Standard & Canonical Forms

CHAPTER OBJECTIVES

- □ <u>Learn</u> Binary Logic and BOOLEAN Algebra<u>Learn</u> How to Map a Boolean Expression into Logic Circuit Implementation <u>Learn</u> How To Manipulate Boolean Expressions and Simplify ThemLesson OjectivesLearn how to derive a Boolean expression of a function defined by its truth table. The derived expressions may be in one of two possible standard forms: The Sum of Min-terms or the Product of Max-Terms.
- 2. Learn how to map these expressions into logic circuit implementations (2-Level Implementations).

MinTerms

- □ Consider a system of 3 input signals (variables) x, y, & z.
- □ A term which ANDs all input variables, either in the true or complement form, is called a minterm.
- □ Thus, the considered 3-input system has 8 minterms, namely:

- □ Each minterm equals 1 at exactly one particular input combination and is equal to 0 at all other combinations
- □ Thus, for example, x y z is always equal to 0 except for the input combination xyz = 000, where it is equal to 1.
- \Box Accordingly, the minterm x y z is referred to as m_0 .
- \square In general, minterms are designated m_i , where i corresponds the input combination at which this minterm is equal to 1.

 \Box For the 3-input system under consideration, the number of possible input combinations is 2^3 , or 8. This means that the system has a total of 8 minterms as follows:

For
$$m_0 = \overline{x} \ \overline{y} \ \overline{z} = 1$$

IFF $xyz = 000$, otherwise it equals 0
 $m_1 = \overline{x} \ yz = 1$

IFF $xyz = 001$, otherwise it equals 0
 $m_2 = \overline{x} \ y\overline{z} = 1$

IFF $xyz = 010$, otherwise it equals 0
 $m_3 = \overline{x} \ yz = 1$

IFF $xyz = 011$, otherwise it equals 0
 $m_4 = \overline{x} \ y\overline{z} = 1$

IFF $xyz = 100$, otherwise it equals 0
 $m_5 = \overline{x} \ y\overline{z} = 1$

IFF $xyz = 101$, otherwise it equals 0
 $m_6 = \overline{x} \ y\overline{z} = 1$

IFF $xyz = 101$, otherwise it equals 0
 $m_6 = \overline{x} \ y\overline{z} = 1$

IFF $xyz = 110$, otherwise it equals 0
 $m_7 = xyz = 1$

IFF $xyz = 111$, otherwise it equals 0

In general,

- \Box For *n*-input variables, the number of minterms = the total number of possible input combinations = 2^n .
- \Box A minterm = 0 at all input combinations except one where the minterm = 1.

MaxTerms

- □ Consider a circuit of 3 input signals (variables) x, y, & z.
- □ A term which ORs all input variables, either in the true or complement form, is called a Maxterm.
- □ With 3-input variables, the system under consideration has a total of 8 Maxterms, namely:

$$(x+y+z),(x+y+\overline{z}),(x+\overline{y}+z),(x+\overline{y}+\overline{z}),(x+y+z),(x+y+\overline{z}),(x+y+\overline{z}),(x+y+z)$$

- □ Each Maxterm equals 0 at exactly one of the 8 possible input combinations and is equal to 1 at all other combinations.
- □ For example, (x+y+z) equals 1 at all input combinations except for the combination xyz = 000, where it is equal to 0.
- \Box Accordingly, the Maxterm (x+y+z) is referred to as M_0 .
- \Box In general, Maxterms are designated M_i , where i corresponds to the input combination at which this Maxterm is equal to 0.

 \Box For the 3-input system, the number of possible input combinations is 2^3 , or 8. This means that the system has a total of 8 Maxterms as follows:

$$\rightarrow M_0 = (x + y + z) = 0$$
 IFF $xyz = 000$, otherwise it equals 1

$$\rightarrow M_1 = (x + y + \overline{z}) = 0$$
 IFF $xyz = 001$, otherwise it equals 1

$$M_2 = (x + y + z) = 0$$
 IFF $xyz = 010$, otherwise it equals 1

$$M_3 = (x + \overline{y} + \overline{z}) = 0$$
 IFF $xyz = 0.11$, otherwise it equals 1

$$M_4 = (\overline{x} + y + z) = 0$$
 IFF $xyz = 100$, otherwise it equals 1

$$M_5 = (x + y + z) = 0$$
 IFF $xyz = 101$, otherwise it equals 1

$$M_6 = (x + y + z) = 0$$
 IFF $xyz = 110$, otherwise it equals 1

$$\rightarrow M_7 = (\bar{x} + \bar{y} + \bar{z}) = 0$$
 IFF $xyz = 111$, otherwise it equals 1

