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What is A Modeling Language

A Modeling Language.
What is Modeling.
When do you Model?
What do you Model
» Various Levels of Modeling & Abstraction (what does it 

mean?)
– Behavioral/Architectural  Level modeling
– Structural Level modeling
– Dataflow Level modeling

Characteristics/Requirements of Models.
What are the main advantages
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Design Flow & Levels of Abstraction

Idea

New chip

Architectural design

Logical design

Physical design

Fabrication

Generic CAD tools

Behavioral modeling and
Simulation tool

Functional and logic minimization
logic fitting and simulation tools

Tools for partitioning,
placement, routing, etc.

CAD subproblem level

Behavioral / Architectural

Register transfer / logic

Cell / mask
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Architectural Design

Generally carried out by expert human engineers.
Decisions made effect cost/performance of the design. Some 
examples are
» What should be the instruction set (IS) of the Processor (P) ?

– What memory addressing modes should be supported?
– Should the IS be compatible with another in the market?

» Should instruction pipelining be employed?
– If yes, then what should be the depth?

» Should the P be provided by an on-chip cache?
– How big should the cache be?
– What should be the organization of the cache?
– Should instruction cache be separated from data cache?
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Architectural Design

How should the arithmetic unit be designed?
» Bit Serial or Bit Parallel?
» Bit Serial will save on hardware but lose on 

performance!
How will the Processor interface to the external 
world?
» Are there any International Standards to be met?

Notes: This level of design cannot be done by a 
computer program, there are tools that can aid 
the system Architect.
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Architectural Design Tools

This level of design cannot be done by a computer 
program, there are tools that can aid the system 
Architect. Example:
» Tools can be used to experiment with innovative ideas
» Tools are also available to 

– tune the size of the cache, or
– Determine the depth of the pipeline, etc.
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Data/Control  Path Design

Once the architecture is defined, it is necessary 
to carry out two things:
1. Detailed logic design of individual circuit modules
2. Derive the control signals necessary to activate and 

deactivate the circuit modules.
1. The First step is known as data path design.
2. The Second step is called   control path design.
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Data  Path Design

The data path of the circuit includes the various 
» functional blocks (such as adders, multipliers, ALU, 

etc), 
» storage elements (shift register, RAM, buffers, 

stacks, queues), 
» hardware components to allow transfer of data among 

functional blocks and storage elements.
– Data transfer is achieved using tri-state busses or a 

combination of multiplexer(s)/de- multiplexer(s).
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Control  Path Design

The control path of the circuit generates the 
various control signals necessary to operate the 
circuit:
» These are necessary to initialize the storage elements,
» To initiate data transfers among functional blocks and 

storage elements,
» And so on.
The control path  may be implemented using
» Hardwired control (random logic), or
» Through micro-programmed logic.



1-11

An Example

The Problem:  It is required to design an 8-bit 
adder.  The two operands are stored in two 8-bit 
shift registers A and B. At the end of the 
addition operation, the sum must be stored in the 
A register. The contents of the B register must 
not be destroyed.  The design must be as 
economical as possible in terms of hardware.
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Possible Solutions

There are numerous ways to design the above 
circuit,some of which are listed below.
» Use an 8-bit carry look-ahead adder.
» Use an 8-bit ripple-carry adder
» Use two 4-bit carry look-ahead adders and ripple the 

carry between stages.
» Use a 1-bit adder and perform the addition serially in 8 

clock cycles.
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Our Choice

Since it is specified that the cost must be 
minimum, the last option seems best.
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Organization of a Serial Adder
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Data Path of Serial Adder

Consists of two 8-bit shift regiseters
A full adder 
A D-flipflop
Two multiplexers
A three bit-counter ( to count the number of 
times bit-wise addition is performed)
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Control Path of Serial Adder

The relevant control signals are:
» SA to Shift the register A right by one bit
» SB to shift the register B right by one bit
» MA to control multiplexer A.
» MB to control multiplexer B
» RD to  Reset the D flip-flop 
» RC to  Reset the counter 
» START to  commences the addition
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Control Algorithm of Serial Adder

Forever do
While (START = 0)  skip;
Reset the D flip-flop and the counter;
Set MA and MB to 0;
Repeat

Shift registers A and B right by one
counter = counter + 1; 

Until counter = 8;
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Some Observations

Design involves trade-offs between 
» Cost
» Performance
» Testability
» Power dissipation
» Fault tolerance
» Ease of design
» Ease of making changes to the design.
Serial is cheap but slow, parallel fastest in terms of 
performance but most costly
The different ways we can think of building an 8-bit 
adder constitutes what is known as design space (at a 
particular level of abstraction).

