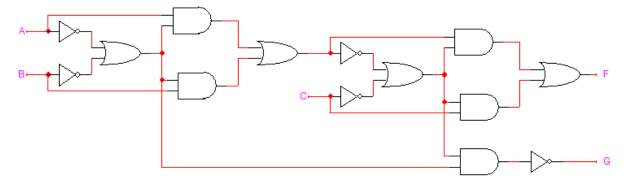
COE 202, Term 121 Digital Logic Design

Quiz# 3


Date: Saturday, Nov. 10

Q1. For the Boolean function $F(W, X, Y, Z)=\Sigma m(0, 1, 2, 3, 7, 8, 10), d(W, X, Y, Z)=\Sigma m(5, 6, 11, 15) shown in the k-map below:$

WX	00	01	11	10
00	1	1	1	1
01	0	x	1	x
11	0	0	X	0
10	1	0	x	1

- (i) Identify all the *prime implicants* and the *essential prime implicants* of F.
- (ii) Simplify the Boolean function **F** into a <u>minimal sum-of-products</u> expression.

Q2. Implement the logic circuit given below using only NOR and NOT gates

Q3. Design a 3-bit decrementer using only basic gates (AND, OR, and NOT). The circuit takes a 3-bit unsigned number $I=I_2I_1I_0$ as input and generates a 3-bit output number $Z = Z_2Z_1Z_0$ and a Valid output V. Whenever I > 0 the output Z = I-1 and V=1. If I=0, the output is invalid which is indicated by an output V=0. Derive the simplified Boolean expressions of all outputs.