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Chapter 1

Introduction

System-on-a-chip (SOC) devices are an enabling technology for a wide spectrum of em-

bedded computing applications. The principal characteristics of these devices are that they

contain some mixture of processor cores, embedded memory and a variety of mixed signal

interfaces, and implement the majority of the functions that previously occupied an entire

circuit board onto a single silicon die. The increasing size of SOCs has increased the size

of test data significantly. Dealing with large volume of test data is one of the major chal-

lenges in testing SOCs [?][?]. The amount of time required to test SOCs depends on the

size of the test data and the speed of the data transfer channel. The cost of testers increases

significantly with the increase in their speed, channel capacity, and memory.

The problem of large test storage requirement has been solved by two techniques in the lit-

erature, namely test compaction and compression. The goal of test compaction is to reduce

(or compact) the number of test vectors into a smaller number that achieves the same fault

coverage. Test compaction can be classified into two classes: post-generation compaction

1



and compaction during test generation. In the first class, the number of test vectors is re-

duced after they are generated, whereas in the second class, the number of test vectors is

minimized during the automatic test pattern generation (ATPG) process. Examples of the

first class include reverse order fault (ROF) simulation [?], forced pair-merging (FPM) [?],

redundant vector elimination (RVE) [?], and essential fault reduction (EFR) [?]. Examples

of the second class include dynamic compaction [?], and COMPACTEST [?].

The objective of test compression is to reduce the number of bits needed to represent the

test set. For test data compression, it is essential that the compression is lossless. Several

test compression techniques have been proposed [?, ?, ?, ?, ?, ?, ?, ?, ?].

Compaction and compression techniques can achieve better results if the test set is com-

posed of test cubes, i.e., if the test set is partially specified or relaxed. In fact, most compres-

sion techniques in the literature assume a relaxed test set. Without the dynamic compaction

option, ATPGs generally generate fully specified test sets.

Besides compaction and compression, test relaxation can also help in test power reduction

as well. The unspecified portions of the test set can be specified in a way to reduce the

power dissipation during the scan-in of tests [?].

One obvious way to solve the test relaxation problem, i.e., extracting a partially specified

test set from a fully-specified one, is to use a Bitwise Relaxation (BR) method, where every

bit is tested whether changing it to an x reduces the fault coverage or not. Obviously,

this method is O(nmk), where n is the number of primary inputs, m is the number of

test vectors, and k is the time needed to fault simulate the circuit under the given test set.

Obviously, this method is impractical for large circuits.

A partially specified test set can also be obtained using dynamic compaction technique [?].
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In dynamic compaction, every partially specified vector is processed immediately after its

generation by trying to specify primary inputs (PIs) that are unspecified so that it will de-

tect additional new faults. Generally, in dynamic compaction, the unspecified assignments

on primary inputs are filled with random values. This feature can be disabled to obtain a

compact and relaxed test set. However, Dynamic compaction slows down the test gener-

ation process. In addition, it cannot benefit from random test pattern generation, because

this technique is fault-oriented. Furthermore, this technique does not solve the problem of

relaxing an already existing test set. Thus, effectively, the only solution to the problem of

relaxing a given test set is the BR method. However, a recent and parallel research has

been conducted to solve the relaxation problem. This work has been proposed by Kajihara

and Miyase [?] in 2001. This is discussed in Chapter 2. Due to the unavailability of the

experimental test sets used in [?], no comparison is made with this technique.

This thesis addresses the test relaxation problem. We propose three solutions to this prob-

lem. The first solution is based on the critical path tracing (CRIPT) algorithm. As with

CRIPT, this solution is not exact in the sense that the fault coverage might reduce after re-

laxation. However, as will be shown in the experimental results, the drop in fault coverage

is small for most of the benchmark circuits. This solution is referred to as the CRIPT-based

relaxation (CRIPTR) technique.

In the second proposed solution, the relaxed test set maintains the same fault coverage of

the original test set. This solution does not utilize CRIPT, but it simply identifies all the

newly detected faults under a given test vector and marks all the lines whose values are

necessary to detect the faults. Unmarked inputs are relaxed. This solution is referred to

as the Single-Value Relaxation (SVR) technique. This name has been chosen since this

technique justifies only a single value which is the fault-free value. This is unlike the third
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solution, which improves the SVR technique by justifying both the fault-free and the faulty

machines, without worrying from where a controlling value is justified -as it is the case in

the previous two solutions- as long as the considered faults are detected. The third solution

is referred to as the Two-Values Relaxation (TVR) technique.

Usually, there are more than one relaxed version of a given fully specified test set, and some

versions give more x’s than others. Finding the version with the maximum number of x’s

is an NP-complete problem. However, cost functions are utilized to maximize the number

of unspecified bits. In this work, we propose new fanout-based cost functions, which, in

average, outperform regular cost functions [?] with respect to the number of extracted x’s.

All the proposed techniques obtain comparable relaxation quality as compared to the BR

method, and they are faster by several orders of magnitude. However, as compared to each

other, the SVR and the TVR techniques achieve better results in terms of CPU time and

fault coverage. In terms of the average relaxation quality, the CRIPTR technique obtains a

slightly better average than both the SVR and the TVR techniques.

1.1 Problem Definition

The problem under consideration can be defined as follows:

Given a fully specified test set T of a given combinational circuit, it is required

to relax T while maintaining the fault coverage and maximizing the percentage

of x’s.

This problem is referred to as the test relaxation problem.
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1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, some basic background is covered. Then,

the CRIPT Algorithm is reviewed. This is followed by a description of a number of com-

paction and compression techniques and how they can be improved when provided with

relaxed test sets. A discussion of the existing solution presented by Kajihara and Miyase

in [?] is also presented in Chapter 2. In Chapter 3, the three proposed relaxation techniques

are presented together with the proposed fanout-based and combined cost functions. Ex-

perimental results are given in Chapter 4. Finally, the thesis ends by some conclusions and

future directions.
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Chapter 2

Literature Review

This chapter provides some necessary background information. The first section lists some

concepts and definitions. Next, the critical path tracing algorithm is reviewed. Then, some

of the test compaction techniques for combinational circuits are described. This is followed

by a number of the existing test compression techniques. Compaction and compression

techniques are considered as the motivation of our work since the effectiveness of compres-

sion and compaction techniques can generally be improved by relaxing their input test sets.

As we will see, relaxation helps a lot in most of the presented compaction techniques. For

test compression, relaxation is crucial, because the x’s can always be specified to maximize

the compression ratio. In this Chapter also, a discussion of the BR method and the work

presented by Kajihara and Miyase [?] is given.
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2.1 Background

The scientific study of any discipline must be built upon rigorous definitions arising from

fundamental concepts. What follows is a list of definitions and basic concepts used through-

out this thesis. For the sake of clarity, rigor has been sacrificed where appropriate.

2.1.1 Preliminaries

The Single Stuck-Fault Model

VLSI circuits are vulnerable to several kinds of physical faults [?]. Logical faults are used

to represent the effect of physical faults on the behavior of the modelled system. One

advantage of using logical faults to model physical faults is that the problem of fault analysis

becomes a logical instead of a physical problem. The complexity of such a logical problem

reduces greatly since many physical faults may be modelled by one logical fault. Another

advantage is that some logical fault models are technology-independent in the sense that the

same fault model is applicable to many technologies. Also, tests derived for logical faults

may be used for physical faults whose effects on circuit behavior is not obvious or is too

complex to be analyzed.

Throughout this thesis, it is always assumed that the system has at most one logical fault.

This simplifying single-fault assumption is justified by the frequent testing strategy, in

which a system should be tested often enough so that the probability of more than one

fault developing between two consecutive testing experiments is sufficiently small.
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In this work also, the Single-Stuck Fault (SSF) Model is assumed. This fault model belongs

to structural fault models. Structural fault models assume that components are fault-free

and only their interconnections are affected. In the SSF model, a signal line l in the Circuit

Under Test (CUT) can be stuck-at a logical value v (v ∈ {0, 1}), and this is denoted by

l s-a-v, or l/v. This logical fault model is also refereed to as the classical or standard fault

model because it has been the first and most widely studied and used. Although its validity

is not universal, its benefits are apparent from the following characteristics:

• It represents many different physical faults.

• It is technology-independent, as the concept of a single line being stuck at a logic

value can be applied to any structural model.

• Experience has shown that tests that detect SSFs detect many nonclassical (eg., bridg-

ing) faults as well.

• Compared to other fault models, the number of SSFs in a circuit is small, and the

number of faults that should be explicitly analyzed can be reduced by fault-collapsing

techniques.

• SSFs can be used to model other types of faults.

Fault Detection

In a given CUT, an SSF could be detectable or undetectable. In a non-redundant combi-

national logic circuit, all SSFs are detectable; however, a redundant combinational logic

circuit may contain undetectable (or redundant) faults. A test vector is a string of bits that
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is applied to the primary inputs (PIs) of a combinational circuit to detect one or more SSFs.

A test cube is a partially specified test vector, where only the necessary PIs for detecting

the targeted fault(s) are assigned binary values (0 or 1). The other PIs are left as x’s. If

all PIs are assigned binary values, then the vector is fully specified. Two test cubes are

compatible if they don’t specify contradicting PI assignments. For example, the two test

vectors t1 = 001x and t2 = x0x1 are compatible, whereas the two test vectors t3 = 001x

and t4 = 10x1 are incompatible because they have contradicting assignments in their most

significant bits. Given a collection of test cubes, i.e., a test set, the fault coverage of this

collection is defined to be the ratio between the number of faults detected by such test set

and the total number of faults under consideration. When dealing with sequential circuits,

the order of the test cubes within a given test set matters and should be preserved, otherwise,

the fault coverage might get affected. However, for combinational circuits, ordering of test

cubes within a test set does not matter and does not have any effect on the fault coverage.

Independent & Compatible Faults

A set of faults, F , is said to be independent if no two faults in F can be detected by a single

test vector. Clearly, the cardinality of the largest independent fault set for a given CUT is a

lower bound on the number of test vectors that can cover a given set of faults. On the other

hand, a compatible fault set contains faults that are detectable by a single test vector.

Essential Faults

The following definitions assume a given fault list F of a circuit and a given test set T for

F .
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Definition 2.1: The set of faults detectable by a pattern t in T is denoted by DET(t).

Definition 2.2: The essential faults of a pattern t in T , ESS(t), are the faults which are

detected by t only and not by any pattern in T other than t.

Definition 2.3: The potential essential faults of a set of patterns P ⊆ T , PESS(P ), are the

set of faults that are detected by every vector in P but not by any other vector in T − P .

Notice that the last definition implies that every vector in P detects (among other faults,

if any) every fault in PESS(P ), and every fault in PESS(P ) is detected by every vector in

P . However, no vector in T − P detects any fault in PESS(P ), and no fault in PESS(P ) is

detected by any pattern in T − P .

ATPGs & RPGs

An Automatic Test Pattern Generator (ATPG) is an algorithm that generates a test set to

detect given target faults. Examples of ATPG algorithms include D-Algorithm, PODEM,

FAN, TOPS, FAST [?]. These ATPGs are referred to as deterministic ATPGs. On the

other hand, there are Random Pattern Generators (RPGs), which involve only generation of

random test vectors without targeting certain faults.

Full-Scan Design

To simplify testing of sequential circuits, flip-flops are modified to become directly control-

lable from primary inputs, and observable through primary outputs. A scan register or a

scan chain is a set of such modified flip-flops that have a serial-in pin that is used to shift the
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desired values into the register and a serial-out pin to shift the content of the register out. In

full-scan design, the scan chain is composed of all flip-flops of the circuit. In partial scan

design, only a partial set of flip-flops is included in the scan chain. The proposed techniques

works only for full-scan (or combinational) circuits.

Definitions Related to the Proposed Work

Definition 2.4: Relaxation Quality of a given partially specified test set (denoted by %x) is

defined to be the ratio between the number of x’s (unspecified bits) and the total number of

bits in the test set. Mathematically speaking,

%x =
number of x’s in the test set

total number of bits in the test set

Throughout this thesis, the terms relaxation quality, and percentage of x’s are used inter-

changeably.

Definition 2.5: Let line l be an input of a gate G. The output of l is defined to be the output

of G.

Definition 2.6: Let line l be an input of a gate G. The side inputs of line l are defined to be

the input lines of G other than l.

Definition 2.7: The requirement list L of a given fault is the set of lines whose values are

required to detect (i.e., excite and propagate) that given fault.

Definition 2.8: A line l is said to be reachable from a stem s if the fault effect in stem s

reaches line l.
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2.1.2 Critical Path Tracing (CRIPT)

In this section, the main points of the CRIPT algorithm are summarized. This algorithm is

presented in [?], and is used to fault simulate combinational circuits. Before introducing the

algorithm, two necessary definitions are given.

Definition 2.9: A line l has a critical value v under the test vector t iff t detects the fault l

stuck-at-v. A line with a critical value in t is said to be critical in t [?].

Definition 2.10: A gate input is said to be sensitive in a test vector t if complementing its

value changes the value of the gate output to a known logic value [?].

The following theorem tells us how to determine critical inputs of a gate whose output is

critical.

Theorem 2.1:if a gate output is critical, then its sensitive inputs, if any, are also critical [?].

Algorithm ?? outlines the main CRIPT algorithm for evaluating a given test vector. It

assumes that true-value simulation, including the marking of sensitive gate inputs, has been

performed. The algorithm processes every logic cone starting at the circuit primary outputs

and alternates between two main operations: critical path tracing inside a fanout-free region

(FFR), represented by the procedure Extend(), and checking a stem for criticality done

by the function Critical(). Once a stem j is found to be critical, the algorithm continues

tracing from j.

Algorithm ?? shows the recursive procedure Extend(), which backtraces all critical paths

inside an FFR starting from a given line l by following lines marked as sensitive. Extend()

stops at FFR inputs and collects all the stems reached in the set StemsToCheck.
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Algorithm 2.1 Critical path tracing for one test [?].
for every primary output z do

StemsToCheck ← φ
Extend(z)
while StemsToCheck 6= φ do

j ← the highest level stem in StemsToCheck
remove j from StemsToCheck
if Critical(j) then

Extend(j)
end if

end while
end for

Algorithm 2.2 Extend(i) [?]
1: mark i as critical
2: if i is a fanout branch then
3: add the stem of i to StemsToCheck
4: else
5: for every input j of i do
6: if sensitive(j) then
7: Extend(j)
8: end if
9: end for

10: end if
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Our implementation of the function Critical() is shown in Algorithm ??. This is different

from the two variations proposed in [?]. One of the variations in [?] has been implemented,

however no improvement in terms of CPU time has been observed. The other variation is

complex to implement, and due to the unavailability of the CRIPT source code, the imple-

mentation shown in Algorithm ?? has been adopted. Although our implementation is less

efficient, it is employed for its simplicity. When a stem is non-reconvergent, it is critical.

Otherwise, the stem is checked if it has been fault simulated. If not, then fault simulate

the stem and check whether the fault propagates to the required output. If it propagates,

the stem is critical; otherwise it is not. Reconvergence information are gathered during

preprocessing and are independent of the test vector applied.

Algorithm 2.3 Critical(s)

1: if s is non-reconvergent then
2: return TRUE
3: else if stem has not been fault simulated then
4: fault simulate the stem
5: end if
6: if the stem fault propagates to the required output then
7: return TRUE
8: else
9: return FALSE

10: end if

Sometimes critical path tracing may not identify all the faults detected by a test. This may

occur in a test t that propagates the effect of a fault on multiple paths that reconverge at a

gate without sensitive inputs in t. More precisely, critical path tracing does not detect faults

that can only be detected by multiple-path sensitization with reconvergence at a gate with

nonsensitive inputs. In Figure ??, the fault effects of B/0 under the test 111 propagate on

two paths and reach the reconvergence gate on nonsensitive inputs. In this case, critical path

tracing would not reach B and thus would not flag B/0 as detected. However, this situation
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Figure 2.1: A circuit that shows the approximate nature of the CRIPT algorithm.

occurs seldom in practical circuits, and even when it occurs, the impact is negligible. This

is why the critical path tracing algorithm is considered as an approximate algorithm.

2.2 Benefits Of Test Relaxation

This Section describes some test compaction techniques, test compression techniques, and a

test power reduction technique. Along with the description, it is mentioned (either implicitly

or explicitly) how each technique can benefit from test relaxation. Thus, this section can be

considered as our motivation.

2.2.1 Test Compaction Techniques

Test generation for digital circuits has been extensively investigated. Most of these efforts

concentrate on how to efficiently generate a complete test set for the given circuit without

specifically considering the size of the test set. The test set size, however, is directly pro-

portional to the cost and time of test application, which may involve more than thousands

of chips. This test efficiency problem is especially acute in the scan-designed circuits, for

which each test pattern must be scanned in before being actually applied. Clearly, a com-

pact test set is highly desirable for economical testing. Furthermore, a compact test set also

results in a smaller demand for buffers in Automatic Test Equipments (ATEs) as well as less

hardware overhead in an IC with in-chip test storage.
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Although the ideal goal of test compaction is to obtain the minimal test set, its computation

is unfortunately not feasible because the complexity of calculating the minimum number

of tests required to detect all single stuck-at faults in an irredundant combinational circuit

has already been proven to be NP-hard [?]. Various heuristic methods for test set com-

paction have thus been proposed [?, ?, ?, ?, ?, ?, ?]. These methods can be classified into

compaction during test generation and post-generation compaction. The key idea of com-

paction during test generation is that if the fault coverage of each test pattern is maximized

during test generation, then the total number of patterns can be reduced. In post-generation

compaction, a given test set is used as the starting point to perform compaction.