» Each method of implementation is called a point in the design 
space.
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High-Level Synthesis

A circuit specification may pose constraints on one or 
more aspects of the final design.

» Example: When the spec says that the circuit must operate at 
15MHz, we have a constraint on timing performance of the 
circuit.

Given a spec, the objective is to arrive at the design 
which meets all the constraints, and optimizes on or more 
design aspect. 
This problem is known as hardware synthesis
Programs are available for both data path synthesis and 
control path synthesis
The automatic generation of data path and control path 
is known as high-level synthesis.
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High-Level Synthesis

Tasks involved in HLS (the process of automatically translating 
abstract behavioral models of digital systems to implementable
hardware) are scheduling and allocation
Scheduling  distributes the execution of operations throughout 
time steps
Allocation assigns hardware to operations and values.  

– Allocation of hardware cells include functional unit allocation, register 
allocation and bus allocation.  

– Allocation determines the interconnections required. 
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Behavioral Description and its CDFG
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Y = ( S * T ) + ( U * V ) 

*

+

*

+

W   S         T  U          V

X                Y

(a)

CDFG

(b)

*

*+

+

W         S          T       U          V

X                  Y

1

2

3

(c)

Scheduled CDFG

1-22

Example 1: A CDFG and 3 Solutions
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Example 1
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Register Allocation
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Register Assignment & Synthesis

Register Assignment

R1 : V1 , V6
R2 : V2
R3 : V3
R4 : V4
R5 : V5, V7

( d )
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Final Output
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Logic Design

Data path and control path (derived automatically or 
manually) will have components such as ALU, registers, 
multiplexers, buffers, and so on.
Further design steps depend on

» How the circuit is implemented (PCB/VLSI)
» Are all the components readily available as off-the-shelf 

components/ICs
If the circuit is implemented on PCB, then the next stage 
is to select the components to minimize 
cost/performance
Following the selection procedure ICs are selected and 
placed on one or more circuit boards and interconnected. 
A similar procedure is used when implementing on a VLSI 
chip using pre-designed components from a module library 
(called macro cells).
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Historical Glimpses/Background of HDLs

1960's - 1980's AHPL, CDL, DDL in 
classroom.
» Number of languages mushrooms to over 200 

languages, all of them either proprietary or academic
1983 VHSIC Program initiates definition of 
VHDL 
1987 VHDL Standard (IEEE 1076) approved 
1990 Verilog dominates the marketplace.
» VHDL gaining acceptance as the second language due 

to standards effort and DoD mandated use. 
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VHDL- Time Line

Very  High  Speed  Integrated  Circuits

Start Of
VHDL Development

1981
1985

First Publication
(Base-Line)

1987

1993
First Publication Of

VHDL Standard

Publication Of Revised
VHDL Standard

VHDL = VHSIC Hardware Description Language
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Background, continued

1992 IEEE 1164 (3, 4, 9-valued logic 
standard adopted) 
1993 VHDL re-balloted 
» minor changes make it more user-friendly.

1994 Widespread acceptance of VHDL.
» CAE tools operate at speeds comparable to

Verilog. Mentor, Cadence, Viewlogic, Synopsys
all provide full VHDL compilation/simulation and 
synthesize with subsets of VHDL. 
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Applications of HDLs 
HDLs exist to satisfy a variety of purposes and 
are used in a number of different ways.
Therefore, 
» there are features of VHDL (and any other design 

language) that will be useless in some applications, and 
confusing in other applications.

