stereo audio uses two channels.
2. Sampling rate: number of digital samples per second.
3. Sample size (or bit depth): number of bits per sample.

Assume a system bus that runs at 1.5 MHz , and requires a total of 6 cycles to complete a single 16-bit transfer. Assuming uncompressed 6-channel audio (5.1 speaker configuration), what is the best combination of sampling rate and sample size that can be handled by this system bus? Justify your choice.
Typical sampling rates: $16 \mathrm{kHz}, 22.05 \mathrm{kHz}, 32 \mathrm{kHz}, 44.1 \mathrm{kHz}$ (Audio CD), 48 kHz (DVD). Typical sample sizes: 8-bit, 16-bit (Audio CD), 20-bit, 24-bit, 32-bit.

First, we find the number of bits that the described system bus can transfer per second, $\mathrm{N}_{\text {bus }}$:

$$
T=(D+O) \frac{N}{W}=>N b u s=\frac{W T}{(D+O)}=\frac{1.5 \times 10^{6} \times 16}{6}=4 \times 10^{6} \mathrm{bits}
$$

Considering Audio CD quality (sampling rate: 44.1 kHz , sample size: 16 bits), the required bandwidth is:
$\mathrm{N}_{\text {audio }}=6 \times 44,100 \times 16=4,233,600$ bit/second $>4 \times 10^{6}$
We can either reduce the sampling rate, or the sample size, to lower the required bandwidth to match the system bus capacity:

$$
\begin{aligned}
& N_{\text {audio1 }}=6 \times 32,000 \times 16=3,072,000 \text { bit/second }<4 \times 10^{6} \\
& N_{\text {audio2 }}=6 \times 44,100 \times 8=2,116,800 \text { bit/second }<4 \times 10^{6}
\end{aligned}
$$

Since Naudio2 halves the sample size, it is expected to have a greater impact on audio quality. Hence, reducing the sampling rate is preferred, resulting in a sampling rate of 32 kHz and a sample size of 16 bits.

Furthermore, we can achieve better audio quality by increasing the sample size of Naudio1 from 16 to 20 bits:
$\mathrm{N}_{\text {audio3 }}=6 \times 32,000 \times 20=3,840,000 \mathrm{bit} /$ second $<4 \times 10^{6}$
Therefore, the best combination that the system can handle is 32,000 sampling rate and 20 bit samples.
Q.4. A real-time system receives data through an I/O device, the CPU processes the data, then the results of the processing are transferred to system memory. The I/O device, the CPU, and the memory controller are all on the same system bus, which runs at 1 MHz . The CPU runs at 10 MHz . Each bus transaction (transfer) between any two devices on the bus takes 5 bus cycles, 1 of which is used to transfer data, and the remaining cycles are used by the bus protocol. The bus has 32 data lines, transferring 32 bits per data-transfer cycle.

The I/O device receives 512 bytes at a time. While processing the received data, for each received byte, the CPU generates 4 bytes. Only generated data is transferred from the CPU to system memory.

If the I/O device receives new data at a rate of 200 times per second (512 bytes each), how many CPU cycles can be spent processing each byte without violating the real-time requirements? Assume that the memory is fast enough to handle any requests received by the memory controller.

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{I} / \mathrm{O}}=512 \mathrm{~B} \times 200=102400 \mathrm{~B} / \mathrm{s} \\
& \mathrm{~T}_{\mathrm{I} O}(\mathrm{~N})=(\mathrm{D}+\mathrm{O}) \mathrm{N} / \mathrm{W}=5 \times 102400 / 4=128000 \mathrm{cycles} / \mathrm{s} \\
& \mathrm{~N}_{\mathrm{mem}}=512 \mathrm{~B} \times 200 \times 4=409600 \mathrm{~B} / \mathrm{s} \\
& \mathrm{~T}_{\mathrm{mem}}(\mathrm{~N})=5 \times 409600 / 4=512000 \mathrm{cycles} / \mathrm{s} \\
& \mathrm{~T}_{\mathrm{bus}}=128000+512000=640000 \mathrm{cycles} / \mathrm{s} \\
& \mathrm{t}_{\text {bus }}=\mathrm{T}_{\text {bus }} \mathrm{P}=640000 \times 10^{-6}=0.64 \mathrm{~s} \\
& \mathrm{t}_{\mathrm{CPU}}=1-0.64=0.36 \mathrm{~s} \\
& \mathrm{~T}_{\mathrm{CPU}}=\mathrm{t}_{\mathrm{CPU}}-\mathrm{f}_{\mathrm{CPU}}=0.36 \times 10 \times 10^{6}=3600000 \mathrm{cycles} / \mathrm{s}
\end{aligned}
$$

Number of CPU cycles can be spent processing each byte without violating the real-time requirements $=3600000 / 102400=35.156=>35$ cycles per Byte .

