King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 102 (Spring 2011) Major Exam II Thursday April 28, 2011

Time: 120 minutes, Total Pages: 9

Name:	ID:	Section:

Notes:

- Do not open the exam book until instructed
- **Calculators are not allowed** (*basic, advanced, cell phones, etc.*)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	26	
2	16	
3	12	
4	26	
5	20	
Total	100	

Question 1.

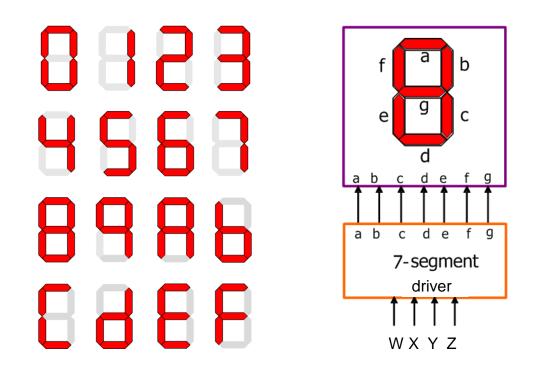
(A). For the following Boolean function $F(A, B, C, D)=\Sigma m(0, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13)$

AB	00	01	11	10
00	1	1	0	1
01	0	1	1	1
11	1	1	0	0
10	1	1	0	1

- (i) Identify all the *prime implicants* and the *essential prime implicants* of F. (7+2=9 points)
- (ii) Simplify the Boolean function **F** into a <u>minimal sum-of-products</u> expression. (5 points)

(B) Consider the following Boolean function F together with the don't care conditions d $F(A, B, C, D) = \Sigma m(0, 2, 5, 8, 10), d(A, B, C, D) = \Sigma m(1, 4, 7, 9, 11, 12, 14, 15)$

AB	00	01	11	10
00	1	Х	0	1
01	Х	1	Х	0
11	Х	0	X	X
10	1	X	Х	1


- (i) Simplify the Boolean function **F** together with the don't care conditions **d**, into <u>minimal sum-of-products</u> expression. (4 points)
- (ii) Starting with the sum-of-products expression, implement the function using only **NAND** gates and **Inverters**. (4 points)
- (iii) Starting with the sum-of-products expression, implement the function using only **NOR** gates and **Inverters**. (4 points)

Question 2.

(16 Points)

Design a 3-bit decrementer using only basic gates (AND, OR, and NOT). The circuit takes a 3-bit unsigned number $I=I_2I_1I_0$ as input and generates a 3-bit output number $Z = Z_2Z_1Z_0$ and a Valid output V. Whenever I > 0 the output Z = I-1 and V=1. If I=0, the output is invalid which is indicated by an output V=0. Derive the simplified Boolean expressions of all outputs.

Question 3.

It is required to design a 7-segment display **driver** whose input is a Hexadecimal digit such that the resulting 7-seg display is as shown above (Note that HEX digits larger than 9 are displayed as $A \rightarrow A$, $B \rightarrow b$, $C \rightarrow C$, $D \rightarrow d$, $E \rightarrow E$, $F \rightarrow F$). The driver circuit should generate the 7-segment control signals (a to g).

If a single **decoder** and number of **OR** gates are used to build this driver circuit;

- a. What is the minimum size of the decoder? (3 points)
- b. What is the minimum a number of OR gates required to build the 7-segment display driver circuit (3 points)
- c. Draw the block diagram of the circuit showing in details how the control signals **g** and **c** are generated. (6 points)

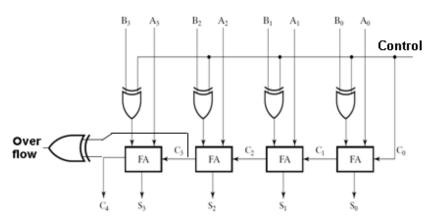
Page 7 of 10

Question 4.

(A)

i. Determine the decimal value of the 7-bit binary number (1011010) when interpreted as:

An unsigned		A signed-1's complement	A signed-2's
number	number	number	complement number


ii. Represent the decimal value (- 21) in binary <u>using a total of 7 bits</u> in the following notations:

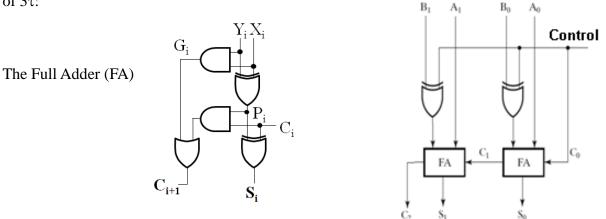
A signed-magnitude number	A signed-1's complement number	A signed-2's complement number	

iii. Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the <u>carry values</u> from the last two stages. For each of the three operations, check and indicate whether overflow occurred or not.

	a. 01101 +10110	b. 01010 - 11001	c. 11010 - 00100
Overflow			
Occurred? (Yes/No)			

(B) Consider the 2's complement 4bit adder/subtractor hardware shown (FA = full adder).

i. Fill in the spaces in the table below.


Inputs			Outputs			
Α	В	Control	S (binary)	C_4	C ₃	Overflow
0111	0101	0				
1010	1101	1				

ii. What type of 4-bit adder is used in this design? (Circle the correct answer):

- Carry-ripple adder

- Carry-look-ahead adder

(C) Consider a 2-bit version of the hardware above which is shown below. Shown also is full adder used. Given that each basic gate (i.e. AND, OR, NOT) has a delay of τ ns and the XOR gate has a delay of 3τ :

i. Express, as a function of τ , the longest time interval needed for the hardware to perform an operation on the two 2-bit numbers.

ii. If such an operation must be performed in no longer than 33 ns, calculate the maximum basic gate delay allowed.

Question 5.

(20 Points)

(A) Given the function

 $F(A,B,C) = \Pi M (0,2,4,5,6)$

i. Implement F using one (1) 3-to-8 decoder, and one (1) <u>NOR</u> gate. Properly label all input and output lines.

ii. Implement F using two (2) 2-to-4 decoders with enable, one (1) inverter, and one (1) **OR** gate. Properly label all input and output lines.

(B) Given the function

F (**A**,**B**,**C**) = Σ m (1,3,7)

i. Implement F using an 8-to-1 MUX. Properly label all input and output lines.

ii. Implement F using a 4-to-1 MUX. Show how you obtained your solution, and properly label all input and output lines.