» Some descriptive features of VHDL may even lead to bad 
synthesis. 

A major aspect of this course will be understanding 
how VHDL should be used to permit synthesis tools 
to produce good implementations of designs. 
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Objective of VHDL

The main objective of VHDL was to provide 
a unified notation to describe Electronic 
Systems (digital hardware) at various levels 
of abstractions.
Abstraction, what does it mean
Levels of Abstractions (gate level, upwards)
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Objectives (re-visited) 

The models (or VHDL descriptions) are both human/machine 
readable.
» Like all HDLs, VHDL also comes with a simulator (to verify the 

correctness of models)
Also, one single hardware description is used for 
» simulation and verification, 
» synthesis (translation to hardware), and 
» testing.  

To support the communication of design data (no more black 
boxes)
To aid the maintenance, modification, and procurement of 
hardware.
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Purposes Served by VHDL 
To understand why VHDL looks the way it does, it will 

help to examine the variety of purposes it serves
» Design Specification
» Design Documentation
» Design Verification
» Product Test Generation
» Hardware Synthesis

Language must seek to support these!
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Design Specification

Definition of functional interfaces 
» concurrent ==> structure (space) 
» sequential ==> behavior (time)

Definition of design functions (behavior) 
» by control flow (procedural) 
» by data flow (concurrent) 

Project partitioning 
» in space (structural) 
» in time (behavioral)
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Design Documentation 

Language standardization 
» to improve quality and efficiency of communication, 

broaden audience 
Interface description for users 
» often as components of next level higher system: 

physical, structural, and "pin" functions 
Express usage constraints 
» e.g. disallowed input timings, combinations, output loads 

Express functional behavior of the design: 
» internal states, data structures (e.g. format used in a 

floating point unit)
» algorithms implemented 

Show communication protocols between design 
entities 
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Design Verification - SIMULATION

The Usual Method
» Highly developed tools
» Inherently behavioral (structural simulators consist of ordered calls 

to primitive procedures to model corresponding primitive 
structures)

» Limited by the effectiveness of the design test program developed 

Requires 
» Language semantics to be executable
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Design Verification - Formal Methods

Require 
» common language for specification of design goals and 

description of implementation to meet those goals 
» formal (mathematically rigorous) language definition to permit 

logical transformation of descriptions to prove equivalence. 
Such mathematical languages inherently are declarative 

» language that can describe both time and structure 

Correctness by construction (silicon 
compilation) more nearly realized
» than automatic verification systems 
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Product Test Generation

Requires
» constrained sets of values, especially for inputs
» behavioral descriptions of sequential designs
» machine analyzable design specifications

UUTStimuli
Generation

Response
control

model tb_model
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Hardware Synthesis

Stepwise refinement of design 
» by architectural decomposition (either structural or 

behavioral) 
Transformations from behavioral models to 
corresponding structural and physical models, 
» e.g. PLA generators, standard cells for shift registers, 

adders, etc. 
Relating scaling parameters with expressions 
Enforcement of design constraints 
Register transfer level allocation, 
» dataflow optimizations 
» expression transformations for optimization 
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VHSIC Motivations for Creating/Using VHDL 

Standardization of Documentation
» improved communication of requirements 

between military, contractors, and 
subcontractors 

System Design Time and Cost
» reduced ambiguity in specification of design 

interfaces and design functions 
» reusability of existing designs 
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VHSIC Motivations for Creating/Using VHDL

Open-system CAE Tools
» can change CAE system without losing use of existing designs 
» elimination of language translators 

Improved Integration of Multi-vendor Designs
» shared design databases become possible 
» standard cells, behavioral models 

Improved Understanding of Design Science 
» top-down, middle-out, bottom-up 
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VHDL Basics/Overview

VHDL an acronym : V (of VHSIC, stands for Very 
High Speed Integrated Circuit) Hardware Description 
Language.
Names coined by DOD (department of defense, the 
first institution to understand the benefits of design 
language based documentation, modeling, and 
simulation of electronic devices)
VHDL simulators took hold in early ‘90s.
PLA/FPGA designers started using them on larger 
designs.
Note: The word  “synthesis’’ was not mentioned as one 
of the reasons for creating VHDL (as it was primarily 
intended for documentation, and modeling/simulation)
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How a System Communicates

How a System Communicates with its environment?
» Whatever function a system performs, it must get some 

input from its environment and output some data.
» In other words the system must communicate with its 

environment.
» The communication part of a system specification is called 

the interface (without which the system would be useless).