Some compaction techniques can greatly benefit from relaxing their input test sets. In what

follows, we describe some of the existing compaction techniques, and whenever possible,

we describe how they can be improved when provided with partially specified input test

sets.

Compaction During Test Generation

Dynamic Compaction

In 1979, Goel and Rosales [?] presented the first dynamic compaction technique. After the

generation of a test vector for a given target fault, unspecified bits of the vector are pro-

cessed by trying to assign them a value so that the vector will detect additional new faults.

Algorithm ?? outlines such a technique that is activated after a test t has been successfully

generated for the selected target fault. The function promising decides whether t is a good

candidate for dynamic compaction. For example, if the percentage of PIs with x values is
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less than a user defined limit, t is not processed for compaction. While t is promising, try to

extend t (by changing some of the unspecified PIs) such that it detects a selected secondary

target fault g. This is done by attempting to generate a test for g using only the unspecified

PIs.

Notice that after an ATPG system is used to generate a test vector for the target fault, unspec-

ified bits of the vector can be filled randomly. Then, the vector can be relaxed according to

one of our proposed relaxation techniques. The unspecified bits of the vector can be used to

detect additional new faults, in addition to the target fault and the faults detected randomly.

Algorithm 2.4 Dynamic Compaction [?]
while promising(t) do

Select a secondary target fault g
Try to extend t to detect g as well

end while

Compaction Based On Independent Fault Sets

Akers et al. [?] provide an algorithm to generate maximal independent fault sets based on

the ideas of fault dominance and fault equivalence. The independent fault sets generated

form the basis for generating test patterns. From these independent fault sets, a fault match-

ing Algorithm is used to generate sets of compatible faults. The ultimate goal is to generate

a minimal number of compatible fault sets, since each compatible fault set is detectable by

at least a single test vector. Thus, minimizing the number of compatible fault sets implies

minimizing the number of test vectors needed to cover a given set of faults. This tech-

nique has an optimistic bound on the size of the largest independent fault set. Tromp [?]

improved over Akers et al. technique in three ways. The independent fault set generation

17



procedure is improved so that larger independent fault sets and more realistic bounds can

be obtained. A heuristic Algorithm is used for this purpose. Another improvement is that

faults are matched into compatible fault sets using a bipartite matching algorithm one fault

at a time. The implication procedure is also improved to enable more success in finding all

compatible fault sets for a single test vector. The results are provided for small benchmark

circuits only.

COMPACTEST

COMPACTEST is a system introduced by Pomeranz et al. [?]. This system starts with a

preprocessing step to order the faults in the fault list. The ordering is based on a heuris-

tic which tries to compute Maximum Independent Fault Set (MIFS) inside every maximal

fanout free region (FFR) of the circuit. The largest independent fault set found is placed

on the top of the fault list followed by the next largest and so on. A target fault is taken

from the ordered fault list and a test vector is generated for it. This fault is referred to as

the primary target fault. During the test generation of the primary target fault, preprocess-

ing information is used to obtain a test that detects additional faults in the FFR to which

the primary fault belongs. Next comes the main heuristic of COMPACTEST, i.e., maxi-

mal compaction. The heuristic works as follows. Each specified input of the test vector is

considered separately. If the generated test vector is still a test for the fault when the input

value is flipped, then the input value is flagged. After all specified inputs are examined,

all flagged inputs are turned into x’s. It is possible that the resulting vector is no longer

a test for the primary target fault; however, this provides maximum flexibility in detecting

additional faults by the same test vector. Notice that maximal compaction is similar to the

BR technique with only a minor modification. Notice that our proposed techniques can fit
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here very well. After a test is generated for the primary target fault, unspecified inputs can

be assigned randomly to detect additional faults. Then, one of our proposed techniques can

be used to relax unnecessary assignments. Maximal compaction can be applied next.

After the test is maximally compacted, another target fault, which is refereed to as secondary

target fault, is picked from the ordered fault list and the unspecified bits are used to generate

a test for this fault, i.e., the specified inputs are not changed. Whenever a secondary fault

detection contradicts with the already specified bits, another secondary target fault is picked

and the bits updated to detect the previous secondary target fault are unspecified again.

Next, the test generator tries again to detect other faults belonging to the same FFR of the

secondary fault. Finally, the part of the test that was specified to detect the secondary target

fault is maximally compacted. This process is repeated until all inputs are specified or all the

faults in the fault list are tried as secondary target faults. At last, if there are any unspecified

bits, they are randomly specified. The test vector obtained is fault simulated and all detected

faults are removed from the fault list. Then a new primary target fault is picked from the

top of the fault list and the whole process is repeated. The entire process is repeated until

either the fault list is empty or all the faults in the fault list are tried as primary faults.

Fault selection and maximal compaction are not the only heuristics employed in COM-

PACTEST. There is the rotating backtrace heuristic. This aims at sensitizing different paths

every time a value on a line is to be justified. As a consequence, different faults, which

propagate through different paths, are potentially detected by the test vector generated. In

this heuristic, each gate is associated with a counter, which is initially 0. Whenever the

justification procedure reaches the output of a gate which can be justified by setting only

one of its inputs to a controlling value, the procedure selects the input whose number is

given by the counter. The counter is then incremented modulo the number of the inputs
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of the justified gate. Experiments show that COMPACTEST outperformed all pre-existing

dynamic compaction techniques.

Kajihara et al. [?] improved upon [?]. They improved the procedure of computing inde-

pendent fault sets which are used to pick targets for pattern generation. They also calculated

tighter lower bounds for the size of the smallest test set. They improved upon rotating back-

trace as well. They also proposed a new compaction technique termed double detection.

The ultimate goal of double detection is to use input values that remain unspecified during

the test generation process in order to increase the potential for obtaining and then dropping

redundant test vectors. This is achieved by detecting faults twice before dropping them from

the fault list.

COMPACT

Ayari and Karminska [?] presented a simple to implement approach for dynamic test vector

compaction called COMPACT. After test pattern ti is generated, instead of selecting the

next untested fault from the fault list and attempting test generation, COMPACT is used to

compare previously generated test vectors. If ti is compatible with any previously gener-

ated test tj (j < i), then tj is replaced by tj ∩ ti and ti is discarded. The intersection is

performed bit-by-bit and an efficient data structure implementation is proposed. Although

the experimental results are only a bit inferior to those of [?], the proposed procedure itself

is considerably more efficient. This technique can benefit a lot from our work as follows.

After an ATPG generates a test vector, it can randomly fill unspecified bits to detect more

faults. Then, the generated test vector is relaxed and merged with the previously generated

test vectors.
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Post-Generation Compaction Techniques

Reverse Order Fault Simulation (ROFS)

Schulz et al. [?] presented an efficient test pattern generator called SOCRATES. It was

not their primary concern to have a compact test set. However, they suggested a technique

called reverse order fault simulation to compact the set of test vectors which forms the

output of their system. This compaction technique works as follows. A fault simulation in

reverse order is carried out at the final stage of the ATG process. In other words, the test

set is fault simulated in reverse order of generation. Any test vector that does not detect a

fault undetected by the vectors simulated earlier is dropped from the test set, and hopefully

we end up with a compact version of the generated test set. It is observed experimentally

that often all the covered faults are detected using only a subset of the original set of test

vectors. The intuitive reason behind this is simply that the test vectors which are further

down the list detect faults which are most difficult to detect. Therefore, if we fault simulate

a test which is at the end of the list first, it not only detect a difficult fault, it also detects

many other faults by pure chance. This way, difficult faults are removed away early. It is a

fairly effective technique for a first compaction attempt. This technique also indicates the

importance of the way in which faults are ordered in the fault list.

ROFS technique may benefit from our proposed work as follows. After a test set is com-

pacted according to this technique, relax it. Then, fill the unspecified bits randomly. Then

apply ROFS again, in a hope that some of the vectors became redundant after the random

filling of the relaxed test set. This process is repeated until the test set size stabilizes.
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Reverse Order Test Compaction (ROTCO)

Reddy et al. introduced ROTCO [?] method which is similar to ROFS method with one dif-

ference: it allows test vectors to be changed during the compaction process. This increases

the flexibility in detecting faults detected by earlier vectors and results in a more compacted

test set. Although the original test set is modified in this method, the original fault coverage

is not compromised.

To perform reverse order test compaction, we need to keep track of two things: (1) The faults

detected by each vector, and not detected by any test vector generated earlier, and (2) The

positions of randomly specified bits that are filled by the ATG system after the generation of

a test vector. For (2), a bit filled randomly with 0(1) is denoted by xo(x1). This information

is readily available in most ATG systems. However, if it is desired to compact a randomly

generated test set using this technique, then our proposed techniques can help in relaxing

the test set before applying ROTCO on it. However, the difference here is that ROTCO does

not need to know whether an unspecified bit was a zero or a one, because unspecified bits

generated by our techniques do not contribute to the fault coverage of the whole test set.

Let the test vectors to be compacted be t1, t2, · · · , tk. Let ti detect the set of faults Fi, where

Fi contains all the faults detected for the first time by ti. Consider the tests in reverse or-

der, i.e., tk, · · · , t2, t1. When ti is considered, all xo and x1 values in ti are first changed

into x (a conventional don’t-care). This is done to have maximum flexibility in the com-

paction process. The fault lists F1, F2, · · · , Fi−1 are considered in the order of increasing

cardinality. Let |Fj1 | ≤ |Fj2| ≤ · · · ≤ |Fji−1
|, where the index jn ∈ {1, 2, · · · , i− 1} and

n ∈ {1, 2, · · · , i− 1}. An attempt is made to detect every fault in Fj1 , Fj2 , · · · , Fji−1
(in

this order), by specifying only x values in ti which have not yet been specified. The order
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within a set Fjk
is arbitrary. COMPACTEST [?] is employed for this purpose. As some

lines in the circuit are already set to specified values, the test generation process is simpler

than test generation that starts with all inputs unspecified. At the end, if an input is still at

x, it is changed back to its original value.

The modified test ti, resulting from the above process, may differ from the original ti, so it

is possible that it no longer detects some of the faults in Fi that were detected due to random

specification of values. Therefore, fault simulation is carried out for the faults in Fi. If any

fault is not detected by the modified ti, then ti is restored to its original form. This check

ensures that the fault coverage is kept unchanged. In test generation procedures aimed at

small test sets, like COMPACTEST, a test vector typically detects a large number of faults,

and as a result, when the unspecified inputs are specified randomly at the end, hardly any

additional (new) faults are detected. Hence, when some of the randomly set values in ti are

changed, the modified ti still detects all the faults in Fi in most cases.

If the modified ti passes the above check, it replaces the original ti in the test set. Fault

simulation is performed under ti for all the faults in F1, F2, · · · , Fi−i. All the detected faults

are removed from their respective fault lists and are added to the fault list Fi. If some fault

list Fj, 1 ≤ j < i, becomes empty, tj is dropped from the test set.

The above process is repeated for all ti, 1 ≤ i ≤ k. The vectors left in the test set at the end

of the procedure form the compacted test set for the circuit under consideration.

The reason behind ordering the fault lists in increasing order of cardinality is that all the

faults in Fj are needed to be detected before the corresponding vector tj can be dropped

from the test set. Targeting the vector with the fewest associated faults first may lead to

elimination of more vectors.
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Experimental results on ISCAS85 and PLA benchmark circuits show that ROTCO performs

significantly better than ROFS, even for highly compacted test sets.

Compatible Pairs Merging

Two compatible test vectors can be combined (compacted) into one test vector by intersect-

ing the two vectors. Pairs merging [?] works by merging compatible test vectors with each

other. For example, the test vector 0x1 can be merged with the test vector x11 because the

two vectors don’t specify any contradicting assignment. The resulting test vector is 011 and

is considered to represent both of them. Clearly, if the first vector was 001, the two vectors

are no longer compatible, and thus cannot be compacted. The quality of this compaction

technique heavily depends on the percentage of unspecified bits in the test vectors to be

merged. The more unspecified bits, the higher chance for a pair of vectors to be compatible,

and thus be merge able.

Forced Pair-Merging (FPM) Algorithm

The FPM algorithm [?] is based on the observation that if one vector t in T is replaced by

another vector t′ to produce a new test set T ′, then T ′ has at least the same fault coverage of

T provided that ESS(t) ⊆ DET(t′).

In the FPM algorithm, raising a bit of a pattern is the basic operation. Raising the bth bit

of test t means trying to set the bth bit of t to x while preserving the coverage of ESS(t). If

the operation fails, the bit is restored to its original status. Although this operation can be

done with the help of a fault simulator, the authors employed a modified logic simulator to

perform bit raising operation.
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The FPM algorithm works as follows. It takes the first pattern from T as a seed pattern, say

t1, and raises t1 as far as possible, so as to have the most x’s while being still able to detect

ESS(t1). Then for each of the remaining patterns, say t2, it tries to raise those bits of t2

which are incompatible with the raised t1. Note that this step can be accomplished by using

one of our techniques by giving low weights for incompatible bits and high weights for the

remaining bits and relaxing t2 based on these weights. Regardless how this process is done,

if it succeeds, the pair is merged into a new pattern which replaces t1 as the seed pattern.

T is then updated by removing t2. Otherwise, the raised t1 remains intact, and another

pattern is selected to be merged with t1. After trying all the patterns in T , the resultant t1

is removed from T and stored in the originally empty T ∗. This process is repeated until T

becomes empty. The resultant T ∗ is the compacted test set with fault coverage no less than

the original one.

In what follows, a description of the bit raising operation is given. The authors have ob-

served that when raising a pattern, the value of each line in the circuit can only be changed

from specified to unspecified, and moreover, a fault can only become an undetected one

from a detected one. Based on this observation, a modified logic simulator is developed to

monitor the detectability of the faults in ESS(t), given that pattern t is to be raised. Monitor-

ing the detectability of ESS(t) means making sure that every fault in ESS(t) is excited and

propagated to at least one primary output. This is accomplished by making sure that when

a bit is raised, none of the lines which belong to any of the sensitization paths of the faults

in ESS(t) or their side inputs has become an x. If any of these lines becomes an x, then at

least one fault in ESS(t) is masked through at least one primary output, and the raising fails.

However, the bit raising Algorithm takes care of the faults that are detected through multiple

outputs. After t is raised, there might be some of the faults in ESS(t) that are undetected due
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to fault masking. So fault simulation is performed, and if any of the faults is undetected, the

Algorithm will raise the pattern by the help of a fault simulator. Note that raising a pattern t

is nothing but relaxing t, and that this technique is heavily dependent on test relaxation. So,

instead of the bit raising proposed by the authors, our proposed techniques can be utilized

here very well.

Essential Fault Pruning (EFP)

The EFP algorithm [?] is a generalization of the FPM algorithm in the sense that for a given

pattern t, EFP tries to actively modify the rest of the test set to detect the essential faults

of t. If this succeeds, then t can be removed from the test set. Since ESS(t) is now to be

detected not only by a single vector but by the whole remaining modified test set, there are

evidently more chances to succeed in further reduction of the test set.

In EFP, a pattern t can be removed if ESS(t) can be detected by modifying other patterns so

that they detect ESS(t). An essential fault of t is said to be pruned, if it becomes detectable

by another pattern after modification. If all the faults in ESS(t) are pruned, then t can be

removed from the test set.

Modification of another pattern t1 to further detect an additional fault f in ESS(t) is done

by generating another pattern t2 such that (DET(t1) ∪f ) ⊆ DET(t2). A procedure called

Multiple Target Faults Test Generation (MFTG) is given in the paper and is used to check

the existence of such a pattern. For a set of target faults S, MFTG finds a test pattern that

detects all the faults in S. If any fault in ESS(t) can not be covered by other patterns, EFP

returns fail, and the original test set must be restored. Clearly, the quality of compaction

depends on the starting vector t.
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The Two By One (TBO) Compaction Algorithm

This Algorithm is proposed by Kajihara et al. [?]. It is based on the addition of one

test vector to replace two other test vectors in a given test set. For a given test set T , the

Algorithm works as follows. Essential faults for every test vector are collected, and, as

an optional step, maximal independent fault set F is determined. Note that if F is not

computed, it is simply set to φ. Then, two test vectors ti and tj are selected, such that at

least one of them, say ti, does not have essential faults from F . It is also required that the

number of essential faults in each vector does not exceed a predetermined limit L, so that

things do not get complicated. L is set to twice the average number of essential faults per

test vector, but not larger than 50.

Even if none of the faults in ESS(ti) belongs to F , a pair of independent faults might exist

in ESS(ti) ∩ ESS(tj). So, it is worth to check that no such pair exists before starting test

generation.

A procedure for generating a test vector with more than one target fault which is required

to detect faults in ESS(ti) ∩ ESS(tj), is given. This procedure utilizes another procedure

proposed by Rajski and Cox in [?] which computes the union of the necessary assignments

of all target faults. If any conflict is found, the procedure terminates indicating that no test

vector can be found. Then, values for detecting each fault are determined using dynamic

compaction techniques including the maximal compaction technique [?]. Since maximal

compaction is applied, the procedure must make sure that the final test vector generated

detects all the target faults.

