
COE 306, Term 171

 Introduction to Embedded Systems

Assignment# 1 Solution

Due date: Sunday, Oct. 8, 2017

Q.1. Look for a consumer product, e.g. a toy or a small home appliance that incorporates an

embedded system. It will be good if you can find a locally available product, and include

pictures showing its computer components.

Note: You may need to disassemble the product to be able to verify that it does incorporate

an embedded system. If this is the case, please exercise caution and follow safety

procedures to avoid any injuries. If unsure about the safety of an action, consult lecture or

lab instructors.

(a) What feature of the product suggested to you that it may incorporate an embedded

system?

(b) What is the model number of the microcontroller chip used in this product?

(c) What is the architecture of this microcontroller?

(d) What are the main specifications of this microcontroller? On-chip memory,

integrated peripheral devices, maximum frequency, power rating (volts, amperes, watts),

any other notable specifications.

(e) Provide the URL of the microcontroller datasheet.

(f) Include a picture of the product in its original condition, and another picture of its

main board, showing the main microcontroller.

Q.2. Consider the C code given below:

volatile static int sum = 0; // assume sum is a memory variable
 for (int i=0; i<8; i++){
 if (i<4)
 sum = sum + 2*i;
 else
 sum = sum + 3*i;
 }

(a) Write the given C code in ARM assembly without the use of conditional

instructions except branch. Simulate your program using VisUAL ARM emulator and

include a snapshot to show that your program produced the correct result of sum.

mov r3, #0 ; i=0

 adr r2, Sum

FOR cmp r3, # 3 ; if (i<4)

 ldr r1, [r2] ; load sum

 add r1, r1, r3, lsl#1 ; sum = sum + 2*i;

 ble Skip

 add r1, r1, r3 ; sum = sum + 3*i;

Skip str r1, [r2] ; store sum

 add r3, r3, #1 ; i++

 cmp r3, #8 ; i<8

 bne FOR

Sum DCD 0 ; sum declaration

(b) Write the given C code in ARM assembly with the use of conditional instructions.

Simulate your program using VisUAL ARM emulator and include a snapshot to show that

your program produced the correct result of sum.

 mov r3, #0 ; i=0

 adr r2, Sum

FOR cmp r3, #3 ; if (i<4)

 ldr r1, [r2] ; load sum

 add r1, r1, r3, lsl #1 ; sum = sum + 2*i;

 addgt r1, r1, r3 ; sum = sum + 3*i;

 str r1, [r2] ; store sum

 add r3, r3, #1 ; i++

 cmp r3, #8 ; i<8

bne FOR

Sum DCD 0 ; sum declaration

(c) Compare your assembly codes in part (a) and part (b) in terms of number of

instructions in each code and the number of instructions executed in each code.

As one can see, using conditional instructions saves one instruction in the code size and

one less instruction to be executed in every loop iteration. More importantly a conditional

branch instruction is avoided which could result in flushing pipeline when this is branch

misprediction.

(d) Compile your C program to ARM assembly code and compare your handwritten

assembly program in part (b) with the compiler-generated assembly code using

LPCXpresso IDE. Explain any differences between the two assembly programs.

The relevant code generated by the compiler is given below. As can be seen our code in

(b) is more efficient that the code generated by the compiler. In addition, the way data is

declared and the way address of sum is loaded are different.

mov r3, #0

ldr r2, .L6

.L4:

cmp r3, #3

ldrle r1, [r2]

addle r1, r1, r3, lsl #1

ldrgt r0, [r2]

addgt r1, r3, r3, lsl #1

addgt r1, r1, r0

str r1, [r2]

add r3, r3, #1

cmp r3, #8

bne .L4

.L6:

.word .LANCHOR0

.LFE0:

.section .bss.sum.3686,"aw",%nobits

.align 2

.set .LANCHOR0,. + 0

sum.3686:

.space 4

Q.3. Consider the C code given below:

volatile static int x; // assume x is a memory variable
x = x * 217;

(a) Write the given C code in ARM assembly without the use of multiplication

instructions. Simulate your program using VisUAL ARM emulator and include a snapshot

to show that your program produced the correct result of sum.

; 217 = 31 * 7

 adr r0, Xvar

 ldr r1, [r0]

 rsb r1, r1, r1, lsl #5 ; X = X * 31

 rsb r1, r1, r1, lsl #3 ; X = X * 31 * 7

 str r1, [r0]

Xvar DCD 1

(b) Compile your C program to ARM assembly code and compare your handwritten

assembly program in part (b) with the compiler-generated assembly code using

LPCXpresso IDE. Explain any differences between the two assembly programs.

The relevant code generated by the compiler is given below, which is similar to our code

with the difference of the order of multiplication of 31 and 7.

ldr r2, .L2

ldr r3, [r2]

rsb r3, r3, r3, lsl #3

rsb r3, r3, r3, lsl #5

str r3, [r2]

.L2:

.word .LANCHOR0

.LFE0:

.section .bss.x.3686,"aw",%nobits

.align 2

.set .LANCHOR0,. + 0

x.3686:

.space 4

