KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 202 Digital Logic Design

Term 151 Lecture Breakdown

Lec	Date	Topics	Ref.
#			
1	U23/8	Syllabus & Course Introduction. Numbering Systems, Weighted Number Systems. The Radix, Radix Point. Binary, Octal and Hexadecimal systems.	Chapter 1
2	T 25/8	Important Properties. Number Base Conversion. Converting Whole (Integer) Numbers, Converting from Decimal to Other Bases, Various Methods of Conversion from Decimal to Binary. Converting Fractions.	Chapter 1
3	TH 27/8	Converting Fractions. Binary and Hexadecimal Addition, Subtraction.	Chapter 1
4	U 30/8	Binary and Hexadecimal Addition, Subtraction, Binary and Hexadecimal Multiplication. Binary Codes for Decimal Digits. Character Storage, ASCII Code.	Chapter 1
5	T 1/9	Error Detection, Parity Bit. Elements of Boolean Algebra (Binary Logic), Logic Gates & Logic Operations. Boolean Algebra.	Chapter 1 & 2.2
6	TH 3/9	Basic Identities of Boolean Algebra, Duality Principle, Operator Precedence. Properties of Boolean Algebra. Algebraic Manipulation.	2.2-2.4 & 2.7
7	U 6/9	Algebraic Manipulation. (Quiz#1)	2.7
8	T 8/9	Minterms, Expressing Functions as a Sum of Minterms. Canonical Forms. Maxterms	2.7 & 2.5
9	TH 10/9	Expressing Functions as a Product of Maxterms. Operations on functions based on operations on minterms, Canonical Forms. Standard Forms, Two-Level Implementations of Standard Forms.	2.5
10	U 13/9	Propagation delay, Timing Diagrams, Critical Path. Introduction to Verilog: Verilog Syntax, Definition of a Module, Gate Level Modeling.	
11	T 15/9	Introduction to Verilog: Verilog Syntax, Definition of a Module, Gate Level Modeling, Module Instantiation, Propagation Delay, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement,	

		Propagation Dalay & Continuous Assignment	
		Propagation Delay & Continuous Assignment, Test Bench Example.	
12	TH 17/9	Using Modelsim simulation tool. (Quiz#2)	
12	18/9-4/10	Id al-Adha Vacation	
13	U 4/10	Map method of simplification: Two-, Three-	3.1-3.4
13	0 4/10	and Four-variable K-Map. Implicants, Prime Implicants.	0.12 0.1.
14	T 6/10	Prime Implicants. Essential Prime Implicants. Simplification procedure. Don't Care Conditions.	3.1-3.4
15	TH 8/10	Simplification procedure using Don't Cares. POS simplification	3.1-3.4
	S 10/10	Major Exam I	
16	U 11/10	Five-variable K-map simplification. Sixvariable K-map simplification. Types of gates: primitive vs. complex gates.	3.3-3.5
17	T 13/10	Buffer & Tri-state buffer, Nand gate, Nor gate, NAND as a universal gates. Two-Level Implementation using Nand gates, NOR as a universal gates Two-Level Implementation using NOR gates. Implementing circuits using Nand/Nor gates.	2.6, 2.8
18	TH 15/10	Complex Gates, Exclusive OR (XOR) Gate, Exclusive NOR (XNOR) Gate, XOR Implementations, Properties of XOR/XNOR Operations. XOR/XNOR for >2 Variables. The Odd & Even Functions.	2.6, 2.8
	TH 15/10	Last Day for Dropping with W	
19	U 18/10	Parity Generation and Checking. Combinational Logic Circuits, Combinational Circuits Design Procedure. Y=X^2 design example. BCD to Excess-3 code conversion. BCD to 7-Segment Decoder for LED. Iterative Arithmetic Combinational Circuits.	5.1
20	T 20/10	Iterative Magnitude Comparator. Adder Design. Half Adder, Full Adder, 4-bit Ripple Carry Adder.	5.1
21	TH 22/10	Iterative Design Examples: Y=X+1, Y=X-Y, Y=3*X,	5.1
22	U 25/10	(Quiz#3)	
23	T 27/10	4-bit RCA: Carry Propagation & Delay. Representation of signed numbers: signmagnitude.	1.2.3-1.24 & 5.1.2- 5.1.3 & 5.8
	W 28/10 (Makeup)	Representation of signed numbers: sign- magnitude, 1's complement, and 2's complement. Overflow detection, Adder/Subtractor for Signed 2's Complement.	1.2.3-1.24 & 5.1.2- 5.1.3 & 5.8