Every additional test vector generated is placed in a set T ′. At the end of the process,

elements of T ′ are inserted into T . Redundant test vector are removed by fault simulating T
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in the following order. The added test vectors are simulated first. Test vectors for which no

added tests are generated are then simulated. Test vectors expected to be removed are then

simulated. Any test vector that detect only previously detected faults is removed.

Clearly, if the test set is partially specified, the chances of success in this technique increase.

Thus, our proposed techniques can be utilized to relax the test set before applying them on

this technique.

Experiments on ISCAS85 and full-scan versions of ISCAS89 are provided. Results show

that the sizes of the compacted test sets are close to the calculated lower bound for most of

the circuits.

A Set Cover Model For Optimal Test Compaction

Hochbaum [?] proposed an optimal test compaction algorithm for combinational circuit that

is based on the modelling of test compaction problem as a set cover problem as follows. In

the set cover problem, the goal is to identify the smallest collection of sets that cover a given

set of elements. In the compaction problem, the elements are the faults to be covered by

the given collection of test vectors. Suppose that the circuit contains detected faults named

f1, · · · , fm and the test set to be compacted is composed of the test vectors v1, · · · , vn. Each

test vector vj is associated with a subset of faults, Sj , that are detectable by vj . The problem

is to find the smallest sub-collection of vectors in which their associated subsets of faults

cover the faults {f1, · · · , fm}. An m × n detection matrix D is generated. The entry dij

equals one if fault i is detected by test vector j, otherwise it is zero. The author formulates
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the set cover problem as an integer programming problem as follows:

min
∑

j xj

Dx ≥ e

xj ∈ {0, 1} j ∈ {1, · · · , n}

Minimizing the sum means minimizing the number of test vectors that will cover the given

fault list. The author solves the problem by an integer programming technique called Linear

Programming Relaxation (LPR). LPR removes the requirements that the variables are inte-

ger, resulting in the new constraints that xj ∈ [0, 1] for j ∈ {1, · · · , n}. An easy rounding

heuristic is then applied if the resulting solution is not integer: if the optimal solution of

the LPR is x∗, then the output of the rounding heuristic is dx∗e and thus obviously feasible.

Experimental results are given for a subset of ISCAS85 benchmark combinational circuits.

As shown in the experimental results, for test sets compacted using COMPACTEST [?],

this technique only achieves little further compaction for most of the circuits. The author

declares that the running time of the LPR procedure is low enough to incorporate it as a

final step to follow any test generation procedure.

Redundant Vector Elimination (RVE)

In 1998, Hamzaoglu and Patel in [?] have presented two compaction techniques: redundant

vector elimination (RVE) and essential fault reduction (EFR). These two techniques and the

dynamic compaction algorithm proposed in [?] are incorporated into an advanced ATPG
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system for combinational circuits termed as MinTest. MinTest generated smaller test sets

than the previously published results for the ISCAS85 and full scan versions of ISCAS89.

We discuss here the RVE algorithm, and the EFR is discussed next. In practice and during

ATPG process, earlier vectors have the potential to become redundant because of the fact

that the faults detected by earlier vectors are also detected by later vectors. RVE algorithm

identifies such redundant vectors during test generation and dynamically drops them from

the test set as follows. It fault simulates all the testable faults in the fault list and keeps

track of the faults detected by every vector, the number of essential faults associated with

every vector and the number of times a fault is detected. During the test generation, if the

number of essential faults of a vector reduces to zero, the vector becomes redundant and

thus is dropped from the test set.

RVE can reduce the size of a test set more than ROFS. This is due to the fact that ROFS can

not identify a redundant test vector if some of the faults detected by it are only detected by

the test vectors generated earlier. ROFS can only identify a redundant vector, if all the faults

detected by it are detected by the test vectors generated later. However, RVE can identify

a redundant vector if it detects faults which are detected by other vectors, no matter where

these vectors are.

Essential Fault Reduction (EFR)

As mentioned above, this technique is proposed by Hamzaoglu and Patel [?]. As a reminder,

an essential fault efi of a test vector ti is said to be pruned if a test vector tj 6= ti in the

test set is replaced by a new test vector taj which detects efi, ESS(tj) and the faults that are

detected only by ti and tj . Notice that having a partially specified test set helps in finding
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taj . Since pruning an essential fault decreases the number of essential faults by one, then

if all essential faults of a test vector are pruned, the test vector becomes redundant and it

can be removed from the test set. After the initial test set is generated (by MinTest), EFR

algorithm is used iteratively to further compact the test set by pruning the essential faults of

each vector as much as possible. A multiple target test generation (MTTG) [?] procedure

is used to generate a test vector that will detect a given set of target faults. EFR is an

improvement over both the TBO algorithm [?] and the EFP algorithm [?].

2.2.2 Test Compression Techniques

The main objective of test set compression is to transform the test set into another encoding

domain provided that the transform is invertible. In most cases, the number of bits needed

to encode the compressed form of the test set is considerably smaller than the number of

bits in the original test set, and this is the main objective of test compression. One aspect to

compare test compression schemes is the compression ratio. Compression ratio, r, gives a

measure of the amount of data reduced after the compression process. One popular way to

compute the compression ratio is:

r =
So − Sc

So

× 100%

Where, So is the size of the original test set, and Sc is the size of the compressed test set,

both in bits.

A compression technique is said to be successful if it has a high average compression ratio

and simple and efficient decompression process.
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It is clearly observed that, for any compression scheme, having a partially specified test

set helps in increasing the compression ratio. The reason is simple; given a compression

Algorithm, then the compression ratio is a function of the data to be compressed, and if there

is some freedom in specifying the contents of the data (e.g., some bits are unspecified),

one could specify the unspecified portions of the data such that the compression ratio is

maximized. Thus, having a partially specified test set is crucial for all test compression

techniques.

Let’s have a look at some general purpose compression algorithms. A simple compres-

sion scheme is run-length coding, where a sequence of equal symbols is encoded into two

elements, the repeating element and the length of the sequence. For example, run-length

coding of xx1110xx is (x, 2), (1, 3), (0, 1), and (x, 2). Note that the parentheses and com-

mas are only for readability, and they don’t appear in the compressed data. For data with

many long sequences of equal symbols, run-length coding is apparently efficient. Huff-

man coding is more sophisticated than run-length coding and yields better compression [?].

Huffman coding builds a binary tree based on the probability of the occurrence of the let-

ters, where leaves in the binary tree correspond to the letters. The Huffman code for a letter

is obtained by traversing the tree from its root node to the leaf corresponding to the letter,

concatenating ”0” to the code word every time it traverses over a left branch and ”1” over

a right branch. A different approach from the above two methods is arithmetic coding [?].

Arithmetic coding generates a unique tag or identifier for a given sequence of symbols; then

deciphers tags to restore the original sequence. The main advantage of arithmetic coding

over Huffman coding is that building a binary tree structure is unnecessary. The Lempel-

Ziv (LZ) method, based on the construction of a dictionary, builds a list of patterns. Then,

patterns are encoded according to their indices in the list [?]. The LZ method doesn’t re-
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quire a priori knowledge of the probability of the occurrence of letters, and becomes more

efficient for a longer sequence of patterns whose characteristic is static. The Lempel-Ziv-

Welch (LZW) algorithm, which is a derivative nf the LZ method, collects new phrases into

a dictionary [?]. When a repeating phrase is found, the index of the phrase in the dictio-

nary is recorded to compress the phrase. Some compression utilities available on personal

computers and workstations implement variations of the LZW method. The Lempel-Ziv-

Storer-Szymanski (LZSS) algorithm keeps track of the last n bytes of data [?]. When a

phrase appears before being encountered, the phrase is encoded as a pair of values corre-

sponding to the position of the phrase in the buffer and the length of the phrase. Besides

the above general data compression algorithms, there are many other compression methods

designed for special applications such as speech, image, and video. In what follows, we

discuss some of the techniques aimed at compressing test data.

Serial Scan Test Vector Compression

Su and Hwang [?] presented a serial scan test vector compression methodology for the test

time reduction in a scan-based test environment. This is achieved by carefully examining

the relationship between two consecutive test vectors. If the first few bits of the second

vector are the same as the last few bits of the first vector, then the matching bits need not

be shifted in again, because they are already in the scan chain. As an example, consider

the two consecutive vectors 10111011 and 11101011. The last four bits of the first vector

(1011) matches the first four bits of the second vector (1011). Thus, instead of shifting in

all the 16 bits, we only need to shift in 12 bits, i.e., 111010111011. The authors studied the

statistical analysis of the proposed work and they derive lower and upper bounds for test

reduction.
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Obviously, the order in which test vectors are scanned-in affects the amount of compression

obtained using this scheme. For this reason, the authors try to find a suboptimal ordering

of the test vectors by modelling the compression problem as a complete directed graph

analogous to the travelling salesman problem. They solve the transformed problem by

using two simple test ordering algorithms.

They present their results in terms of the reduction in the number of bits. Results are given

for randomly generated test sets as well as deterministic test sets for some of the ISCAS85

benchmarks.

Variable-Length Reseeding

Hellebrand et al. [?] have presented a method to compress test cubes based on the reseeding

of Multiple Polynomial LFSRs (MP-LFSRs). In their method, a group of concatenated test

cubes with a total of s specified bits is encoded with approximately s bits LFSR specifying

a seed and a polynomial identifier. Thus, the more unspecified bits a group has, the lesser

bits needed for the LFSR. So, one of our proposed techniques can be used to relax the test

set before the construction of an LFSR. The content of the MP-LFSR is loaded for each test

group and has to be preserved during the decompression of each test cube within the group.

Thus the implementation of the decompressor may involve adding extra flip-flops to avoid

overwriting the content of the MP-LFSR during the decompression process.

Zacharia et al. [?] have avoided the overwriting problem by introducing an alternative to

concatenation, i.e., variable-length reseeding. In their technique, deterministic patterns are

generated by an LFSR loaded with seeds whose lengths may be smaller than the size of

the LFSR. Allowing such shorter seeds yields higher compression rate even for test cubes
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with varying number of specified bits. The decompression hardware is loaded for each test

pattern. Hence, it is possible to implement the decompressor by using scan flip-flops as the

state of the decompressor can be overwritten between applications of test cubes. As a result,

the decompression can be implemented without any extra flip-flop.

Since most modern circuits feature multiple scan chains to reduce test application time,

Zacharia et al. [?] have proposed compression schemes suitable for circuits with multiple

scan chains.

Since seeds are of variable lengths, some extra information has to be maintained to specify

the length of the seed. The test controller maintains the current length of the seed and one

extra bit is padded to each seed to indicate when the current length should be increased.

Since only one bit is used, the length is increased with a constant increment d. Using fixed

increment requires some extra zeroes to be added to the seeds such that their lengths can

always be expressed as b + i · d, where d is the length of the shortest seed. However, the

value of the increment can be chosen such that the number of extra zeroes is kept minimum.

In [?] and [?], three techniques are proposed for the implementation of the decompres-

sor. The first one uses a two-dimensional hardware decompressor for multiple-scan chain

designs. It exploits the existing scan flip-flops and the flip-flops of the PRPGs with the ad-

dition of few extra gates (XOR and AND gates). The goal of this implementation is to allow

the decompression of test vectors with large number of specified bits while minimizing the

area overhead.

The second implementation uses the embedded processor available in some core-designs

to load and execute the decompression algorithm. In this way, no additional hardware is

needed and hence no area overhead. Here, a program (or a microcode) is executed in the
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embedded processor to read data from external memory to the local register file and decom-

press the data to the scan chains of the CUT. To reduce test application time, the number of

instructions needed to decompress the data has to be minimized.

The third alternative is used with designs that include boundary scan chains. This is useful

when CUTs are mounted in a board during testing.

Test Width Compression

Chakrabarty et al. [?] have proposed a technique to reduce the width of a pre-computed

test set TD (a matrix of size m × N , where m is the number of vectors and N is the width

of one vector). A Test Generation Circuit (TGC) is used to produce a compressed vector of

width w that is less than the original test width N . Then, a decoder circuit is responsible

for restoring the original vector. In other words, the deterministic test set TD is generated

first using conventional ATPG. Then, the TGC is used to compress it in order to reduce

both timing and storage requirements. Different TGC implementations have been proposed,

however, the most effective and widely used method is to combine LFSR with ROM.

This technique is based on the following definitions. Given a test set TD (in the paper, TD

is referred to as a test matrix), two columns a and b of TD are said to be compatible if for

every row i, ai = bi or one of them is a don’t care x. The two columns a and b are said

to be inversely compatible if for every row i, ai = bi or one of them is x. They are said to

be d-compatible if there is no row in which both of them equal 1. A maximal d-compatible

(MDC) class is the set of all columns in TD that are pairwise d-compatible. In an MDC,

there is at most one 1 in each row of the MDC. Therefore, it is possible to encode a row of

an MDC by specifying the position of the 1. if no such 1 exists, then a row is encoded by 0.
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So, for each row, the number of bits needed for encoding is dlog2 (n + 1)e, where n is the

number of columns in the MDC.

To encode a test set TD using this technique, a set M of k MDCs {C1, C2, · · · , Ck} is to be

found such that:

1. Each column in TD must appear in at least one MDC.

2. The width of all compressed vectors w is minimized, where w =
∑k

i=1 dlog2 (ni + 1)e.

The set M is called an optimal MDC cover. However, finding the best M is an NP-complete

problem.

The following steps summarizes what this technique does to encode a test set TD:

1. Reduce TD by merging compatible and inversely compatible columns. This is done in

hardware by assigning compatible columns to same output and inversely compatible

columns to an inverter of the same output of the TGC.

2. Apply column complementation to reduce number of ones. If a column is comple-

mented, the corresponding output of the TGC must be inverted.

3. Apply row complementation to reduce number of ones. Here, a redundant column is

added to indicate whether a row is complemented or not. By XORing this column

with the rows, the original set can be restored. However, careful computation must be

done to compromise between compression and added overhead.

4. Compute a near-optimal MDC cover using some heuristic.
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5. Encode rows of each MDC.

Simulation results on ISCAS89 benchmark circuits show that the technique achieves high

compression ratios for partially specified test sets (40%-99%). However, if only fully-

specified test set is provided, almost no compression is achieved. Thus, one of our proposed

techniques may be applied to TD in order to relax it, then the relaxed version can be used as

an input to this technique to have a better quality compression.

Replacement Word

Jas and Touba [?] have proposed a compression/decompression scheme for embedded pro-

cessors that is based on generating the next vector from the previous one by storing only

the information about how the vectors differ. Each test vector is divided into fixed length

blocks. The size of these blocks depends on the word size of the processor. Next vector is

built from previous one by replacing the blocks in which they differ. Because of the struc-

tural relationship between the faults in a circuit, there will be a lot of similarity among the

test vectors. Ordering can be applied to maximize compression ratio.

A replacement word is an encoded piece of information which tells the processor how to

build the next vector from the previous one. Such word is composed of three fields. One

field is called last flag, which is a single bit field. Another field, which is log2 N bits, is

called the block number, where N is the number of blocks per test vector. A third field

is a b bit field and is called new block pattern. The block number contains the address of

the blocks to be replaced with the new pattern contained in the new block pattern field.

If two test vectors differ in n blocks, then this information is encoded as a sequence of n
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replacement words where the last field of the nth word is turned on (1). Other replacement

words have their last field turned off (0). The block size b is chosen such that 1+dlog2 Ne+

b = W , where W is the word size of the processor.

If a partially specified test set is provided, unspecified portions may be specified to min-

imize the number of replacement words. Experiments were performed with some ISCAS

benchmarks. Compression ratios obtained range from 27% to 73%.

Statistical Coding

Jas et al. [?] introduced a statistical coding that is used to compress deterministic test data.

The technique uses a modified version of Huffman coding to simplify the decoding process.

The idea can be summarized as follows. First, divide the test vectors into equal size blocks,

each of size b. If the size of test vectors is not divisible by b, additional x’s can be added

to the beginning of the vectors (since shifting them to the scan chain will not affect the

test as long as the final content is the same as the original vectors). Then, compute the

frequency (number of occurrences) of each block. After that, divide the blocks into two

sets: one which includes n most frequent blocks and the other includes the rest. Next,

build a Huffman tree for the n blocks (the first set). The blocks are encoded as follows: if

the block belongs to the first set, its codeword is obtained from the Huffman tree with a 1

preceding it. Otherwise, the block is not encoded. Instead, it is preceded by a 0 to indicate

this situation.

Simplicity of the decoder together with good average compression ratio can be achieved

by careful selection of the two important parameters b and n. The authors implement the

decoder using a finite state machine of n + b states.
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Although Huffman coding gives better compression ratios, Jas et al. technique offers a

simple-to-implement decoding circuit. The number of states in Huffman coding grows

exponentially, while the number of states in Jas et al. technique grows linearly.

Results are provided for a subset of ISCAS85 and ISCAS89 benchmark circuits. The results

indicate that this scheme can use a simple decoder to provide a compression ratio near that

of an optimal Huffman code.