The system’s interface is described in VHDL by its 
entity.
» This is the basic design unit for any system
» It is impossible to have a VHDL system without entity
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Body of a System

To accomplish the desired functionality, data 
must undergo some transformation inside the 
system.
This is handled by the system’s inner part of 
body (also called the architecture).
The functionality can be simple as turning 

some switch on/off, or as complicated as an 
autopilot of a jetliner.
However, in each case a system can be 
considered as a composition of a body 
(architecture) and an interface (entity)
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External Support

Some systems may derive additional features through 
supportive elements. 
» Example: A plug-in card that speed graphic in PC

While such an add-on card can be considered a part 
of the system, for the sake of clarity let’s consider it 
as a third element of systems’s design (called package
in VHDL).
All 3 elements of a system design 
» Interface (entity)
» Body (architecture)
» Add-ons (package) 

will be discussed in this session.
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Entity

A good practice to start any design is with 
the analysis of its environment, entity is the 
main part of any spec.
In VHDL, the name of the system is the same 
as the name of its entity.
Entity comprises two parts:
» parameters of the system as seen from outside 

such as bus-width of a processor or max clock 
frequency

» connections which are transferring information to 
and from the system (system’s inputs and outputs)
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Illustration of Entity

Din1 Din2       Din3 Din4 Din5 Din6 Din7 Din8

CLK

Dout1 Dout2 Dout3 Dout4 Dout5      Dout6 Dout7    Dout8

8-bit  register
fmax = 50MHz

entity Eight_bit_register is

parameters

connections

end entity Eight_bit_register

CLK one-bit input
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Parameters/Connections

All parameters are declared as generics and are 
passed on to the body of the system
Connections, which carry data to and from the 
system, are called ports. They form the second part 
of the entity.
Note: The importance of entity is so great that the 
architecture in VHDL is specified as the architecture 
of entity
» Example

entity My-Digi-System is
..
..
..

end entity My-Digi-System;
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Entity
Examples

entity ALU is
Port ( A,B              : in        bit_vector(7 downto 0);  -- comment 1

Mod1, Mod2 : inout   bit_vector(3 downto 0); -- comment 2
C              : out      bit_vector(7 downto 0)  -- comment 3 

);
end entity ALU;

-- name = Mod
-- mode = bidirectional
-- type  = 4-bit wide bus
-- note, 

port declarations are separated by semicolon, 
no semicolon after the last port declaration. 
Double hyphen for comments.
Multiple ports of the same mode and type can be declared in one 
statement.
Properly documenting ports is as good as a good entity description
Also you will see generics (and their applications)  in subsequent 
lectures.

1-52

Entity

FULL ADDER
A
B
C

SUM

CARRY

Examples
entity FULLADDER is

- -(After a double minus sign (-) the rest of 
-- the line is treated as a comment) 
- -
- -Interface description of FULLADDER 
port ( A, B, C: in bit; 

SUM, CARRY: out bit); 
end FULLADDER; 
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Entity

-- Example Data Flipflop;
entity DFF is
-- parameter: width of the data 
generic (width: integer); 
--input and output signals 
port ( CLK, NR: in bit; 

D: in bit_vector(1 to width); 
Q: out bit_vector(1 to width)); 

end DFF; 
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Mixing S/B in Architecture Hierarchical Design

S

BS

S BB/S

BBBBB

S: structural description
B: behavioral description
B/S: mixed description
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Types of Architecture Descriptions

Each system can be either in terms of its 
functionality (behavior) or structure, which requires 
different kinds of information about the system.
Usually the synthesis tool works with both of them.
» First the expected functionality has to be specified and 

formalized;
» And then it has to be transformed into structural equivalent
» The structural equivalent is more suitable for synthesis tool