24	TH 29/10	Overflow detection, Enabling Function, Decoders. Implementing Functions using Decoders.	5.2-5.4
25	U 1/11	Implementing Functions using Decoders. Hierarchical design of decoders. Encoders : Priority Encoders. Applications of decoders and encoders.	5.2-5.4
26	T 3/11	(Quiz#4)	
27	TH 5/11	No Class	
28	U 8/11	Multiplexers: 2x1, 4x1. Function implementation using multiplexers. Arithmetic unit design.	5.2-5.4
29	T 10/11	Function implementation using multiplexers, Constructing large MUXs from smaller ones. Demultiplexer. Design Examples using MSI Functional Blocks. Absolute Value of a number, Selecting the larger of two 4-bit numbers (unsigned & signed).	5.4 & 5.8
30	TH 12/11	Adding Three 4-bit numbers, Multiplication and division by a constant. Introduction to Verilog: Verilog Operators.	5.4 & 5.8
	TH 12/11	Last Day for Dropping all Courses with W	
31	U 15/11	Introduction to Verilog: Verilog Operators, Behavioral Description of an Adder, Always block, Procedural Assignment.	
32	T 17/11	If Statements, Case Statements, Comparator, Arithmetic & Logic Unit. Multiplexor, Encoder, Priority Encoder.	
33	TH 19/11	Decoder, Seven Segment Display Decoder. Introduction to Sequential Circuits. Synchronous vs asynchronous sequential circuits, NOR Set–Reset (SR) Latch. NAND Set–Reset (SR) Latch. Clocked (or controlled) D Latch.	6.1-6.3
	S 21/11	Major Exam II	
34	U 22/11	Timing Problem of the transparent Latch. Flip flops, Edge-Triggered D-type Flip-Flop. Synchronous and asynchronous reset. Verilog modeling of D-latch & D-FF.	6.1-6.3
35	T 24/11	Flip-Flop Timing Parameters: Setup and hold times, flip-flop propagation delay. Speed of sequential circuit.	6.1-6.3
36	TH 26/11	Sequential Circuit Analysis: One-Dimensional State Table.	6.4
37	U 29/11	Two-Dimensional State Table, Sate Diagram. Moore and Mealy Models. Analysis of sequential circuit. Implementation and Design of Sequential Circuits.	6.4 & 7.4

38	T 1/12	Analysis of sequential circuit. Implementation	6.4 & 7.4
		and Design of Sequential Circuits.	
39	TH 3/12	Sequential Circuit Design Examples: Y=X-1,	7.4
		Z=2X-Y, Sequence Detector, Password	
		Detection, Sequential Comparator, BCD-to-	
		excess-3 code conversion.	
40	U 6/12	Verilog modeling of D-Latch, D Flip Flop –	8.1
	0 0/12	Synchronous Set/Reset, D Flip Flop-	
		Asynchronous Set/Reset. Verilog Structural	
		modeling of sequential circuits, Verilog FSM	
		modeling, Registers, 4-bit Register, with Clear	
		& Selective Parallel Load by clock gating,	
		Avoiding clock gating. Shift Registers.	
41	T 8/12	Shift Register Applications. Linear Feedback	8.2
41	1 0/12	Shift Register (LFSR). Designing Synchronous	0.2
		Counters using FSMs. Designing Synchronous	
		Counters using registers and adder. Up-Down	
		Synchronous Counter with Enable & Parallel	
		Load. Synchronous Counters. Building Large	
		counters from Small counters.	
12	TIL 10/10	(Quiz#5)	
42	TH 10/12	, -	
	TH 10/12	Dropping all Courses with WP/WF	
43	U 13/12	Modulo counters. Counters as Frequency	8.2
		Dividers.	
44	T 15/12	Verilog modeling of: Parallel Load Register,	5.6
	1 10/12	Shift Register, Up-Down Counter. Read Only	
		Memory (ROM), Combinational Circuit	
		implementation using ROMs.	
45	TH 17/12	Sequential Circuit implementation using	5.6
.5	111 17/12	ROMs. Programmable Implementation	
		Technologies: Overview, Why Programmable	
		Logic? Programmable Logic Configurations:	
	İ	ROM.	
		ROM.	J