Run-Length Coding with Burrows-Wheeler Transformation

Ishida et al. [?] [?] used a modified version of run-length coding to encode columns of

test data after performing a Burrows-Wheeler (BW) transformation on each column. Their

technique is based on some observations on test data. For example, logic values of a small

subset of primary inputs change for a block of test patterns, while other primary inputs are

kept at constant logic values. Therefore, if the test set is viewed as a matrix, some columns

change their values more frequently than others. This introduces us to a term called activity.

The activity of a string of symbols S, α(S), is defined as the number of transitions on S. For

instance, the string (aaabaaabcc) has an activity of 4. The authors also observed that active

columns usually form cycles, where a cycle is a sequence of symbols that repeats more than

once in a string. For example, the above string has a cycle (aaab) that repeats two times.

To exploit these two characteristics of test data, Burrows-Wheeler (BW) transformation and

run-length coding are used. BW transformation is performed on a string S of length n as

follows. First, form a matrix of size n×n, the first row of the matrix is S, and the following

rows are formed by left-rotating the previous row. Then the rows of the matrix are sorted

lexicographically. To be able to recover S from the sorted matrix, we need to know the last
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column L of the sorted matrix and the index I of the original string S in the sorted matrix.

Now, L is the BW transform of S. However, the decoding operation is simpler and it does

not involve sorting.

BW transformation usually results in a string that contain lesser number of runs, and thus

better compression using run-length coding. However, this is not always the case.

The overall compression procedure proposed is as follows. The BW transformation is per-

formed on a given test set, and a new hybrid data set is formed by collecting either the

original column or the BW-transformed one, whichever has lower activity. Run-length cod-

ing is applied to columns with low activity, and GZIP compression is applied to columns

with high activity.

The authors propose a more efficient run-length coding scheme. Consider the two consecu-

tive runs (s, Ls) and (t, Lt), where s and t are the repeating symbols, and Ls and Lt are the

run-lengths, respectively. The two runs make a transition from symbol s to symbol t. Sup-

pose that s is known. Then the proposed encoding scheme is to compound the run-length

Ls of the first run and the repeating symbol of the following run, t, into a single integer.

Details are as follows. Let s be the repeating symbol, L be the length of its run, t be the

next symbol, and M be the length of the whole string. The rule to compound the run-length

L and the repeating symbol t is shown in Table ??. For example, consider the encoding of

x1111xx whose length M is 7. The first run x is followed by another run 1111. The length

of the first run L = 1, and the transition is from x to 1, so, using Table ??, the compound

integer is L + M = 1 + 7 = 8. The next run is 1111 which is followed by xx. The run

length L is 4, and the transition is from 1 to x, thus the compound integer is L = 4. The last

run xx doesn’t make any transition, and hence no need to encode it.
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Transition s→ t Symbol t
0 1 x

0 - L L + M
Symbol s 1 L + M - L

x L L + M -

Table 2.1: Encoding of run-length [?].

Figure 2.2: Next symbol of the BW run-length coding [?].

In what follows, a summary of the compression procedure is given. The test set is parti-

tioned into equal size matrices Di of size M × Q, where M is the number of rows and Q

is vector width. BW transformation is applied on each individual column and the activity

of each column is computed before and after the transformation. Then, a new matrix Ei is

built such that each column k of Ei is the BW transformation of the corresponding column

in Di if its activity is less than the original column and less than some threshold; otherwise,

the original column is copied to Ei. The modified run-length coding is used to encode each

column of Ei.

The decompression procedure is done according to the following steps:

1. Start with the symbol given in the encoded data.

2. The length of the current run = i mod M , where i is the corresponding integer given

in the code for the run.

3. Let j =
⌈

i
M

⌉
, then the following symbol in the string is the jth symbol from the

current symbol as shown in Figure ??.

The authors compare their results with six other compression techniques, namely, Huffman

coding [?], Arithmetic coding [?], UNIX utility ”compress”, GNU utility ”gzip”, LZSS [?],
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and LZW [?]. Their technique performs the best among these techniques. The average

compression ratio obtained was 31.5%.

Decompression Using Cyclical Scan Chains

Jas and Touba describe test vectors decompression technique in [?] via cyclical scan chains

(CSCs). CSC decompression involves the use of two scan chains. One is the test scan chain

(TSC) where the test vectors will be applied to the CUT, and the other is the CSC where the

decompression will take place. The serial output of the CSC feeds the serial input of the

TSC and also loops back and is XORed with the serial input of the CSC. Two requirements

for the CSC: It must have the same number of scan elements as the TSC. And its contents

must be preserved when applying a test vector to the CUT.

The CSC has the property that if it contains a test vector ti, next vector ti+1 can be generated

by feeding CSC with the difference vector ti ⊕ ti+1. Careful ordering of the test vectors

can maximize the number of zeroes in the difference vectors. For this reason, the authors

applied the variable-to-block run-length coding compression algorithm, since data in which

the probability of one value exceeds that of another can be efficiently compressed with

run-length coding.

The authors tries to order the vectors in the test set to minimize the number of runs in the

difference vectors. They solve this problem by forming a complete weighted graph and

finding the minimum cost Hamiltonian path. Each node in the graph correspond to a test

vector and is connected by a weighted edge to every other node in the graph. The weight on

an edge between two nodes is computed by forming the difference vector and computing

the number of bits needed to encode the difference vector. The minimum cost Hamiltonian
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path corresponds to the optimal ordering of the test vectors to maximize the compression

ratio.

Experiments were performed on ISCAS85 and large ISCAS89 benchmarks using two dif-

ferent codes: 2-bit code and 3-bit code. 3-bit code provide better compression ratios which

range from 12% to 39%. The amount of compression could be much greater if test data is

partially specified.

Compression Based On Golomb Coding

Chandra and Chakrabarty [?] have proposed a test compression scheme based on Golomb

coding. Their proposed technique compresses the difference vectors Tdiff rather than the

original test vectors TD. It assumes a decompression architecture similar to the CSC idea

(refer to Section ??).

After Tdiff is generated from TD, the next step is to select a Golomb code parameter m

called the group size. Once m is determined (through experimentation), the runs of 0’s in

Tdiff are mapped to groups of size m, each group corresponds to a run length. The number

of such groups is determined from the length of the longest run in Tdiff . The set of run

lengths {0, 1, · · · , m − 1} forms group A1; The set {m, m + 1, · · · , 2m − 1} forms group

A2, . . . etc. In general, the set {(k − 1)m, (k − 1)m + 1, · · · , km − 1} forms group Ak.

Each group Ak is assigned a prefix of (k − 1) ones followed by a zero. This is denoted

by 1(k−1)0. A group tail is also needed to differentiate between a group member. The tail

ranges from 0 to m − 1 and thus occupies blog2 mc bits. The final codeword needed to

encode a run of zeroes is composed of the group prefix and the group tail concatenated with

each other. Figure ?? illustrates the construction of a Golomb code for m = 2. As an
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Run- Group
Group length prefix Tail Codeword

A1 0 0 0 00
1 1 01

A2 2 10 0 100
3 1 101

A1 4 110 0 1100
5 1 1101

A1 6 1110 0 11100
7 1 11101

· · · · · · · · · · · · · · ·

Figure 2.3: An example of Golomb coding for m = 2.

example, consider Tdiff = 001 00001 0001 1 0000001. The corresponding Golomb encode

codewords are TE = 100 1100 101 00 11100.

The authors proposes a simple and scalable decoder which is independent of both the core

under test and the precomputed test set. Moreover, their decoder does not introduce a signif-

icant hardware overhead due to its small size. It can be efficiently implemented by a log2 m

bit counter and a finite state machine. The decoder decompresses the encoded test data and

produces Tdiff .

Experimental results on Golomb coding are given for ISCAS benchmarks with test sets

generated using MinTest [?]. Results are also given for two industrial circuits with various

test sequences. The compression ratios are calculated for different values of m. The maxi-

mum compression ratio was obtained for a group size of 512. Also, a comparison between

Golomb coding and run-length coding for fully specified test sets is given.
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Frequency-Directed Run-Length (FDR) Coding

Although pre-existing research on test data compression clearly demonstrated how com-

pression offers a practical solution to the problem of reducing test data volume, the com-

pression codes used were derived from other application areas. For example, statistical

coding used in [?] is motivated by pattern repetition in large text files. Similarly, the run-

length and Golomb codes used in [?, ?] are more effective in encoding images. None of

these codes where specifically tailored to exploit the special properties of the precomputed

test data for logic circuits. While an attempt was made in [?] to customize the Golomb

code by choosing an appropriate code parameter, the basic structure of the code was still

independent of test set.

Chandra and Chakrabarty [?] have proposed a new class of variable-to-variable-length com-

pression codes that are designed using the distributions of the runs of 0s in a typical test set.

This way, the code can be tailored to SOC test data compression. The proposed codes are

termed as Frequency-Directed Run-Length (FDR) codes.

An FDR code is a variable-to-variable-length which maps variable-length runs of 0s to

codewords of variable length. It can be effectively used to compress both the test data itself

TD or the difference vectors Tdiff . When compressing Tdiff a CSC is assumed to exist.

Compressing TD requires replacing don’t cares with 0s. This alternative, i.e., compressing

TD, is especially attractive since it eliminates the need for a CSC. The authors examined the

distribution of the runs of 0s in typical test sets and they concluded the following:

• The frequency of runs of 0s of length l is large for 0 ≤ l ≤ 20.

• The frequency of runs of 0s of length l is small for l ≥ 20.
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• Even in the range 0 ≤ l ≤ 20, the frequency of runs of length l decreases rapidly as l

increases.

An FDR code is constructed as follows. The runs of zeroes are divided into groups A1, · · · , Ak,

where k is determined by the length lmax of the longest run (2k − 3 < lmax ≤ 2k+1 − 3).

Note that a run of length l is mapped into group Aj , where j = dlog2(l + 3)− 1e. The size

of the ith group equals 2i. This is unlike Golomb codes where the size of all groups is equal

to m. Each codeword is composed of two parts: group prefix and tail - just like the case in

Golomb coding. Figure ?? shows a construction of an FDR code. As clearly seen from the

Figure, an FDR code has the following properties:

• For any codeword, the prefix and tail are of equal length.

• The length of the prefix of group Ai is i.

• For any codeword, the prefix is identical to the binary representation of the run-length

corresponding to the first element of the group.

• The codeword size increases by two bits as we move from group Ai to Ai+1.

The authors present an analytical characterization of the amount of compression that can

be expected when using FDR codes. Analytical results show that FDR codes are robust,

i.e., they are insensitive to variations in the input stream. A decompression architecture is

also presented for such codes. The decoder is simple and scalable, and independent of both

the core under test and the precomputed test set. It is composed of a finite state machine, a

k-bit counter, and a log2 k-bit counter which interact with each other in order to decompress

the test data. Due to its small size, it does not introduce significant hardware overhead.
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Run- Group
Group length prefix Tail Codeword

A1 0 0 0 00
1 1 01

A2 2 10 00 1000
3 01 1001
4 10 1010
5 11 1011

A3 6 110 000 110000
7 001 110001
8 010 110010
9 011 110011

10 100 110100
11 101 110101
12 110 110110
13 111 110111

· · · · · · · · · · · · · · ·

Figure 2.4: An example FDR coding [?].

Experiments were performed on ISCAS 89 benchmark circuits. The results show that FDR

codes outperform regular Golomb codes for test data compression.

Extended FDR Coding

Elmaleh and Alabaji [?] have analyzed the test data and found that test sets contain a large

number of runs of 1’s in addition to runs of 0’s. By considering both types of runs, the total

number of runs will decrease, which could result in higher test data compression. They have

supported this observation by experimental analysis of test data for the largest ISCAS 85

and full-scanned versions of ISCAS 89 circuits. They have generated their test sets using

MinTest [?], using both static and dynamic compaction. Test sets generated based on static

compaction were relaxed, as this has the advantage of keeping unnecessary assignments
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as x’s, which enables higher compression. Given a relaxed test set, techniques based on

encoding only runs of 0’s fill all the x’s with 0’s to reduce the number of runs that need to

be encoded. However, to encode both runs of 0’s and 1’s in a test set, x’s are filled with 1’s

if they are bounded by 1’s from both sides, otherwise they are filled by 0’s. This results in

a reduction in the total number of runs that need to be encoded.

The authors extended the FDR coding to encode both runs of 0’s and 1’s based on adding

an extra bit to the beginning of a code word to indicate the type of run. If the bit is 0, this

indicates that the code word is encoding a run of type 0, otherwise it encodes a run of type

1. It should be observed that this code, called Extended FDR (EFDR), is a direct extension

to the FDR code shown in Figure ??. However, in the EFDR, runs of length 0 do not exist

because both runs of 0’s and runs of 1’s are encoded. Note that runs of 0’s are strings of 0’s

followed by a 1, while runs of 1’s are strings of 1’s followed by a 0, i.e., runs of 1’s of length

i are the complement of runs of 0’s of the same length, and vice versa. As with FDR code,

in this code when moving from group Ai to group Ai+1, the length of code words increases

by two bits, one for the prefix and one for the tail. Runs of length i are mapped to group Aj ,

where j = dlog2(i + 2)e − 1. The size of the ith group is 2i + 1.

Based on experimental results on ISCAS benchmark circuits, the EFDR code outperforms

the FDR code and results in significant increase in test data compression ratio for several

circuits, improving the compression ratio from 19.36% to 80.31% for one of the benchmark

circuits.
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Compression Based On Geometric Shapes

Elmaleh et al. [?] have proposed a novel and efficient test compression technique, which

is based on encoding the 0’s and the 1’s of the test set into the four primitive geometric

shapes: points, lines, triangles, and rectangles. These basic shapes are the most frequently

occurring shapes in test sets.

The compression algorithm is composed of three phases. First, the test vectors are sorted.

This step has an important impact on the compression ratio. The purpose is to generate

clusters of 0’s or 1’s in such a way that it may partially or totally be fitted in one or more

geometric shapes. In their work, they have applied a simple correlation based sorting algo-

rithm.

Phase two takes care of sorted test data partitioning. A set of sorted test vectors is repre-

sented as a matrix, M , of size R × C, where R is the number of test vectors and C is the

width of a test vector. The test data is partitioned into L × K blocks each one is N × N

bits, such that L = dR
N
e and K = dC

N
e.

Finally comes the encoding phase, which is applied to each one of the N × N blocks

generated in the previous phase. In this phase, the shapes are extracted first. Then a covering

problem is solved to minimize the number of shapes, and thus the number of bits, needed

to encode the test data. This is done once for the 0’s and once for the 1’s, and the encoder

will choose whichever produces better result.

The authors also proposes a simple and straightforward decoder that is assumed to be ex-

ecuted in an embedded processor on a chip. Simulation results show that the decoding

algorithm is very fast and that the decoding time for the test sets experimented with was in
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fractions of a second for each test set.

Experiments were performed on a number of ISCAS85 and full-scan versions of ISCAS89.

Based on the results, this method has an average compression ratio of 76%, based on highly

compacted test sets.

2.2.3 Test Power Reduction

Excessive switching activity during scan testing can cause average power dissipation and

peak power during test to be much higher than during normal operation. This can cause

problems both with heat dissipation and with current spikes. Compacting scan vectors

greatly increases the power dissipation for the vectors (generally the power becomes several

times greater). The compacted scan vectors often can exceed the power constraints and

hence cannot be used. Sankaralingam et al. observed in [?] that by carefully selecting

the order in which pairs of test cubes are merged during static compaction, both average

power and peak power for the final test set can be greatly reduced. They presented a static

compaction procedure that can be used to find a minimal set of scan vectors that satisfies

constraints on both average power and peak power.

During static compaction, test cubes are merged and unspecified x values get specified. Let

Tran Count(A) be the number of transitions in test cube A, and Tran Count(B) be the

number of transitions in test cube B, then if test cube A and B are merged to form test

cube C, then the number of transitions in test cube C, Tran Count(C), will be greater

than or equal to the maximum of Tran Count(A) and Tran Count(B). In some cases,

the number of transitions in the merged test cube can be much larger than in either of the

original test cubes. Consider the case where the test cube 0X0X0X is merged with X1X1X1
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to form 010101. The original test cubes had 0 transitions, but the merged test cube has 5

transitions. Conventional static compaction procedures randomly merge compatible test

cubes. However, merging some pairs of test cubes can result in a test cube with a large

number of transitions whereas merging others would not increase the number of transitions

by much. If the wrong test cubes are merged, the power can increase dramatically. So the

idea behind the authors’ proposed static compaction procedure is to direct the process of

selecting which test cubes to merge in a way that avoids generating merged test cubes with

large numbers of transitions, while trying to minimize power in the final test set. Their

proposed procedure for static compaction is as follows:

Create the cost graph

while there are vectors which can be combined do

Select a pair to be combined

Combine the selected pair

Update the cost graph

end while

The procedure begins by forming a cost graph. This graph is constructed as follows. There

is one node for each test cube. For each pair of compatible test cubes (a, b), an edge is

placed between the corresponding nodes. The weight attached to the edge is the increase in

power that results from removing a and b from the test set and applying the merged vector

a ∩ b instead. In each iteration of the procedure, a pair of test cubes to be combined is

selected. The objective is to pick pairs of test cubes so that the average power or peak

power is minimized. The problem is complex as the graph changes each time a test cube

pair is merged because two nodes are replaced by a single node. The procedure chooses

the test cube pair using a greedy heuristic. The pair of nodes with the smallest edge weight
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is selected in each iteration. When two test cubes are combined, the graph can be quickly

updated. The old nodes and their edges to other nodes are no longer valid. The two nodes

are removed and a new node representing the combined vector is created. The procedure

continues until no two vectors can be combined. If there is a constraint on average power

during test for some CUT, the average power can be monitored during each iteration of

the static compaction procedure and the procedure can stop if the average power reaches a

certain threshold.