Parts of this translation can be done automatically
However a fully functional (behavioral) synthesis tools 
is not yet available.
This is because the behavioral spec is only a 
description of outputs’ response to inputs’ changes.
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Relationship between Entity & Architecture

Example
entity My-Digi-System is
(
...
…
);

end entity My-Digi-System;

architecture MY-Arch of My-Digi-System is
...
end architecture MY-Arch;
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VHDL

PACKAGE 
DECLARATION

PACKAGE
BODY

(often used 
functions, 
constants, 
components, …. )

ENTITY
(interface description)

ARCHITECTURE
(functionality)

CONFIGURATION
(connection entity ↔ architecture)

1-58

Structural Description

Does not cope with functionality of the system, but 
instead specifies 
» what components should be used 
» and how they should be connected to achieve the expected 

results
Structural design is much easier to synthesis than 
behavioral because
» it refers to concrete physical components

However, creating a structural system specification is 
more difficult because it requires an experienced 
designer to do it most effectively.
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Structure/Behavior

STRUCTURE BEHAVIOR

SYSTEM

CHIP

REGISTER

GATE

CIRCUIT

SILICON

SCHEMETIC

Design tools

HDL Description

Boolean 
Equations

Ideal
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Structural Description

» Example:
architecture STRUCTURAL of FULLADDER is

signal S1, C1, C2 : bit; 
component HA 

port (I1, I2 : in bit; S, C : out bit); 
end component; 
component XOR 

port (I1, I2 : in bit; X : out bit); 
end component; 

begin
INST_HA1 : HA 

port map (I1 => B, I2 => C, S => S1, C => C1); 
INST_HA2 : HA 

port map (I1 => A, I2 => S1, S => SUM, C => C2); 
INST_XOR : XOR 

port map (I1 => C2, I2 => C1, X => CARRY); 
end STRUCTURAL;
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Structure of Full Adder

I1 S
HA

I2        C

I1 S
HA

I2        C I1
XOR

I2        x

A

C

B

CARRY

SUM

S1

C1

C2
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Concurrent Behavioral Description

architecture CONCURRENT of FULLADDER is
begin
SUM <= A xor B xor C after 5 ns; 
CARRY <= (A and B) or (B and C) or (A and C) 

after 3 ns; 
end CONCURRENT; 
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Concurrent Behavioral Description

T T + Δ T + 2Δ

A

SUM

PROD1

PROD2

PROD3

CARRY
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Basic VHDL Constructs

To specify architectures, or describe 
behavior,  we need some basic VHDL 
constructs, and some basic VHDL types.
Every piece of info inside a digital system is 
stored in the form of bits and bit vectors.
Instead of long bit-vectors, hex characters 
may be used.
Complex but regular data structures can be 
represented by arrays.
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An Example of Behavioral Description
entity LOW_HIGH is 

port (A,B C: integer;
MI,  MA: out integer);

end LOW_HIGH; 

architecture BEHAV of LOW_HIGH is 

begin 
L: process

variable LOW: integer := 0; 
begin 
wait on A, B, C; 
if A < B then LOW := A; 

else LOW := 
B; 

end if; 
if C < LOW then LOW := C; 
end if; 
MI <= LOW after 1 ns; 

end process;

H:process
variable HIGH: integer := 0; 

begin 
wait on A, B, C; 
if A > B then HIGH := A; 

else HIGH := B; 
end if; 
if C > HIGH then HIGH := C; 
end if; 
MA <= HIGH after 1 ns; 

end process; 
end BEHAV; 
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Quick Overview: Types

Scalar type is a generic name referring to all types 
whose objects have a single value at any time instant.
All values of scalar type are ordered and the values 
are specified either as falling within a range or 
explicitly enumerated. Examples:
» Boolean (T/F), 
» Character (all characters defined by ISO 8859-1,
» Integer (all integers within a specified range), 
» Real (floating point numbers with a specified range),
» Bit (enumeration type specified by ‘0’ or ‘1’).

