
COE 306, Term 161

 Introduction to Embedded Systems

Assignment# 1

Due date: Thursday, Oct. 13, 2016

Q.1. Look for a consumer product, e.g. a toy or a small home appliance that incorporates an

embedded system. It will be good if you can find a locally available product, and include

pictures showing its computer components.

Note: You may need to disassemble the product to be able to verify that it does incorporate

an embedded system. If this is the case, please exercise caution and follow safety

procedures to avoid any injuries. If unsure about the safety of an action, consult lecture or

lab instructors.

(a) What feature of the product suggested to you that it may incorporate an embedded

system?

(b) What is the model number of the microcontroller chip used in this product?

(c) What is the architecture of this microcontroller?

(d) What are the main specifications of this microcontroller? On-chip memory,

integrated peripheral devices, maximum frequency, power rating (volts, amperes, watts),

any other notable specifications.

(e) Provide the URL of the microcontroller datasheet.

(f) Include a picture of the product in its original condition, and another picture of its

main board, showing the main microcontroller.

Q.2. Consider the C code given below:

volatile static int sum = 0; // assume sum is a memory variable
 for (int i=0; i<10; i++){
 if (i<5)
 sum = sum + i;
 else
 sum = sum + 2*i;
 }

(a) Write the given C code in ARM assembly without the use of conditional

instructions except branch. Simulate your program using VisUAL ARM emulator and

include a snapshot to show that your program produced the correct result of sum.

(b) Write the given C code in ARM assembly with the use of conditional instructions.

Simulate your program using VisUAL ARM emulator and include a snapshot to show that

your program produced the correct result of sum.

(c) Compare your assembly codes in part (a) and part (b) in terms of number of

instructions in each code and the number of instructions executed in each code.

(d) Compile your C program to ARM assembly code and compare your handwritten

assembly program in part (b) with the compiler-generated assembly code using

LPCXpresso IDE. Explain any differences between the two assembly programs.

Q.3. Consider the C code given below:

volatile static int x; // assume x is a memory variable
x = x * 64449;

(a) Write the given C code in ARM assembly without the use of multiplication

instructions. Simulate your program using VisUAL ARM emulator and include a snapshot

to show that your program produced the correct result of sum.

(b) Compile your C program to ARM assembly code and compare your handwritten

assembly program in part (b) with the compiler-generated assembly code using

LPCXpresso IDE. Explain any differences between the two assembly programs.

How to compile your C program into assembly

To compile your C program into ARM assembly, use the LPCXpresso IDE (used in the

lab) to create a project, and write your C code in the main function. Then, perform the

following steps to instruct the compiler to generate the assembly code:

1. Go to Project Properties.

2. Select C/C++ Build, then Settings from the left-hand side menu.

3. In the main pane, select MCU C Compiler, then Miscellaneous.

4. Add the following into the Other flags field:

-Wa,-ahlnds=${OutputFileBaseName}.asm -O1

5. In the main pane, select MCU C Compiler, then Architecture. Set the Architecture to

ARM7TDMI and uncheck Thumb mode.

Now, when you compile (build) your project, you will get a file under the Debug

directory with extension .asm containing the assembly code generated from your C

program using ARM instruction set.

You can also generate the ARM assembly code for a C program, e.g. program.c, using

the command line, without using the LPCXpresso IDE, or any other IDE, using the GCC

ARM cross-compiler package: gcc-arm-none-eabi. The official download page for the

gcc-arm-none-eabi package is: https://launchpad.net/gcc-arm-embedded/+download. You

can use the following command: arm-none-eabi-gcc -S program.c

You can also generate ARM assembly code for a C program online using the following

site: http://gcc.godbolt.org/

https://launchpad.net/gcc-arm-embedded/+download
http://gcc.godbolt.org/