Experiments on some of the largest ISCAS 89 circuits are provided. For each of the cir-

cuits, two plots are generated. The first is a plot of average power versus the number of test

vectors. As the number of vectors decreases the average power increases. This is because

the average number of transitions per vector increases due to the merging of vectors. For all

circuits, the average power of the authors’ proposed static compaction procedure is much

less than that of conventional (random) static compaction. All the circuits have a character-

istic ”knee” in the graph where the average power rises rapidly with a small decrease in the

number of test vectors. Given plots like these, the designer can decide to sacrifice a small

amount of compression and gain a lot in power savings. The other plot is the peak power of

the test set versus number of vectors. The peak power is the maximum number of transitions

that occur in a single test vector in the entire test set at that stage. The average number of

transitions per vector increases when vectors are combined. Hence as expected, the peak

power increases as the number of vectors decrease. For all circuits the authors’ proposed

static compaction procedure has much lower peak power compared to conventional static

compaction.
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2.3 Existing Solutions of the Test Relaxation Problem

2.3.1 Bitwise Relaxation (BR) Method

We begin with the BR method. Although it is not considered as a practical solution to the

problem, it is described here because we have compared it with our proposed techniques. In

the early stages of this work, there was not any practical solution to the relaxation problem.

However, a recent work presented by Kajihara and Miyase [?] that is parallel to our research,

has emerged. As mentioned earlier, no comparison is provided with this work due to the

unavailability of their experimental test sets. In subsequent discussions, this technique is

referred to as the KMR (Kajihara-Miyase Relaxation) technique.

Algorithm ?? outlines the BR algorithm. Notice that the purpose of this algorithm is to

obtain a solution, not necessarily an optimal solution. The Algorithm takes a fully specified

test set (denoted by T ) and tries to update it into a relaxed version.

Algorithm 2.5 Bitwise relaxation method.
for every bit b in T do

b← x
Fault simulate T .
if the fault coverage is reduced then

Restore the original value of b
end if

end for

The algorithm examines every bit of the test set in turn. If the examined bit contributes

to the fault coverage, it is kept unchanged. Otherwise, it is turned into an x. The fault

coverage is calculated using a fault simulator. In our implementation, HOPE [?] is used for

fault simulation purposes.
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The quality of the relaxation obtained using this technique depends on the following factors:

1. The ordering of test vectors in T .

2. The order in which primary inputs are traversed.

Obviously, this Algorithm has a complexity of O(nm) fault simulation runs, where n is

the number of test vectors, and m is the number of bits in each test vector. In each fault

simulation run, only the detected faults by a particular vector are simulated. Obviously, this

technique is impractical for large circuits.

2.3.2 The KMR Technique

Now, a description of the KMR technique is given. The input test set is denoted by T and

the output (relaxed) test set is denoted by T ′. The basic idea is that essential faults of ti ∈ T ,

have to be detected by t′i ∈ T ′. However, nonessential faults of ti do not have to be detected

by t′i because they have a chance to be detected by another vector.

Algorithm ?? outlines the main steps of the KMR technique. For every test ti, the algorithm

proceeds as follows. Essential faults of ti are collected. Necessary input values to detect

essential faults are marked. This is done by ATPG implication and justification procedures

with minor modifications. The modification makes sure that the implied or justified values

don’t conflict with the implied values of the applied test pattern ti. Thus, no backtracking

exists. That’s why the authors refer to these procedures as limited implication and limited

justification procedures. After necessary inputs are marked, unmarked inputs are turned
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Algorithm 2.6 An outline of the KMR technique [?].
for every test vector ti ∈ T do

Logic simulate ti
F = collect essential faults(ti)
t′i = find value(F )
fault simulate(t′i)

end for

for every test vector ti ∈ T do
Logic simulate ti
G = collect undetected faults(ti)
t′i+ = find value(G)
fault simulate(t′i)

end for

for every test vector ti ∈ T do
Logic simulate ti
H = collect undetected faults(ti)
t′i = extended find value(H)
fault simulate(t′i)

end for

Return T ′ composed of t′i
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into don’t cares (x’s). The resulting test vector is copied into t′i. Fault simulation of t′i is

performed to drop all the detected faults.

This is followed by another loop to ensure the detection of nonessential faults. For every test

vector ti, undetected faults of ti are first collected. Then, try to imply and justify the values

needed to detect these faults under t′i. Then, t′i is updated correspondingly. For some reason,

some of the faults will still be undetected, so fault simulation is performed for another time

to drop detected faults.

The final loop deals with the faults that are still undetected after the second loop is over,

even though these faults are treated explicitly. The reason why such faults occur, is that the

used implication and justification look only at the fault-free values, they don’t look at the

faulty values. While the fault-free value is implied and justified correctly, the faulty value

might get masked along the propagation path producing an unspecified faulty value (x). For

this reason, the author proposes extended justification procedure, which can be described as

follows. Whenever an output is to be justified, simply justify all its inputs. For this reason,

unnecessary assignments might result from extended justification. The authors recommend

that extended justification should not be performed for many faults, otherwise the quality

of the relaxation might become very poor. So, after the second loop is over, traverse all

ti looking for undetected faults due to masking. Perform extended justification and update

t′i accordingly. Now, T ′ which is composed of t′i, contains the relaxed test vectors and

maintains the same fault coverage as T .
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Worst-Case Analysis Of The KMR Algorithm

An analysis of the worst-case behavior of the KMR Algorithm is given here. The following

assumptions are made:

• Gate processing is considered to be the basic operation. Moreover, gate processing

can be any one of the following operations: forward/backward implication, and justi-

fication. Thus, the total number of basic operations is simply the sum of the number

of forward/backward implications, and the number of justifications.

• Fault simulation is assumed to be serial, i.e., one fault is simulated at a time.

• To simplify the analysis, fault simulation without fault dropping is assumed, i.e., when

a fault is detected by a test vector, it will still be simulated under later vectors.

• Let NT be the number of test vectors in the input test set.

• Let NF be the number of faults in the fault list.

• Let NG be the number of gates in the input circuit.

Given these assumptions, an upper-bound on the number of basic operations in the first loop

can be calculated as follows:

• Logic simulation requires at most NG basic operations.

• Collecting essential faults of a test vector requires at most NF NG basic operations.

• Performing implication and justification requires at most NG basic operations.
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• Fault simulating a test vector requires at most NF NG basic operations.

• The whole thing is done NT times.

In conclusion, an upper-bound on the number of basic operations in the first loop is

(2 + 2NF ) NGNT

In a similar way, the number of basic operations in the second loop is at most

(2 + NF ) NGNT

Similarly, the number of basic operations in the third loop is at most

(2 + NF ) NGNT

Thus, an upper-bound on the number of basic operations in the KMR Algorithm is

2 (3 + 2NF ) NGNT (2.1)

Thus, the KMR Algorithm is O(NGNF NT ) basic operations. However, in the comparison

with our proposed techniques, we will refer to Equation ?? rather than the Big-O notation,

since it is more accurate.
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2.4 Concluding Remarks

In this chapter, we reviewed some basic background information including the critical path

tracing Algorithm. After that, we listed some techniques which might benefit from test

relaxation, i.e., test compaction, test compression, and test power reduction. Also the BR

and the KMR techniques have been reviewed in this Chapter.
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Chapter 3

The Proposed Relaxation Techniques

In this Chapter, we present our proposed test relaxation techniques. As mentioned earlier,

the first proposed technique is based on the CRIPT Algorithm. It is referred to as the

CRIPTR technique. As with CRIPT, this technique is not exact in the sense that the fault

coverage might be reduced after relaxation. However, as will be shown from experimental

results (in the next Chapter), the drop in the fault coverage is small for most of the circuits.

In the second proposed technique, the relaxed test set maintains the same fault coverage of

the original test set. This technique simply identifies all the newly detected faults under a

given test vector, by the help of a fault simulator, and marks all the lines whose values are

required to detect the faults. The unmarked inputs are relaxed. As mentioned before, this

technique is referred to as the SVR technique.

The third technique is an improvement over the SVR technique. This is referred to as

the Two-Values Relaxation (TVR) Algorithm. This name emerged because, in the TVR
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Figure 3.1: An example circuit.

Algorithm, one keeps track of both the fault-free and the faulty values. This is unlike the

CRIPTR and the SVR techniques.

Throughout this Chapter, the following conventions are used. To indicate that a line l is

stuck at value v, we use the notation l/v. The notation A = x/y is used to indicate that the

fault-free value of line A is x, and the faulty value of line A is y. For example, A = 0/1

means that the fault-free value of line A is 0, and the faulty value of A is 1. When it is said

that line l is required, this means that the value on line l is required.

The rest of this chapter is organized as follows. Section 3.1 discusses the CRIPTR tech-

nique. The SVR technique is discussed in Section 3.2. Then, the TVR technique is pre-

sented in Section 3.3. In Section 3.4, selection criteria are discussed. A theoretical compar-

ison between our proposed techniques and the KMR technique is given in Section 3.5.

3.1 The CRIPTR Technique

3.1.1 An Illustrative Example

We now demonstrate our first proposed test relaxation technique by an example.

Example 3.1:

Consider the circuit shown in Figure ??. Suppose that we apply the test vector 00000. Under

this test, lines G6, G5, G1, G4, B2, and B are critical. So, the faults G6/0, G5/0, G1/1,
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G4/0, B2/1, and B/1 are detected under this test. Assume that the newly detected fault is

only B/1. For this fault to be detected, it has to be activated (excited) and propagated to

the primary output G6. The assignment B = 0 excites the fault. The assignments G3 = 0

and G1 = 0 are required for fault propagation. The assignment B = 0 is already satisfied

because B is a primary input. The assignment G3 = 0 can be satisfied by either one of the

two assignments C = 0, or (D = 0 and E = 0). If we choose to satisfy G3 = 0 by the

assignment C = 0, then the assignments D = 0 and E = 0 are no longer necessary, and

this implies that we can relax CDE to 0xx. Similarly, if we choose to satisfy G3 = 0 by

the assignments D = 0 and E = 0, then CDE = x00. So, there might exist more than one

relaxed version of a given fully specified test vector, and some versions might have more

unspecified bits than others.

The other requirement for fault propagation, which is G1 = 0, appears to be already satis-

fied because we already have marked the assignment B = 0 as required, and this assignment

produces G1 = 0. This results in relaxing the input A since it is no longer necessary. But

this is incorrect. To show that this relaxation is not correct, assume that stem B is faulty,

i.e., B = 0/1 (i.e., the fault-free value is 0 and the faulty value is 1). In this case, if line A

is relaxed, the fault on the stem will not propagate to the output. It will be masked by the

x value on line A, producing the value 1/x on the output G6. The problem occurs because

we justified the requirement on line G1 from line B1, which is reachable from the criti-

cal stem B. Justifying a required value from a reachable line, guarantees that the required

value is satisfied in the fault-free machine but not in the faulty machine. This problem can

be avoided by justifying the required value from an unreachable line. This guarantees that

the value will be satisfied for both the fault-free and the faulty machine. For this example,

the required value on line G1 has to be satisfied by marking line A as required, resulting
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in the test vector ABCDE = 100xx, or ABCDE = 10x00. This example shows that we

need to identify reachable lines before justifying the requirement list.

After this introductory example, the CRIPTR Algorithm is described next.

3.1.2 The CRIPTR Algorithm

Algorithm 3.1 Main part of the CRIPTR Algorithm.
1: for every test vector t do
2: for every output o do
3: Extend(o)
4: while StemsToCheck is not empty do
5: s← highest level stem in StemsToCheck
6: Remove s from StemsToCheck
7: if Critical(s) then
8: if the fault f on s is newly detected then
9: add f to NDF

10: add s to CS
11: else
12: add s to CandidateStems
13: end if
14: Extend(s)
15: end if
16: end while
17: AddCandidateStems()
18: MarkReachableLines()
19: MarkRequiredLines()
20: Mark All the lines as non-critical & unreachable
21: end for
22: Output relaxed vector
23: Mark all Lines as non-required
24: end for

Algorithm ?? shows a general outline of the proposed test relaxation technique. Initially, all

the lines are marked as non-critical, unreachable, non-required. For every primary output
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o under the test vector t, the Algorithm performs critical path tracing while storing the

newly detected faults in the NDF list, the critical stems whose faults are newly detected in

the CS list, and the critical stems whose faults are previously detected (through a previous

output or vector) in the CandidateStems list. We have chosen the name CandidateStems

because any stem in the CandidateStems list is a candidate to be added to the list CS if

it satisfies one condition: there is at least one newly detected fault passing through it. The

procedure AddCandidateStems, shown in Algorithm ??, checks, for every stem s in the

CandidateStems list, whether s satisfies the condition or not. If s satisfies the condition, it

is inserted in the CS list. Otherwise, it is ignored. One can observe that the CS list consists

of two kinds of critical stems: the first kind is a critical stem which has a newly detected

fault on it, and the other kind is a critical stem whose fault was previously detected but there

is a newly detected fault (coming from another line) that passes through it. Both kinds are

needed in the reachability analysis.

The Extend procedure is the same as the one given in [?], but it does one extra job, namely

adding newly detected faults to the NDF list. The Critical function is exactly the same

as the one given Algorithm ??. This function forms the bottleneck of our implementation,

since it often does a fault simulation when it is called.

Once the CS and NDF lists are constructed, the Algorithm marks reachable lines by calling

the procedure MarkReachableLines shown in Algorithm ??. Then the Algorithm justifies

the requirements by the procedure MarkRequiredLines. The last statement in the inner

loop is a re-initialization of the criticality status and reachability status of the lines. After

the inner loop is finished, the relaxed vector is ready and is printed out. For the next vector,

we re-initialize the requirement status of all the lines.
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Algorithm 3.2 AddCandidateStems()
1: while CandidateStems is not empty do
2: let s be an element of CandidateStems
3: delete s from CandidateStems
4: if a newly detected fault passes through s then
5: add s to CS
6: end if
7: end while

Reachability Analysis

This phase takes the list CS as an input. The purpose of this phase is to mark the lines that

are reachable from at least one element of the list CS as reachable.

Algorithm 3.3 MarkReachableLines() - CRIPTR Algorithm version.
1: initialize the event list E
2: for every element s in CS do
3: mark fanouts of s as reachable from s
4: add fanouts of s to E
5: while E is not empty do
6: l← element in E with minimal level
7: remove l from E
8: if Reachable(l, s) then
9: if l is not a fanout stem then

10: Mark l as reachable from s
11: Add output of l to E
12: else
13: for every fanout branch b of l do
14: Mark b as reachable from s
15: Add output of b to E
16: end for
17: end if
18: end if
19: end while
20: end for

Algorithm ?? is an event driven Algorithm for marking reachable lines. The function
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Reachable(l, s) in the Algorithm returns true only if the fault effect in stem s reaches the

line l. The following lemmas provide the rules used by the function Reachable(l, s).

Lemma 3.1: Let l be an output of an AND, NAND, OR, or NOR gate. Then, if there is at

least one of the inputs of l that has a don’t care value, then l is unreachable from any stem

except itself, if it is a stem.

Proof: Let us suppose that there are some inputs of l that are reachable from a stem s.

Let us suppose further that the fault effect on these reachable inputs propagate to l in the

absence of an x input. In this case, if one of the inputs of l is x, then this x will either mask

the fault-free or the faulty value of l depending on which one is the non-controlling value.

Assuming that c is the output-controlling value of l, then this x input produces either c/x or

x/c, and in both cases the fault effect of stem s is not propagated to l. Thus, l is unreachable

from any stem except the trivial case when it is reachable from itself, assuming that it is a

stem. Q.E.D.

Lemma 3.2: Let l be an output of an AND, NAND, OR, or NOR gate. Suppose further that

all inputs of l have specified values, i.e., none of the inputs of l has an x value. Then l is

reachable from stem s iff exactly one of the following conditions is satisfied:

1. All controlling value inputs of l are reachable from stem s.

2. At least one of the inputs of l is reachable from stem s given that all the inputs of l

have non-controlling values.

Proof: This lemma contains four statements to be proved. Let’s prove them one by one.
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1. l has controlling value inputs and is reachable from stem s ⇒ All controlling

value inputs of l are reachable from stem s.

It is given that l is reachable from stem s. This implies that the fault on stem s (call it

f ) propagates to l implying that f has propagated through the inputs of l. It is given

that l has a controlling value, and this implies that at least one of the inputs of l has

a controlling value. Let’s suppose that l has some non-controlling value inputs and

that f reaches only (some or all of the) non-controlling value inputs of l. This implies

that f will be masked by the controlling value inputs of l and that l is not reachable

from s. This assumption contradicts with the given information, and thus is incorrect.