We can also have user defined enumeration types, 
such as
» type FSMStates is (Idle, Fetch, Decode, Execute);

There are also other, such as physical types, user 
defined records, arrays, etc. (You will see this in a 
later lecture).
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Quick Overview: Expressions/Operators

Input signals must always be transformed or 
processed in some way to generate the desired output 
signals.
» Outputs <- transformations(inputs)

Transformations are performed by expressions 
(formulae that consist of operators with an 
appropriate number of operands)
Any specification of a systems behavior can be seen 
as an ordered set of expressions on the inputs 
assigned to the outputs.
The basic element of each expression is an operator
(which is assigned a specific type) and requires one or 
more operands.
It is illegal to use an operator on operands of non 
supported type (except via operator overloading).
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Quick Overview: Other Operators

Logical Operators (and, or, nand, nor, xor, xnor, not, these 
are defined for types Bit, Boolean, and Bit_Vector)
Numerical Operators (+, -, *,  /,  mod, rem, **, abs)
Relational Operators (=, /=, <, >, <=, >=) that return T/F
Shift Operators (sll, srl, sla, sra, rol, ror) restricted to 
arrays whose elements are of the type Bit or Boolean
Catenation operator (denoted by ‘&’)
Assignment operator (assigning expressions to signals
» x<=y<=z; (y less or equal to z, to a Boolean signal x)
» a<=  b or c; (logical operation, correct for Boolean, bit and 

bit_vector)
» k<= ‘1’; (assignment of a single bit or character, note apostrophes)
» m<=“0101”; (assignment of bit vector or string)
» n<= m & k; (target signal must be declared as 5-bits, why?).
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Quick Overview: Other Operators

Other things you will see later  include
» Delays

– How an assignment can be delayed?
– What is propagation/inertial delay?
– What is transport delay?

» How to declare constants
– Use  of constants and constants versus generics
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One Entity Many Descriptions

Entity

Architecture
A

Architecture
B

Architecture
C

Architecture
D
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One Entity Many Descriptions

Since different types of architectures can 
perform the same function, a system (an 
entity) can be specified with different 
architectures. For example:
» A number of 80xx51 processors produced by  

different vendors can be used in place of each 
other as long as they have the same interface. 

» This means that one entity can be assigned 
multiple architectures.

The reverse is not true, since architectures 
may NOT have different interfaces.
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The Concept of Package

What do you do when you face an unknown concept or 
word like “subclavian”? Most probably you would turn 
for some help, either from a person or a dictionary!
If you are planning to use a dictionary, you could say 
that you are going to use a library unit (i.e., a book)
Moreover, if you live far away from any library, the 
book may be delivered to you by mail as a package.
Use these packages (external sources of description) 
when something is undefined in the standard 
language.           
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More on the Concept of Package
A packages is used as a collection of often used
» datatypes, 
» components, 
» functions, and so on. 

Once these object are declared and defined in a 
package, they can be used by different VHDL design 
units. 
In particular, the definition of global information and 
important shared parameters in complex designs or 
within a project team is recommended to be done in 
packages. 
It is possible to split a package into a declaration part 
and the so-called body. 
» Advantage is that after changing definitions in the package 

body only this part has to be recompiled and the rest of the 
design can be left untouched. Therefore, a lot of time 
consumed by compiling can be saved. 
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Using Packages in VHDL

A similar situation to the one described in the 
previous slide happens with VHDL specs.
You may occasionally need to use something not 
defined in the standard VHDL libraries.
Packages allow you to define items that are outside 
the VHDL standards.
The only restriction in using packages is that they 
need to be declared in advance, usually at the 
beginning of an entity.
There are two clauses, which serve this purpose:
» Library and
» Use. 
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Using Packages in VHDL

entity SomeSyst is
….
end entity SomeSyst;

architecture FirstARC of SomeSyst is
…
Logarithm
…
end architecture FirstArch;
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Non Standard Concept
Call a library NewConceptLib;  “use concept Logarithm
which is defined in package Arithm stored in library
NewConceptLib” (read it always from the end).