In general,

- \Box For *n*-input variables, the number of Maxterms = the total number of possible input combinations = 2^n .
- \Box A Maxterm = 1 at all input combinations except one where the Maxterm = 0.

Imprtant Result

Using De-Morgan's theorem, or truth tables, it can be easily shown that:

$$M_i = \overline{m_i}$$
 $\forall i = 0, 1, 2,, (2^n - 1)$

Expressing Functions as a *Sum of Minterms* **and Product of Maxterms**

Example: Consider the function F defined by the shown truth table

Now let's rewrite the table, with few added columns.

- A column *i* indicating the input combination
- Four columns of minterms m_2 , m_4 , m_5 and m_7
- ➤ One last column **OR-ing** the above minterms $(m_2 + m_4 + m_5 + m_7)$

x	y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

i	x y z	F	m_2	<i>m</i> ₄	m ₅	m ₇	$m_2 + m_4 + m_5 + m_7$
0	0 0 0	0	0	0	0	0	0
1	0 0 1	0	0	0	0	0	0
2	0 1 0	1	1	0	0	0	1
3	0 1 1	0	0	0	0	0	0
4	1 0 0	1	0	1	0	0	1
5	1 0 1	1	0	0	1	0	1
6	1 1 0	0	0	0	0	0	0
7	1 1 1	1	0	0	0	1	1

- \Box From this table, we can clearly see that $F = m_2 + m_4 + m_5 + m_7$
- \Box This is logical since F = 1, only at input combinations i=2,4,5 and 7
- Thus, by ORing minterm m_2 (which has a value of 1 only at input combination i=2) with minterm m_4 (which has a value of 1 only at input combination i=4) with minterm m_5 (which has a value of 1 only at input combination i=5) with minterm m_7 (which has a value of 1 only at input combination i=7) the resulting function will equal F.
- \square <u>In general</u>, Any function can be expressed by *OR-ing* all minterms (m_i) corresponding to input combinations (i) at which the function has a value of 1.
- □ The resulting expression is commonly referred to as the *SUM of minterms* and is typically expressed as $\mathbf{F} = \sum (2, 4, 5, 7)$, where \sum indicates OR-ing of the indicated minterms. Thus, $\mathbf{F} = \sum (2, 4, 5, 7) = (m_2 + m_4 + m_5 + m_7)$

Example:

- \Box Consider the function F of the previous example.
- We will, first, derive the sum of minterms expression for the complement function F`.

The truth table of F' shows that F' equals 1 at i = 0, 1, 3 and 6, then,

$$F' = m_0 + m_1 + m_3 + m_6$$
, i.e

$$F' = \sum (0, 1, 3, 6), \tag{1}$$

$$\mathbf{F} = \sum (2, 4, 5, 7) \tag{2}$$

• Obviously, the sum of minterms expression of F` contains <u>all</u> minterms that do not appear in the sum of minterms expression of F.

i	x	y	z	F	F'
0	0	0	0	0	1
1	0	0	1	0	1
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	1	0
6	1	1	0	0	1
7	1	1	1	1	0

Using De-Morgan theorem on equation (2),

$$\overline{F} = \overline{(m_2 + m_4 + m_5 + m_7)} = \overline{m_2}.\overline{m_4}.\overline{m_5}.\overline{m_7} = M_2.M_4.M_5.M_7$$

This form is designated as the *Product of Maxterms* and is expressed using the ∏ symbol, which is used to designate product in regular algebra, but is used to designate AND-ing in Boolean algebra.