Another possible assumption is that f reaches at least one controlling value input and

at least one non-controlling value input of l. This also implies that f will be masked

and that l is unreachable. Thus, this is an incorrect assumption. A third possibility

is that f reaches only part of the controlling value inputs. In this case, f will be

masked as well by the unreachable controlling value inputs and l will be unreachable

implying that this assumption is incorrect. Thus, the only remaining assumption is

that f reaches all controlling value inputs of l. In this case, f will propagate to l and

no masking will occur. Thus, if there are inputs of l with controlling value and l is

reachable from stem s, then all controlling value inputs of l are reachable from stem

s.

2. All controlling value inputs of l are reachable from stem s⇒ l is reachable from

stem s.

This is obvious, because if f reaches all controlling value inputs of l, then f will

propagate to l. Thus, by definition, l is reachable from stem s.
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3. All inputs of l have non-controlling values and l is reachable from stem s ⇒ At

least one of the inputs of l is reachable from stem s.

It is given that all inputs of l have non-controlling values. Since f reaches l, it has

to propagate through its inputs. It is sufficient for f to propagate through one input

of l because fault masking can never occur in the absence of controlling value inputs.

Thus, at least one of inputs of l has to be reachable from stem s.

4. All inputs of l have non-controlling values and at least one of the inputs of l is

reachable from stem s⇒ l is reachable from stem s.

It is given that all inputs of l have non-controlling values. It is also given that f

reaches at least one input of l. This implies that f will propagate to l and thus, by

definition, l is reachable from stem s. Q.E.D.

Lemma 3.3: Let l be an output of a 2-input XOR/XNOR gate. Then l is reachable from

stem s iff only one input is reachable from stem s, and the other input does not have an x

value.

Proof: If l is reachable from stem s, then the fault on stem s, say f , reaches l. Thus, either

one or both inputs of l are reachable from stem s. Suppose that f reaches both inputs of l.

If both inputs of l have the same parity, then the fault-free and the faulty values of l will be

0 for the XOR and 1 for the XNOR, and this contradicts with l being reachable from stem

s. On the other hand, if both inputs have different parities, then the fault-free and the faulty

values of l will be 1 for the XOR and 0 for the XNOR, and this also contradicts with l being

reachable from stem s. Thus, only one input of l should be reachable from stem s and the

other input must not be an x to avoid fault masking.
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Let’s prove the other part of this lemma. If only one input of l is reachable from stem s and

the other input is not an x, then the fault effect of f propagates to one input of l and the

other input is either a logic 0 or a logic 1. In both cases, the fault effect of f will propagate

to l implying that l is reachable from stem s. Q.E.D.

Algorithm 3.4 MarkRequiredLines()
1: Initialize the requirement list L
2: for every fault f in NDF do
3: Let f be the fault on line l
4: Add l to L
5: ForwardTrace(l)
6: end for
7: for every line l in L do
8: justify(l)
9: end for

Requirement Analysis

Algorithm ?? is a general outline of the requirement analysis phase. Initially, all the lines

in the circuit are marked as non-required. After that, we perform a forward tracing step for

every element in the list NDF . The purpose of this step is to identify paths through which

the faults belonging to NDF propagate to an output. This is done by tracing the critical

path from the line that has the newly detected fault until we reach a primary output, adding

the side inputs of every sensitive input in that path to the requirement list, and marking the

lines along that path and its side inputs as required. This step is outlined in Algorithm ??.

After this step is over, we will have a requirement list L to be justified.

Algorithm ?? is the value justification Algorithm used. Assume that line l is to be justified.

If l is a PI, the Algorithm marks it as required and returns. If l is a single-input, XOR or
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Algorithm 3.5 ForwardTrace(l)
1: if l is not an output of the circuit then
2: if l is a stem then
3: for every critical fanout branch b of l do
4: Add side inputs of b to L
5: Let j be the output of b
6: ForwardTrace(j)
7: end for
8: else
9: Add side inputs of l to L

10: Let j be the output of l
11: ForwardTrace(j)
12: end if
13: end if

XNOR gate, all the values on l’s inputs have to be justified. Similarly, all the values on the

inputs of l have to be justified if l has a non-controlling value (assuming 0-inversion). How-

ever, if l has a controlling value, then we need to check if it has an unreachable input with

a controlling value. If it has, then it is sufficient to justify the value using that unreachable

input. Otherwise, we check whether l is reachable or not. If it is not reachable, then it is

sufficient to justify only the reachable lines to preserve the fault-free and the faulty values

of l. In this case, both values of l will be the same since l is unreachable. Otherwise, all

the values on the inputs will be justified. The last two situations appear when l can only

be justified from a reachable line. Note that in justifying a required controlling value, there

could be several unreachable inputs with controlling value. In this case, priority is given to

an input that is already marked as required. Otherwise, cost functions are used to guide the

selection.
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Algorithm 3.6 justify(l) - CRIPTR Algorithm version.
1: if if l is a PI then
2: mark l as required
3: else if l is an output of a single-input, XOR, XNOR gate, or l has a non-controlling

value then
4: for every input j of l do
5: justify(j)
6: end for
7: else if there is an unreachable input line j of l with controlling value then
8: justify(j)
9: else if l is unreachable then

10: for every reachable input j do
11: justify(j)
12: end for
13: else
14: for every input j of l do
15: justify(j)
16: end for
17: end if

3.1.3 Worst-Case Analysis Of The CRIPTR Algorithm

The same assumptions made for the worst-case analysis of the KMR technique are assumed

here as well. Additional assumptions are as follows:

• Suppose that NS is the total number of stems in the input circuit.

• Suppose also that NO is the number of primary outputs in the input circuit.

The main part of the CRIPTR Algorithm performs the following subtasks NONT times:

1. Logic simulation of the test vector under consideration: This requires at most NG

basic operations.
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2. Critical path tracing: This includes fault simulation of stems to check for criticality.

Thus, the number of gates to be processed in this step can not exceed NG + NSNG.

3. Adding candidate stems: The number of candidate stems can not exceed NS . Thus,

the number of gates to be processed here can not exceed NF

NT
NSNG, where NF

NT
ac-

counts for the average number of faults detected per test vector.

4. Marking of reachable lines: An upper-bound on the number of gates to be processed

here is NSNG.

5. Marking of required lines: An upper-bound on the number of gates to be processed

here is NF

NT
NG.

Summing up these terms results in the following upper-bound on the number of basic oper-

ations in the CRIPTR Algorithm

(
1 +

(
2 +

NF

NT

)
NS +

NF

NT

)
NGNONT (3.1)

3.2 The SVR Technique

The main advantage of the SVR technique over the CRIPTR technique is that the SVR

technique is based on an exact fault simulation, i.e., the fault coverage of the input test set

is maintained in the output relaxed test set, unlike the CRIPTR technique. Algorithm ??

outlines the main part of the SVR Algorithm. For every test vector t, fault simulation is

carried out to identify the newly detected faults. Then, for every newly detected fault f , the
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Algorithm 3.7 Main part of the SVR Algorithm.
1: for every test vector t do
2: Fault simulate the circuit under the test t
3: for every newly detected fault f do
4: BuildRequirementList(f )
5: for every line l in L do
6: justify(l)
7: end for
8: Mark all lines as unreachable
9: end for

10: Output relaxed vector
11: Mark all Lines as non-required
12: end for

requirement list L of f is built, and justified. In what follows, each one of these tasks is

explained.

Algorithm ?? builds the requirement list L for a given fault f . Assuming l is the faulty

line, the Algorithm works as follows. First, line l is added to the requirement list (to ensure

fault activation). Then, a while loop is entered. After the loop is over, line l is either

an output or a fanout stem. In either case, the requirements for propagating fault f to

line l are stored in L. However, if l is an output, the Algorithm terminates, because the

requirements to detect f are completed. This situation occurs when the propagation path

of f does not contain any fanout stem. Otherwise, an event-driven procedure is called

for marking reachable lines from the fanout stem l, i.e., MarkReachableLines shown in

Algorithm ??. This Algorithm is similar to Algorithm ?? with two main differences. One

difference is that Algorithm ?? marks reachable lines for all the faults in the list CS, whereas

Algorithm ?? performs reachability with respect to one line only. Another difference is

that Algorithm ?? returns as soon as it finds an output with the output being the returned

value. However, this is not the case in Algorithm ?? where all reachable lines of all the
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elements in the list CS are marked. Algorithm ?? returns an output o in which f propagates

to. The BuildRequirementList procedure continues by tracing the propagation path of f

starting from the output o. It adds all unreachable inputs in the propagation path of f to the

requirement list L (to ensure fault propagation).

Algorithm 3.8 BuildRequirementList(f )
1: Let l be the line that has the fault f
2: Add l to L
3: while l is not a fanout stem nor a primary output do
4: Add side inputs of l to L
5: l← output of l
6: end while
7: if l is a primary output then
8: Return
9: end if

10: Let s = l
11: o←MarkReachableLines(l)
12: Let E ← ∅
13: Add o to E
14: while E 6= ∅ do
15: Let j be an element in E
16: Remove j from E
17: for every input i of j do
18: if i 6= s then
19: if i is reachable then
20: Add i to E
21: else
22: Add i to L
23: end if
24: end if
25: end for
26: end while

In the MarkReachableLines Algorithm, once an output is reached, the loop is over and

that output will be returned. The function Reachable(l, j) is exactly the same as the one

presented in the CRIPTR Algorithm . For value justification, Algorithm ?? is used.
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Algorithm 3.9 MarkReachableLines(l) - SVR Algorithm version.
1: Let E ← ∅
2: Let j ← l
3: Add l to E
4: while E 6= ∅ do
5: Let l← element in E with minimal level
6: remove l from E
7: if Reachable(l, j) then
8: if l is a primary output then
9: Mark l as reachable from j

10: Return l
11: else if l is not a fanout stem then
12: Mark l as reachable from j
13: Add output of l to E
14: else
15: for every fanout branch b of l do
16: Mark b as reachable from j
17: Add output of b to E
18: end for
19: end if
20: end if
21: end while

3.2.1 Worst-Case Analysis Of The SVR Algorithm

The same assumptions made for the worst-case analysis of the CRIPTR and the KMR tech-

niques are assumed here as well.

For every newly detected fault f by a test vector t, the SVR technique builds the requirement

list of f , and justifies these requirements. Identifying newly detected faults requires at most

NF NG. Building the requirement list and justifying these requirements for one fault requires

at most NG basic operations, and for one test vector, at most NF faults are detected. Thus,

an upper-bound on the total number of basic operations is
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Figure 3.2: A limitation of the CRIPTR and the SVR Algorithms.

2NGNF NT (3.2)

3.3 The TVR Technique

The following example shows a limitation of the CRIPTR and the SVR Algorithms and

illustrates how to overcome this limitation by utilizing the TVR Algorithm.

Example 3.2:

We illustrate here that it is possible in some cases to justify a value from a reachable line

without any drop in fault coverage. Consider the circuit shown in Figure ??. Suppose

that we apply the test AB = 00. Let’s also assume that A/1 is the only newly detected

fault under this test vector. For this fault to be detected, the requirements are A = 0 and

C = 0. The requirement A = 0 is already satisfied because A is a PI. For the requirement

C = 0, the CRIPTR and the SVR Algorithms justify this requirement from line B since it is

unreachable, resulting in the test AB = 00. However, this test can be relaxed to AB = 0x.

To show this, assume that AB = 0x and that stem A is faulty, i.e., A = 0/1. Thus, C will

be 0/x, and eventually D = 0/1, which means that A/1 is detected. Thus, in this example

the assignment C = 0 is justified from a reachable line.

To take advantage from this situation, more involved rules need to be developed to determine

the conditions under which a value can be justified from a reachable line. In this section, we

develop such rules. The idea is to justify both the fault-free and the faulty machines. This
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way, we don’t have to worry about whether we choose to justify a value from a reachable or

unreachable line. The only thing we have to worry about is that the fault-free and the faulty

values are preserved and not masked. Of course, this has an implication, i.e., we have to

compute the faulty value whenever we need it. The following example illustrates the idea.

Example 3.3:

Again, consider the circuit shown in Figure ??. Assuming that the faulty values are already

computed, we proceed as follows. To justify the fault-free 0 on line D, both fault-free 0s on

lines C and A1 have to be justified . Thus, input A is marked as required. The fault-free 0

on line C is now justified from line A. The faulty value on line D is only justifiable from

line A1 implying that the faulty value on line A is required as well. Thus, the fault-free and

the faulty values on line D are justified only from line A, i.e., line B is relaxed resulting in

the relaxed test AB = 0x.

Two-Values Relaxation (TVR) Algorithm

Algorithm ?? outlines the main part of the two-values relaxation (TVR) Algorithm. For

every newly detected fault f under a test t, the Algorithm performs the following. First,

it injects the fault f into the circuit and propagates it to an output O. While doing so, it

also computes the faulty values. Every line l in the circuit is associated with two flags:

lffv and lfv. The first flag tells us whether the fault-free value of l is updated or not. The

second one tells us the same thing about the faulty value of l. A flag is considered updated

if it is updated at least once during one iteration of the test vectors loop in the main part of

the TVR Algorithm. These flags tell us which value (faulty or fault-free value) of line l is

required. The required value has its flag updated. So, in order to detect f , we update (set)
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both counters of O. Then the next step is to justify the fault-free and the faulty machines

by calling the event-driven procedure justify(O). After the justification of all the newly

detected faults is over, we are sure that any primary input needed in the excitation or the

propagation of the newly detected faults is marked. All unmarked primary inputs are turned

into x’s.

Algorithm 3.10 Main part of the TVR algorithm.
1: for every test vector t do
2: Fault simulate the circuit under the test t
3: for every newly detected fault f do
4: Inject f and propagate it to a primary output O
5: Update Offv and Ofv

6: justify(O)
7: end for
8: Output relaxed vector
9: Mark all lines as non-required and reset all the flags

10: end for

The event-driven justification procedure of the faulty and the fault-free values is shown in

Algorithm ??. This procedure works as follows. After the event list E is initialized, we

insert the output to be justified, O, into it. Then we do the following until E becomes

empty. If l is a PI, the Algorithm simply marks it as required. Otherwise, if lffv is updated,

then justifyFFM(l) is called, and if lfv is updated, then justifyFM(l) is called.

The procedure justifyFFM(l) is outlined in Algorithm ??. The procedure checks whether

l is a single-input, XOR, or XNOR gate, or whether the good value (fault-free value) of l,

lgv is a non-controlling value. If so, then all the fault-free flags of the inputs of l are updated

and their associated lines are inserted into the event list E. However, if lgv is a controlling

value, then we check whether there is a controlling value input of l whose fault-free flag is

updated. If such line does not exist, then cost functions are utilized to guide us to select the
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controlling value input, j, whose cost is minimum. Then, the fault-free flag of line j, jffv

is updated and j is inserted into the event list E.

The procedure justifyFM(l) is outlined in Algorithm ??. This procedure is exactly the

same as justifyFFM procedure, with one difference. The difference appears when we try

to justify the faulty value of the line in which we excited the fault from. In such a case, the

faulty value can not be justified; however, to ensure fault excitation, it is needed to justify

the fault-free value. For this purpose, and at the beginning of this procedure, we check

whether l is the point of excitation. If it is so, the fault-free flag of l is updated and l is

inserted into the event list E. Otherwise, the faulty value of l is justified in the same manner

as the justification of the fault-free value done in the procedure justifyFFM , but this time

we consider the faulty value instead of the fault-free value.

The main improvement of TVR Algorithm over the SVR Algorithm is that one does not

have to worry from where a controlling value input is justified as long as both the faulty

and the fault-free values are justified. The overhead of the TVR Algorithm as compared to

the SVR Algorithm is that we need to compute the faulty values until an output is reached.

However, with this overhead, reachability analysis is unnecessary and is not done in the

TVR Algorithm. Conceptually, performing reachability analysis of a fault in the SVR Al-

gorithm is roughly equivalent to propagating that fault to a primary output and computing

the faulty values in the way. Thus, the two Algorithms, roughly, have the same average

CPU time, as will be shown in the experimental results in the next Chapter.
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Algorithm 3.11 justify(O) - TVR algorithm version.
1: E ← ∅
2: Insert O into E
3: while E 6= ∅ do
4: l← maximum level element of E
5: Remove l from E
6: if if l is a PI then
7: mark l as required
8: else
9: if lffvc is updated then

10: justifyFFM(l)
11: end if
12: if lfvc is updated then
13: justifyFM(l)
14: end if
15: end if
16: end while

Algorithm 3.12 justifyFFM(l)
1: if l is an output of a single-input, XOR, XNOR gate, or lgv is a non-controlling value

then
2: for every input j of l do
3: Update jffvc

4: Insert j into E
5: end for
6: else if no controlling value input of l is updated then
7: j ← minimum cost input of l
8: Update jffvc

9: Insert j into E
10: end if
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Algorithm 3.13 justifyFM(l)
1: if l is the faulty line then
2: Update lffvc

3: Insert l into E
4: else
5: if l is an output of a single-input, XOR, XNOR gate, or lfv is a non-controlling value

then
6: for every input j of l do
7: Update jfvc

8: Insert j into E
9: end for

10: else if no controlling value input of l is updated then
11: j ← minimum cost input of l
12: Update jfvc

13: Insert j into E
14: end if
15: end if

3.3.1 Worst-Case Analysis Of The TVR Algorithm

The same assumptions made for the worst-case analysis of the CRIPTR and the KMR tech-

niques are assumed here as well.