Library NewConceptLib;
Use NewConceptLib.Arithm.Logarithm

entity SomeSyst is
…
end entity SomeSyst;

architecture FirstArch of SomeSyst is
Logarithm

end architecture FirstArch;
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Predefined Packages

VHDL is a robust design environment and has some 
well defined packages. The  most popular packages 
defined by the IEEE are:
» STANDARD – contains basic declarations and definitions of 

language constructs and it is included in all VHDL 
specifications by default;

» TEXTIO – contains declarations of basic operations on texts;
» STD_LOGIC_1164 – this package is not a part of the VHDL 

standard but is a standard on its own; it contains the most  
often used language extensions.

Apart from the three IEEE packages, each VHDL—
tool vendor adds (and encourages to use) his/her own 
package.
In such cases the library usually bears the vendor’s
name. 
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Predefined Packages--Standard

STANDARD
» The package STANDARD is usually integrated directly in 

the simulation or synthesis program 
» therefore, it does not exist as a VHDL description. 
» It contains all basic types: boolean, bit, bit_vector, 

character, integer, and the like. 
» Additional logical, comparison and arithmetic operators 

are defined for these types within the package. 
» The package STANDARD is a part of the STD library. 
» Thus, it does not have to be explicitly included by the use 

statement
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Predefined Packages--TEXTIO

TEXTIO
» The package TEXTIO contains procedures and functions 

which are needed to read from and write to text files. 
» This package is also a part of the library STD. 
» It is not included in every VHDL description by default.
» Therefore, if required, it has to be included by the 

statement use STD.TEXTIO.all;. 

1-80

Predefined Packages—STD_LOGIC_1164

STD_LOGIC_1164
» The STD_LOGIC_1164 package has been developed and 

standardized by the IEEE. 
» It introduces a special type called std_ulogic which has nine 

different logic values (shown below). 
» The reason for this enhancement is that the type bit is not 

suitable for the precise modeling of digital circuits due to the
missing values, such as un-initialized or high impedance.

» Declaration:
type std_ulogic is ( 

'U', -- uninitialized 
'X', -- forcing unknown 
'0', -- forcing 0 
'1', -- forcing 1 
'Z', -- high impedance 
'W', -- weak unknown 
'L', -- weak 0 
'H', -- weak 1 
'-' ); -- "don't care" 
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More VHDL Examples

VHDL is   NOT CaSe-SeNsItIvE , Thus:
Begin = begin = beGiN

Semicolon “ ; ” Terminates Declarations or 
Statements.
Line Feeds and Carriage Returns are not 

Significant in VHDL.
Lets see some views (or descriptions) of a certain 
design (ones count)!
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Ones  Count Interface Specification

entity ONES_CNT is

port ( A    : in   BIT_VECTOR(2 downto 0);
C     : out BIT_VECTOR(1 downto 0));

-- Function Documentation of ONES_CNT
-- (Truth  Table  Form)
-- ---------------------------------------------------
-- This is a COMMENT
--
-- A2  A1  A0  C1  C0  
-- 0     0     0   0    0    
-- 0     0     1  0    1    
-- 0     1     0   0    1    
-- 0     1     1  1    0    
-- 1     0     0   0    1    
-- 1     0     1   1    0    
-- 1     1     0   1    0    
-- 1     1     1   1    1    
-- --
end ONES_CNT;
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Ones  Count Architectural/Behavioral

architecture Algorithmic   of   ONES_CNT is
begin
Process(A) -- Sensitivity List Contains only Vector A
Variable num: INTEGER range 0 to 3;

begin
num :=0;
For i   in   0 to 2 
Loop

IF A(i) = '1' then
num := num+1;

end if;
end Loop;