Thus,

$$F' = \prod (2, 4, 5, 7) = M_2 \cdot M_4 \cdot M_5 \cdot M_7$$
 (3)

From equations (1) and (3) we get,

$$F' = \sum (0, 1, 3, 6) = \prod (2, 4, 5, 7)$$

In general, any function can be expressed both as a sum of minterms and as a product of maxterms. Consider the derivation of F back from F given in equation (3):

$$F = \overline{F} = \overline{m_0 + m_1 + m_3 + m_6} = \overline{m_0} \cdot \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_6} = M_0 \cdot M_1 \cdot M_3 \cdot M_6$$

$$F = \sum (2, 4, 5, 7) = \prod (0, 1, 3, 6)$$

$$F' = \prod (2, 4, 5, 7) = \sum (0, 1, 3, 6)$$

Conclusions:

- Any function can be expressed both as a sum of minterms (∑ m_i) and as a product of maxterms. The product of maxterms expression (∏ M_j) expression of F contains <u>all</u> maxterms M_j (∀ j ≠ i) that do not appear in the sum of minterms expression of F.
- The sum of minterms expression of F' contains <u>all</u> minterms that do not appear in the sum of minterms expression of F.
- This is true for all complementary functions. Thus, each of the 2^n minterms will appear either in the sum of minterms expression of F or the sum of minterms expression of \overline{F} but not both.
- The product of maxterms expression of F' contains <u>all</u> maxterms that do not appear in the product of maxterms expression of F.
- This is true for all complementary functions. Thus, each of the 2^n maxterms will appear either in the product of maxterms expression of \overline{F} but not both.

Example:

Given that $F(a, b, c, d) = \sum (0, 1, 2, 4, 5, 7)$, derive the product of maxterms expression of F and the 2 standard form expressions of F.

Since the system has 4 input variables (a, b, c & d) \rightarrow The number of minterms and Maxterms = 2^4 = 16

$$F(a, b, c, d) = \sum (0, 1, 2, 4, 5, 7)$$

- 1. List all maxterms in the Product of maxterms expression
- $\vec{F} = \prod (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).$

$$F = \prod (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)$$

2. Cross out maxterms corresponding to input combinations of the minterms appearing in the sum of minterms expression

$$F = \prod (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).$$

Similarly, obtain both canonical form expressions for F'

F' =
$$\sum$$
 (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).
F' = \prod (0, 1, 2, 4, 5, 7)

Canonical Forms:

The sum of minterms and the product of maxterms forms of Boolean expressions are known as the canonical forms () of a function.

Standard Forms:

- A product term is a term with ANDed literals*. Thus, AB, A'B, A'CD are all product terms.
- A minterm is a special case of a product term where all input variables appear in the product term either in the true or complement form.
- A sum term is a term with ORed literals*. Thus, (A+B), (A'+B), (A'+C+D) are all sum terms.
- A maxterm is a special case of a sum term where all input variables, either in the true or complement form, are ORed together.
- Boolean functions can generally be expressed in the form of a Sum of Products (SOP) or in the form of a Product of Sums (POS).
- The sum of minterms form is a special case of the SOP form where all product terms are minterms.
- The product of maxterms form is a special case of the POS form where all sum terms are maxterms.
- The SOP and POS forms are Standard forms for representing Boolean functions.

^{*} A Boolean variable in the true or complement forms

Two-Level Implementations of Standard Forms

Sum of Products Expression (SOP):

- Any SOP expression can be implemented in 2-levels of gates.
- The first level consists of a number of AND gates which equals the number of product terms in the expression. Each AND gate implements one of the product terms in the expression.
- The second level consists of a *SINGLE* OR gate whose number of inputs equals the number of product terms in the expression.

Example Implement the following SOP function

$$F = XZ + Y`Z + X`YZ$$

Two-Level Implementation (F = XZ + Y`Z + X`YZ)

Level-1: AND-Gates ; Level-2: One OR-Gate

Product of Sums Expression (POS):

- Any POS expression can be implemented in 2-levels of gates
- The first level consists of a number of OR gates which equals the number of sum terms in the expression, each gate implements one of the sum terms in the expression.
- The second level consists of a *SINGLE* AND gate whose number of inputs equals the number of sum terms.

Example Implement the following SOP function

$$F = (X+Z)(Y^+Z)(X^+Y+Z)$$

Two-Level Implementation $\{F = (X+Z)(Y+Z)(X+Y+Z)\}$

Level-1: OR-Gates ; Level-2: One AND-Gate