For every newly detected fault f by a test vector t, the TVR technique justifies both the

fault-free and the faulty machines. This requires at most 2NF NG basic operations. Thus,

an upper-bound on the total number of basic operations is

2NGNF NT (3.3)

Note that this upper-bound is exactly the same upper-bound obtained for the SVR technique.
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3.4 Selection Criteria

Note that in justifying a required controlling value, there could be several unreachable inputs

with controlling value. In this case, priority is given to an input that is already marked as

required. Otherwise, cost functions are used to guide the selection. Our objective from

cost functions is to justify the required values by the smallest number of assignments on

the primary inputs. This will result in increasing the number of x’s extracted from relaxing

a test vector. Cost functions are used to provide a relative measure on the selection that

reduces the number of required assignments on the PIs.

The well-known recursive controllability cost functions [?] can be used for this purpose as

they give a relative measure of the number of PI assignments required to justify a required

value. For every line l, we compute two cost functions C0(l) and C1(l). For example, for

an AND gate whose output is l and that has i inputs, the cost functions are computed as:

C0(l) = min
i

C0(i)

C1(l) =
∑

i

C1(i)

The cost is computed for other gates in a similar way. Initially, C0(l) and C1(l) are assigned

a value of 1 for PIs. In our work, we call these cost functions the regular cost functions.

Regular cost functions are accurate for fanout-free circuits. However, when fanouts ex-

ist, regular cost functions do not take advantage of the fact that a stem can justify several

required values.

To take advantage of that, we propose new cost functions, called the fanout-based cost

functions. Note that these cost functions are different from the fanout-based cost functions
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Figure 3.3: Illustration of selection criteria.

given in [?]. These functions are computed for an AND gate as follows. Let l be the

output of an AND gate with i inputs. Let F (l) denote the fanout (i.e., the number of fanout

branches) of line l. Then, the fanout-based cost functions are computed as:

C0(l) =
mini C0(i)

F (l)

C1(l) =

∑
i C1(i)

F (l)

The advantage of the proposed fanout-based cost functions over the regular cost functions

given in [?] is illustrated by the following example.

Example 3.4:

Consider the circuit shown in Figure ??. The detected faults under the shown test vector are

G6/0 and A/0. The value 0 on G5 is required. Note that this value can be justified either

through G3 or G4. If the regular cost functions, given in [?], are used then C0(G3) = 2

and C0(G4) = 2. If G4 is selected this will result in the two required values E = 0 and

F = 0 and the test vector will be relaxed to ABCDEF = 1xxx00. If G3 is selected, then

this may result in either of the following assignments {B = 0, C = 0}, {B = 0, D = 0},

{C = 0, D = 0}, or {C = 0}. According to this selection criterion, any of these choices is

possible since they have the same cost. However, if the fanout-based criterion is used, then

C0(G3) = 1 and C0(G4) = 2, which will select G3 to justify the value. Now in justifying

G1 = 0, the assignment C = 0 will be selected since C0(C) = 1/2 while C0(B) = 1.

Similarly, in justifying the requirement G2 = 0, the assignment C = 0 will be selected for

the same reason. Thus, the test in this case will be relaxed to 1x0xxx.
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Figure 3.4: Another illustration of selection criteria.

While the fanout-based cost functions provide better selection criteria than the regular cost

functions in general, there are some cases where this is not true as illustrated by the follow-

ing example.

Example 3.5:

Consider the circuit shown in Figure ??. The detected fault under the shown test vector is

G8/1. To justify the required value on G8, we could either select G7 = 0 or G = 0. Using

the fanout-based cost functions, C0(G7) = 1 and C0(G) = 1. If G7 = 0 is selected, then

this will result in two primary input assignments, namely B = 0 and E = 0. However,

using the regular cost functions C0(G7) = 2 and C0(G) = 1. Thus, the assignment G = 0

will be selected resulting in a more relaxed vector. Thus, in this example using the regular

cost functions leads to a better solution.

To take advantage of both cost functions, we propose a weighted sum cost function of the

two cost functions. Let C01(l) (C11(l)) denote C0(l) (C1(l)) based on the regular cost func-

tions, while C02(l) (C12(l)) denote C0(l) (C1(l)) based on the fanout-based cost functions.

Then, the proposed cost functions are as follows:

C0(l) = A · C01(l) + B · C02(l) (3.4)

C1(l) = A · C11(l) + B · C12(l) (3.5)

The weights A and B will be selected based on experimental results.
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3.5 Theoretical Comparison with the KMR Technique

In this section, we compare our proposed techniques with the KMR technique. First, all the

four techniques take a test set as input, and produce a partially specified test set as output.

In KMR technique, the relaxed test set maintains the same fault coverage as the input test

set. This is also the case for the SVR and the TVR techniques. However, in the CRIPTR

technique, the fault coverage of the relaxed test set might drop a little bit, and it equals the

fault coverage of the input test set as measured by using the critical path tracing Algorithm.

In KMR technique, a distinction is made between essential and nonessential faults. Test

vectors are traversed one time to justify essential faults, then they are traversed another time

to justify (unjustified) nonessential faults. After that, there might still be some undetected

faults, even though these faults are treated explicitly. For this purpose, KMR technique tra-

verses the test vectors for a third time, and uses extended justification to ensure the detection

of the yet-undetected faults. However, in all our techniques, test vectors are traversed only

once to justify all the faults detected by every vector. No distinction is made between es-

sential and nonessential faults, and no faults are missed, except the faults missed due to the

approximate nature of the CRIPT Algorithm in the CRIPTR technique. That is because we

are employing reachability analysis in the CRIPTR and the SVR techniques, and because

dealing with both fault-free and faulty values in the TVR technique.

Both the KMR technique and our techniques try to maximize the percentage of x’s by

propagating the fault under consideration through one primary output. However, unlike the

KMR technique, our techniques utilize cost functions also to guide the justification of a

controlling value in a way to maximize the percentage of x’s.

As mentioned earlier, the order of test vectors affect the relaxation quality. However, dealing
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with essential faults first , which is done in the KMR technique, might take care of the test

vector ordering, and this might positively affect the relaxation quality obtained by the KMR

technique.

In conclusion, the only advantage of the KMR technique over all our techniques is that

they first justify essential faults. This, in a way, takes care of the test ordering problem

to maximize the percentage of x’s. However, the extended justification is considered as

a primary disadvantage, as when applied, several x’s are restored to their original values,

and relaxation quality becomes very poor. Another disadvantage is that the test vectors are

traversed three times.

In terms of upper-bounds on the number of basic operations, our SVR and TVR techniques

are better than the KMR technique, and the saving is

2 (3 + 2NF ) NGNT − 2NGNF NT = 2(3 + NF )NGNT

This is an upper-bound on the overhead in terms of the number of basic operations when

using the KMR Algorithm instead of using the SVR or the TVR Algorithms. However, in

terms of complexity, the KMR, the SVR, and the TVR techniques have the same complexity,

which is O(NGNF NT ).

However, as compared to the CRIPTR Algorithm, the KMR Algorithm performs better,

especially for large circuits with large number of fanout stems and large number of outputs.

In such a situation, the complexity of the CRIPTR Algorithm tends to be cubic on the

number of gates, in addition to the other two factors, i.e., the number of faults and the

number of tests. In other words, for large circuits with large number of stems, where NS
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approaches NG, and large number of outputs, where NO approaches NG, the complexity of

the CRIPTR Algorithm becomes O(NT NF N3
G). However, under the same circumstances,

the KMR Algorithm will have its complexity unaffected, because it is not a function of the

number of stems and the number of outputs.

3.6 Concluding Remarks

In this chapter, we have described our proposed techniques. The first proposed technique is

the CRIPTR technique. This technique is based on the critical path tracing Algorithm. The

main disadvantage of this technique is that the fault coverage of the input test set might be

reduced due to the approximate nature of the critical path tracing Algorithm. The second

proposed technique is the SVR technique. This technique overcomes the disadvantage in-

troduced by the CRIPTR technique and the fault coverage of the input test set is maintained.

Both techniques, CRIPTR and SVR, suffer from a limitation. This limitation appears when

we try to justify a reachable controlling value, and all controlling value inputs are reachable.

In such a situation, the two techniques have no choice other than justifying all the inputs.

However, the third proposed technique, the TVR technique, aims at removing this limita-

tion. It does that by justifying both the faulty and the fault-free values of the observation

output without worrying about reachable and unreachable lines. In other words, the main

improvement of TVR Algorithm over the SVR Algorithm is that we don’t have to worry

from where we justify a controlling value input as long as both the faulty and the fault-free

values are justified. The overhead of the TVR Algorithm as compared to the SVR Algo-

rithm is that we need to compute the faulty values until an output is reached. However,

reachability analysis is substituted by that and is unnecessary. Conceptually, performing
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reachability analysis of a fault in the SVR Algorithm is roughly equivalent to propagating

that fault to a primary output and computing the faulty values in the way. As will be shown

in the experimental results in the next chapter, the two Algorithms in fact have almost the

same average CPU time.

In this chapter also, we have proposed fanout-based cost functions. Cost functions, in gen-

eral, guide us to select the minimum cost controlling value input when justifying a con-

trolling value. Unlike the existing regular cost functions, the proposed fanout-based cost

functions take advantage of the existence of fanouts in the circuit. To take advantage of

both cost functions, i.e. the regular and the proposed fanout-based cost functions, we devel-

oped weighted sum of both cost functions. As will be shown in the next chapter, it is always

better to use the weighted sum cost functions in all of the three proposed techniques. We

also gave a theoretical comparison between our proposed techniques and the KMR tech-

nique. It was mentioned that the only advantage the KMR technique has is dealing with the

essential faults first; however, this advantage is killed by the extended justification process.
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Chapter 4

Experimental Results

In order to demonstrate the effectiveness of our proposed test relaxation techniques, we

have performed experiments on a number of the largest ISCAS85 and full-scanned versions

of ISCAS89 benchmark circuits shown in Table ??. Before presenting our results, let us

have a quick look at this table, which summarizes the characteristics of the ISCAS85 and

ISCAS89 combinational and full-scan benchmark circuits. The first column gives the names

of the benchmark circuits. Columns 2 to 5 indicate the number of inputs, outputs, gates,

levels, collapsed faults based on equivalence, and test vectors applied, respectively. The

used test sets are highly compacted and achieve 100% fault coverage of the detectable faults

in each circuit. They are generated using the MinTest tool presented in [?]. It is clearly seen

from the table how large the benchmarks we are dealing with in our experiments. The

experiments were run on a SUN Ultra60 (UltraSparc II-450 MHZ) with a RAM of 512 MB.

For fault simulation purposes, we have utilized HOPE fault simulator [?].

This Chapter is organized as follows. The next Section compares the best results of each
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Circuit No. No. No. No. No. No.
Name Inputs Outputs Gates Levels Faults Tests
c5315 178 123 2307 49 5350 37
c7552 207 108 3512 43 7550 73
c2670 233 140 1193 32 2747 44
s5378f 214 228 2779 25 4603 97
s9234f 247 250 5597 58 6927 105

s15850f 611 684 9772 82 11725 94
s13207f 700 790 7951 59 9815 233
s38584f 1464 1730 19253 56 36303 110
s38417f 1664 1742 22179 47 31180 68
s35932f 1763 2048 16065 29 39094 12

Table 4.1: Benchmark circuits characteristics.

one of our three proposed relaxation techniques with the BR method. The comparison is

in terms of the percentage of x’s and CPU time. We also compare the three solutions with

each other. Then we experiment with cost functions in each one of the proposed solutions.

After that, we present two applications of test relaxation. One application is related to test

set compression. The other one is related to test compaction. As we will see, the two

applications show how crucial it is to have an efficient test relaxation algorithm.

4.1 Comparison With the Results of the BR Method

In Table ??, our proposed CRIPTR technique is compared with the BR method. The first

column in the table indicate the circuit name. We compare the two techniques in terms of

the fault coverage, the percentage of x’s extracted, and the CPU time taken for relaxation. It

is important to point out here that the fault coverage of the relaxed test set based on the BR

method is the same as the fault coverage of the original test set, i.e. exact test set relaxation

and no drop in the number of detected faults. However, the fault coverage of the relaxed test
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F.C. % x’s Time (sec)
Circuit BR CRIPTR BR CRIPTR BR CRIPTR
c5315 98.897 98.897 54.37 52.004 2376 2.0
c7552 98.265 98.119 55.45 52.154 1739 6.0
c2670 95.741 95.704 69.63 68.738 7008 1.0
s5378f 99.131 99.022 74.14 70.021 9312 3.0
s9234f 93.475 89.534 70.29 69.019 21945 6.0

s15850f 96.682 96.461 80.96 78.694 81122 20.0
s13207f 98.462 97.524 93.36 93.603 435420 28.0
s38584f 95.852 95.777 80.72 77.757 583000 94.0
s38417f 99.471 99.355 67.36 66.466 358156 60.0
s35932f 89.809 89.809 36.68 28.257 27180 22.0

Average %x’s 68.296 65.6713

Table 4.2: Comparison between the proposed CRIPTR technique and the BR method (A =
1, B = 6).

set based on the CRIPTR technique may be reduced. This is due to the approximate nature

of the critical path tracing Algorithm. The fault coverage of the relaxed test set based on the

CRIPTR technique is equivalent to the fault coverage of the original test set as measured by

the critical path tracing algorithm. As can be seen from the table, the drop in fault coverage

is small (if any) for all the circuits.

It is interesting to observe that the CPU time taken by the CRIPTR technique is several

orders of magnitude less than the BR method for most of the circuits. The BR method

requires astronomical CPU times for large circuits and hence is impractical.

The percentage of x’s obtained by the CRIPTR technique is also close to the percentage of

x’s obtained by the BR method for most of the circuits. The difference in the percentage of

x’s obtained ranges between -0.2% and 8.5%. For nine of the circuits out of ten, it is less

than 4.2%. The average difference is 2.6%. Also note that we obtain higher percentage of

x’s for the circuit s13207f. These results are obtained using the proposed combined cost
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% x’s Time (sec)
Circuit BR SVR BR SVR
c5315 54.37 52.141 2376 2.0
c7552 55.45 52.075 1739 8.0
c2670 69.63 68.767 7008 2.0
s5378f 74.14 70.898 9312 1.0
s9234f 70.29 66.416 21945 3.0
s15850f 80.96 78.833 81122 6.0
s13207f 93.36 92.928 435420 4.0
s38584f 80.72 77.981 583000 13.0
s38417f 67.36 66.227 358156 13.0
s35932f 36.68 28.238 27180 9.0

Average %x’s 68.30 65.45

Table 4.3: Comparison between the SVR technique and the BR method (A = 1, B = 8).

function, given in equations ?? and ??, with A = 1 and B = 6. It will be shown next that

this choice of A and B performs the best among other choices experimented with.

In Table ??, the SVR technique is compared with the BR method in terms of percentage of

x’s extracted and CPU time taken for relaxation. It is important to point out here that the

fault coverage of the relaxed test sets based on the BR method and the SVR technique is the

same as the fault coverage of the original test set, i.e. exact test set relaxation and no drop

in the fault coverage.

Again, it is observed that, for all the circuits, the CPU time taken by our proposed technique

is less than the BR method by several orders of magnitude.

The percentage of x’s obtained by the SVR technique is also close to the percentage of x’s

obtained by the BR method for most of the circuits. The difference in the percentage of x’s

obtained ranges between 0.4% and 8.4%. The average difference is 2.8%. For nine of the

ten circuits, the difference is less than 4%. These results are obtained using A = 1 and

B = 8 of the proposed combined cost function given in equations ?? and ??.
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% x’s Time (sec)
Circuit BR TVR BR TVR
c5315 54.37 52.141 2376 2.0
c7552 55.45 52.253 1739 6.9
c2670 69.63 68.787 7008 1.0
s5378f 74.14 71.100 9312 1.0
s9234f 70.29 66.509 21945 2.0

s15850f 80.96 78.871 81122 6.0
s13207f 93.36 92.929 435420 4.0
s38584f 80.72 78.070 583000 13.0
s38417f 67.36 66.255 358156 11.0
s35932f 36.68 28.238 27180 14.0

Average %x’s 68.30 65.52

Table 4.4: Comparison between the proposed TVR technique and the BR method (A = 1,
B = 16).

Table ?? shows the results of the TVR algorithm as compared with the BR method. Com-

parable percentages of x’s are obtained here as well, with very little time as compared to

the BR method. However, for the circuit s35932f, the difference in the percentage of x’s is

still the same as in the SVR and the CRIPTR techniques. Unfortunately, the percentages of

x’s are almost identical to those of the SVR technique and only very little improvement has

been achieved. The average improvement of the TVR over the SVR per circuit is 0.07%.

This is obtained with A = 1 and B = 16. The only interpretation of that is to say that

the situation discussed in the example given in Section ??, where we can safely justify a

controlling value from a reachable line, occurs seldom in these circuits.