-- Transfer "num" Variable Value to a SIGNAL
CASE num is

WHEN 0 => C <= "00";
WHEN 1 => C <= "01";
WHEN 2 => C <= "10";
WHEN 3 => C <= "11";

end CASE;
--

end process;
end Algorithmic;
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Ones  Count Data_Flow

architecture Two_Level of ONES_CNT  is
begin

C(1) <=(A(1) and A(0)) or (A(2) and A(0))or (A(2) and A(1));
--

C(0) <= (A(2) and not A(1) and not A(0))
or (not A(2) and not A(1) and A(0))
or (A(2) and A(1) and A(0))
or (not A(2) and A(1) and not A(0));

end Two_Level;

• C1 = A1 A0  +  A2 A0  +  A2 A1
• C0 =  A2 A1’ A0’ +  A2’ A1’ A0   +   A2 A1 A0   +  A2’ A1 A0’
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architecture Macro  of ONES_CNT is
begin

C(1) <= MAJ3(A);
C(0) <= OPAR3(A);

end Macro ;

Architectural/Behavioral (Data Flow) Using Functions

Functions OPAR3 and MAJ3 Must Have 
Been Declared and Defined Previously
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Architectural   Body (another view)
architecture Truth_Table   of ONES_CNT   is
begin
--
Process(A) -- Sensitivity List Contains only Vector A

Variable num: BIT_VECTOR(2 downto 0);
begin

num :=A;
CASE num  is

WHEN "000" => C <= "00";
WHEN "001" => C <= "01";
WHEN "010" => C <= "01";
WHEN "011" => C <= "10";
WHEN "100" => C <= "01";
WHEN "101" => C <= "10";
WHEN "110" => C <= "10";
WHEN "111" => C <= "11";

end CASE;
end process;

end Truth_Table;



1-87

Modeling Adder(s) as a function
Describing Latches 
Modeling Flip-flops (DFF, edge triggered)
Describing FSMs
Structural Descriptions and Components 
Instantiations
Etc.

Other Examples
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Adder as a Function

function "+" (A, B: bit_vector (3 downto 0)) return bit_vector is 
variable SUM: bit_vector (3 downto 0); 
variable CARRY: bit; 

begin 
CARRY := '0'; 
for I in 0 to 3 loop 

SUM(I) := A(I) xor B(I) xor CARRY; 
CARRY := ((A(I) and B(I)) or (A(I) and CARRY) or (B(I) and CARRY)); 

end loop; 
return SUM; 

end; 
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DFF Edge Triggered
entity DFLOP is -- D-Type FF 

port (CLK, D: in std_logic; Q: out std_logic) 
end DFLOP; 

architecture BEHAV of DFLOP is 
begin 

process (CLK) 
begin 
if (CLK = '1') and -- CLK = 1 

(CLK'event) and -- and a new event 
(CLK'last_value = '0') 

-- and previous value was 0 (because of `X`...) 
then Q <= D; -- rising edge 

end if; 
end process; 

1-90

Summary & Discussion

Superset of ADA
Concurrent modeling (Blocks for example)
Generating of instances
Use of packages, libraries
Configurations, generics
Grammar and BNF
Simulation (and what they will do in the lab)
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Summary

OBJECTIVES: Provide a Standard Medium For 
» Design  Modeling
» Design Documentation

VHDL is  an  IEEE Standard (Language  Standard)
» IEEE VHDL-87
» IEEE VHDL-93
» VHDL-93 is Upward Compatible with the VHDL-87 (Minor 

Differences May Require Code Modification)
Requires Simulation and Synthesis Tools
By The End of 1995,  Most Simulation Tools Have 
Incorporated Support for the VHDL-93
VHDL  Is Also Used For Design Synthesis
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Summary

Modular, Hierarchical,  Allows  Design  Description 
(TOP - DOWN, BOTTOM – UP), Portable, etc.
Can Describe  the Same Design Entity using More than 
one View (Domain):
» The Behavioral View (e.g. as an algorithm, Register-Transfer 

(Data Flow), Input-Output Relations, etc)
» The Structural View.

This Allows Investigation of  Design Alternatives of  
the Same Entity 
It Also Allows Delayed Detailed Implementations.
Can Model Systems at Various Levels  of Abstraction 

(System, chip RTL, Logic (Gate))
VHDL Can be Made to Simulate Timing At Reasonable 
Accuracy.