Table ?? compares the CPU times and percentages of x’s of the three proposed solutions. As

clearly seen from the table, the CRIPTR technique has the best average relaxation, which

is 65.67%. However, this only differs from the SVR technique in 0.22% and from the

TVR technique in 0.15%. Most likely, the user will sacrifice that little increase in the

percentage of x’s to maintain the same fault coverage, i.e., either the SVR or the TVR
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CPU Time (Seconds) Percentage of x’s
Circuit CRIPTR SVR TVR CRIPTR SVR TVR
c5315 2 2 2 52.00 52.14 52.14
c7552 6 8 7 52.15 52.08 52.25
c2670 1 2 1 68.74 68.77 68.79
s5378f 3 1 1 70.02 70.90 71.10
s9234f 6 3 2 69.02 66.42 66.51

s15850f 20 6 6 78.69 78.83 78.87
s13207f 28 4 4 93.60 92.93 92.93
s38584f 94 13 13 77.76 77.98 78.07
s38417f 60 13 11 66.47 66.23 66.26
s35932f 22 9 14 28.26 28.24 28.24
Average 24.2 6.1 6.1 65.67 65.45 65.52

Table 4.5: Comparison between the CPU times and the percentage of x’s of three proposed
solutions.

techniques will be preferred. However, the average CPU time difference between the SVR

and the TVR techniques is 0 seconds. This indicates that the overhead CPU time consumed

by the TVR technique as compared to the SVR technique is negligible, and thus TVR

technique is preferable. However, the average difference between the CRIPTR and the TVR

techniques is 18.1 seconds. This difference is due to the way we implement the procedure

Critical() shown in Algorithm ??. This procedure forms the bottleneck of the CRIPTR

technique. As mentioned earlier, in our implementation, checking a stem for criticality often

involves fault simulation. This what makes the CRIPTR technique the slowest among our

proposed techniques. However, Abramovici et al. [?] presented two efficient alternative

implementations for the procedure Critical(). These implementations can be utilized to

make the CRIPTR technique faster. It is mentioned in [?] that the critical path tracing

algorithm can be implemented to be as fast as the concurrent fault simulators.

One might wonder and ask: why the BR method produces better relaxation quality than

all our proposed techniques, although we are utilizing cost functions? The answer to this
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question is obvious if we look at the implementation of the BR method. Suppose that we

have a test set composed of the vectors {v1, v2, . . . , vn}. The BR method relaxes this set

as follows. First, it takes the first bit of v1, say b11, and relaxes it, i.e., b11 ← x. Then, it

fault-simulates the whole modified test set. Notice that most of the faults are detectable by a

number of test vectors through a number of primary outputs. This is especially true for large

circuits with highly compacted test sets, which is our case. So, the chance that b11 is relaxed

and the fault coverage remains the same is somehow high. However, in our techniques, we

are only aware of faults that are detected by the previously processed test vectors. Also, we

don’t control the selection of the output. The selection of the output depends on the order

in which primary outputs are traversed in the CRIPTR technique. In the SVR and TVR

techniques, the selection of the output to be justified depends on which output is reached

first in the reachability analysis phase. So, the BR method has a global view of the test

set and the outputs, and this what makes it superior in the percentage of x’s extracted. In

our techniques, further research can be conducted to propagate the faults through an output

which produces better relaxation quality. Also, one might think of reordering the test vectors

to obtain better quality solutions.

4.2 Cost Function Experiments

A large number of experiments have been performed to examine how the proposed cost

functions given in Equations ?? and ?? affect the relaxation quality of the three proposed

techniques. In each experiment, we fix the weight parameters, A and B, to each one of

the values given in the columns of Table ??. Note that weight A is for the regular cost

function and weight B is for the fanout-based cost function. This is done for all the ten
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A 0 0 1 1 1 1 1 1 1 1 1 1 1 1
B 0 1 0 1 2 3 4 5 6 7 8 16 32 64

Table 4.6: Weight combinations experimented with.

benchmark circuits given in Table ?? for every one of the proposed techniques. Thus, a

total of 14× 10× 3 = 420 experiments have been performed. A perl script has been writ-

ten to help in the automation of performing this large number of experiments. Although

the number of experiments is large, the total execution time of all the experiments did not

exceed 85 minutes. This proves that our proposed techniques are very fast as compared to

the BR method, which might take astronomical CPU time to complete the same number

of experiments. Tables ??, ??, and ?? show only a subset of the results obtained for the

CRIPTR, SVR, and TVR techniques, respectively. As can be seen from these tables, for

all the circuits, the use of cost functions results in higher percentage of x’s extracted than

without using the cost functions. A difference of up to 5% is observed. Furthermore, it

is clearly indicated from the tables that the proposed fanout-based cost function produces

better results than the regular cost function. However, for the CRIPTR technique, a com-

bined cost function with a weight of 1 for the regular cost function and a weight of 6 for

the fanout-based cost function seems to be a good cost measure as it provides the highest

percentage of extracted x’s on average. For the SVR technique, a combined cost function

with a weight of 1 for the regular cost function and a weight of 8 for the fanout-based cost

function seems to be a good heuristic. Finally, a combined cost function with a weight of

1 for the regular cost function and a weight of 16 for the fanout-based cost function pro-

duces the best result for the TVR technique. In each one of the three tables, the maximum

percentage of x’s obtained for every circuit is highlighted.
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A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
Circuit B=0 B=1 B=0 B=1 B=4 B=6 B=8 B=16
c5315 48.892 51.989 49.985 52.004 52.004 52.004 52.156 52.141
c7552 48.230 52.174 48.415 52.154 52.154 52.154 52.154 52.253
c2670 66.026 68.357 66.631 68.718 68.728 68.738 68.787 68.787
s5378f 67.641 70.209 69.140 69.756 69.920 70.021 70.927 71.100
s9234f 66.686 68.571 67.446 68.845 68.857 69.019 66.497 66.509

s15850f 77.682 78.866 77.849 78.292 78.689 78.694 78.856 78.871
s13207f 93.112 93.508 93.235 93.597 93.604 93.603 92.931 92.929
s38584f 75.418 77.838 75.930 77.661 77.705 77.757 77.927 78.070
s38417f 65.834 66.655 66.201 66.487 66.466 66.466 66.231 66.261
s35932f 23.057 27.444 28.172 28.257 28.257 28.257 28.238 28.238
Average 63.258 65.561 64.300 65.577 65.638 65.671 65.470 65.516

Table 4.7: Effect of cost function on the extracted percentage of x’s using the CRIPTR
Algorithm.

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
Circuit B=0 B=1 B=0 B=1 B=4 B=6 B=8 B=16
c5315 48.527 52.065 50.076 52.080 52.080 52.080 52.141 52.141
c7552 48.091 52.068 48.329 52.075 52.075 52.075 52.075 52.174
c2670 65.899 68.377 66.407 68.748 68.767 68.767 68.767 68.767
s5378f 68.422 71.057 69.891 70.484 70.652 70.753 70.898 71.057
s9234f 63.621 65.949 64.372 66.046 66.189 66.408 66.416 65.980

s15850f 77.693 78.971 77.855 78.391 78.823 78.830 78.833 78.847
s13207f 92.457 92.920 92.485 92.920 92.928 92.928 92.928 92.928
s38584f 75.328 78.072 75.839 77.794 77.827 77.951 77.981 78.072
s38417f 65.518 66.465 65.865 66.162 66.171 66.171 66.227 66.247
s35932f 22.986 27.415 28.120 28.238 28.238 28.238 28.238 28.238
Average 62.854 65.336 63.924 65.294 65.375 65.420 65.450 65.445

Table 4.8: Effect of cost function on the extracted percentage of x’s using the SVR Algo-
rithm.
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A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
Circuit B=0 B=1 B=0 B=1 B=4 B=6 B=8 B=16
c5315 47.616 52.035 49.484 52.095 52.095 52.095 52.156 52.141
c7552 47.773 52.181 47.806 52.154 52.154 52.154 52.154 52.253
c2670 65.178 68.338 65.977 68.728 68.738 68.787 68.787 68.787
s5378f 68.166 71.115 69.636 70.445 70.619 70.758 70.927 71.100
s9234f 62.768 66.493 63.686 66.100 66.281 66.489 66.497 66.509

s15850f 77.484 79.030 77.660 78.351 78.833 78.852 78.856 78.871
s13207f 91.957 92.922 91.990 92.920 92.931 92.931 92.931 92.929
s38584f 74.803 78.081 75.355 77.722 77.760 77.885 77.927 78.070
s38417f 65.393 66.458 65.768 66.146 66.172 66.172 66.231 66.261
s35932f 22.882 27.430 28.096 28.238 28.238 28.238 28.238 28.238
Average 62.402 65.408 63.546 65.290 65.382 65.436 65.470 65.516

Table 4.9: Effect of cost function on the extracted percentage of x’s using the TVR algo-
rithm.

4.3 Example Applications of Test Relaxation

To illustrate the application of test relaxation in improving the effectiveness of test compres-

sion, we have applied the Frequency-Directed Run-Length (FDR) compression technique,

Extended Frequency-Directed Run-Length (EFDR) compression technique, and compres-

sion technique based on geometric shapes (GPB), which are all discussed in Chapter 2. For

the GPB technique, blocks of size 8 × 8 are used with 01-distance sorting Algorithm. We

apply these compression techniques on the used test sets. Tables ??, ??, and ?? show the

test compression results for the FDR, the EFDR, and the GPB compression techniques, re-

spectively. In all these tables, the first column shows the circuit name, and the last four

columns show the compression ratio of four test sets. One is the original test set without

relaxation. Another one is the relaxed test set based on the BR method. The third ratio is for

the relaxed test set based on the proposed SVR technique, and the fourth is for the relaxed

test set based on the proposed TVR technique. As shown in these tables, for all the circuits,
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Compression Ratio
Fully Relaxed Tests

Circuit Specified Tests BR SVR TVR
c5315 -25.63 20.47 20.10 20.04
c7552 -19.48 37.13 34.17 34.22
c2670 -24.93 43.84 43.46 43.46
s5378 -27.86 46.85 44.10 44.41

s9234.1 -25.52 34.80 32.01 32.16
s15850.1 -23.41 56.49 56.77 56.88
s13207.1 -25.97 78.78 79.51 79.51
s38417 -29.08 37.66 35.99 36.08

Table 4.10: Effect of relaxation on test compression ratio using the FDR codes.

all compression techniques used achieve negative compression (i.e., compressed test set is

larger than original test set) on the original (fully-specified) test sets. However, significant

compression is achieved based on the relaxed test sets. All the BR method, SVR technique,

and TVR technique achieve comparable compression ratio for most of the circuits. For the

circuit c5315, and under the EFDR technique, a difference of about 6% is observed between

the compression ratios of the test set relaxed by the SVR technique and the test set relaxed

by the TVR technique. Notice that both SVR and TVR techniques obtain the same relax-

ation quality for this circuit as shown in Table ??. In general, the higher the percentage of

x’s extracted, the higher the compression ratio. However, the location of x’s and their dis-

tribution certainly have an impact on the results. From these results, it is clear that in order

to have effective test compression, it is crucial to have a relaxed test set and an efficient test

relaxation technique.

In order to demonstrate the impact of test relaxation on test compaction, we used HITEC [?]

to generate test sets that detect all the detectable faults on some of the benchmark circuits

used. The results are shown only for six of the total ten benchmarks, because, for the

remaining four circuits, HITEC was unable to generate test sets which fully cover all de-
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Compression Ratio
Fully Relaxed Tests

Circuit Specified Tests BR SVR TVR
c5315 -16.91 28.66 26.13 20.08
c7552 -11.17 41.48 38.95 39.12
c2670 -15.16 53.10 52.10 52.05
s5378 -17.72 50.81 47.65 47.97

s9234.1 -16.68 37.82 34.80 35.01
s15850.1 -17.20 56.29 56.48 56.44
s13207.1 -17.85 79.38 79.98 79.95
s38417 -7.26 52.35 48.44 48.47

Table 4.11: Effect of relaxation on test compression ratio using the EFDR codes.

Compression Ratio
Fully Relaxed Tests

Circuit Specified Tests BR SVR TVR
c5315 -4.10 27.88 24.14 24.51
c7552 -2.68 37.75 34.92 34.90
c2670 -3.50 51.85 48.93 48.91
s5378f -3.57 51.55 48.64 48.88
s9234f -3.48 43.45 38.59 39.08

s15850f -3.28 60.32 57.24 57.05
s13207f -3.25 84.14 83.65 83.62
s38417f -2.70 46.50 43.11 43.11

Table 4.12: Effect of relaxation on test compression ratio using the GPB compression.
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Number of Test Vectors
Circuit Original ROFS BR SVR TVR
c5315 193 119 100 103 104
c2670 154 106 98 101 103
s5378 359 252 136 140 138

s9234.1 620 376 200 214 215
s13207.1 633 478 252 257 257
s35932 80 63 37 33 33

Table 4.13: Effect of relaxation on test compaction.

tectable faults during the specified time limit. The second column in Table ?? shows the

number of test vectors obtained by HITEC. Then, we compacted the test vectors based the

reverse-order and random order fault simulation for 20 iterations. The number of the com-

pacted test vectors is shown in the third column of the table. Next, we relaxed the compacted

test sets based on both the BR, SVR, and TVR techniques, respectively. To achieve further

compaction on the relaxed test sets, we merged compatible test vectors. The fourth, fifth,

and sixth columns show the number of merged test vectors based on the BR relaxed test

set, the relaxed test set based on the SVR technique, and the relaxed test set based on the

TVR technique, respectively. As can be seen from the results, over 40% test compaction is

achieved for most of the circuits based on merging compatible vectors. Due to the larger

percentage of x’s achieved by the BR method, more compacted test sets are obtained except

for circuit s35932. As demonstrated by the results, starting with a compacted test set, sig-

nificant further compaction can be achieved by relaxing the test set and merging compatible

vectors.
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4.4 Concluding Remarks

In this Chapter, the effectiveness of our proposed techniques has been demonstrated by com-

paring them with the BR method. Although the BR method obtains slightly higher average

percentage of x’s than our techniques, all our techniques are several orders of magnitude

faster than the BR method.

The first proposed technique was the CRIPTR technique. This technique suffers from the

minor drop in fault coverage of the relaxed test set due to the use of the critical path tracing

algorithm. However, in the SVR technique, we overcome this problem by maintaining the

same fault coverage as the fully specified test set. The problem of justifying a controlling

value from a reachable line is solved by the TVR technique. In this technique, we don’t

worry from where we justify the controlling value as long as we justify both the faulty and

the fault-free machines. The improvement due to this technique over the SVR technique

is only minor. However, the average CPU overhead time is almost zero, which means that

they (the SVR and the TVR techniques) both obtain the result within the same time. Due to

this fact, we recommend using the TVR technique.

In this chapter also, we have shown how cost functions affect the quality of relaxation.

Several experiments have been performed to show this effect. We also demonstrated the

usefulness of our technique to both compression and compaction. From the results obtained,

it is clear that in order to have effective test compression and compaction, it is crucial to have

a relaxed test set and an efficient test relaxation technique.
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Chapter 5

Conclusions And Future Research

In this work, we have presented three efficient test relaxation techniques for combinational

circuits. All the techniques are faster than the BR method by several orders of magnitude.

The first technique, i.e. the CRIPTR technique, is based on the critical path tracing Algo-

rithm, and hence may result in a small drop in the fault coverage after relaxation. This is

due to the approximate nature of the CRIPT Algorithm. However, based on experimental

results, only a small drop in the fault coverage is observed for most of the circuits.

In the second proposed technique, i.e. the SVR technique, the relaxed test set maintains the

same fault coverage of the original test set. This technique simply identifies all the newly

detected faults under a given test vector and marks all the lines whose values are required

to detect these faults. Any unmarked input is turned into an x. The CRIPTR and the SVR

techniques avoid justifying a controlling value from a reachable line.

The third solution, i.e. the TVR technique, is an improvement over the SVR technique. It

tries to justify both the fault-free and the faulty machines without worrying from which line
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a controlling value is justified. As we saw in the experimental results, only little improve-

ment is achieved without any overhead time.

Furthermore, the percentage of x’s extracted is close to the one obtained by the BR method.

The CRIPTR technique has the best average relaxation, which is 65.67%. However, this

only differs from the SVR technique in 0.22% and from the TVR technique in 0.15%. Most

likely, we would sacrifice that little increase in the percentage of x’s to maintain the same

fault coverage, i.e., in most cases, we favor either the SVR or the TVR techniques because

they maintain the fault coverage of the original test set.

Having an efficient test relaxation technique is crucial for effective test compaction and

compression. Application of test relaxation in achieving more effective test compaction

and compression has been demonstrated.

Finally, let us shed some light on the future directions of this work. Further research can

be conducted to control the propagation of the faults through an output to obtain better

relaxation quality. Currently, our proposed Algorithms propagate a fault to an output, not

necessarily the best output. This might be possible with the help of modified versions of

observability functions found in [?] .

Also, it has been observed that the order in which test vectors are traversed affects the

relaxation quality. Thus, one might think of test vectors reordering, and studies its effect

on the quality of relaxation. A simple rule is that a vector which detects a large number of

faults should be traversed earlier than a vector which detects only small number of faults.

Also, one might think of developing better cost functions for both the justification of a

controlling value and the selection of the best propagation output. A final idea is to improve
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the techniques in order to have some sort of parallelism, i.e., try to process several faults at

one iteration.
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