
1-1

Introduction to VHDL

Sadiq M. Sait, Ph.D.

sadiq@ccse.kfupm.edu.sa
Department of Computer Engineering

King Fahd University of Petroleum and
Minerals

Dhahran, Saudi Arabia

March 17 - 21, 2001

1-2

Content Discussed in this Session

Modeling
History
Applications
Design Flow
VHDL Characteristics
VHDL Basics/Overview
Examples
Summary

1-3

What is A Modeling Language

A Modeling Language.
What is Modeling.
When do you Model?
What do you Model
» Various Levels of Modeling & Abstraction (what does it

mean?)
– Behavioral/Architectural Level modeling
– Structural Level modeling
– Dataflow Level modeling

Characteristics/Requirements of Models.
What are the main advantages

1-4

Design Flow & Levels of Abstraction

Idea

New chip

Architectural design

Logical design

Physical design

Fabrication

Generic CAD tools

Behavioral modeling and
Simulation tool

Functional and logic minimization
logic fitting and simulation tools

Tools for partitioning,
placement, routing, etc.

CAD subproblem level

Behavioral / Architectural

Register transfer / logic

Cell / mask

1-5

Architectural Design

Generally carried out by expert human engineers.
Decisions made effect cost/performance of the design. Some
examples are
» What should be the instruction set (IS) of the Processor (P) ?

– What memory addressing modes should be supported?
– Should the IS be compatible with another in the market?

» Should instruction pipelining be employed?
– If yes, then what should be the depth?

» Should the P be provided by an on-chip cache?
– How big should the cache be?
– What should be the organization of the cache?
– Should instruction cache be separated from data cache?

1-6

Architectural Design

How should the arithmetic unit be designed?
» Bit Serial or Bit Parallel?
» Bit Serial will save on hardware but lose on

performance!
How will the Processor interface to the external
world?
» Are there any International Standards to be met?

Notes: This level of design cannot be done by a
computer program, there are tools that can aid
the system Architect.

1-7

Architectural Design Tools

This level of design cannot be done by a computer
program, there are tools that can aid the system
Architect. Example:
» Tools can be used to experiment with innovative ideas
» Tools are also available to

– tune the size of the cache, or
– Determine the depth of the pipeline, etc.

1-8

Data/Control Path Design

Once the architecture is defined, it is necessary
to carry out two things:
1. Detailed logic design of individual circuit modules
2. Derive the control signals necessary to activate and

deactivate the circuit modules.
1. The First step is known as data path design.
2. The Second step is called control path design.

1-9

Data Path Design

The data path of the circuit includes the various
» functional blocks (such as adders, multipliers, ALU,

etc),
» storage elements (shift register, RAM, buffers,

stacks, queues),
» hardware components to allow transfer of data among

functional blocks and storage elements.
– Data transfer is achieved using tri-state busses or a

combination of multiplexer(s)/de- multiplexer(s).

1-10

Control Path Design

The control path of the circuit generates the
various control signals necessary to operate the
circuit:
» These are necessary to initialize the storage elements,
» To initiate data transfers among functional blocks and

storage elements,
» And so on.
The control path may be implemented using
» Hardwired control (random logic), or
» Through micro-programmed logic.

1-11

An Example

The Problem: It is required to design an 8-bit
adder. The two operands are stored in two 8-bit
shift registers A and B. At the end of the
addition operation, the sum must be stored in the
A register. The contents of the B register must
not be destroyed. The design must be as
economical as possible in terms of hardware.

1-12

Possible Solutions

There are numerous ways to design the above
circuit,some of which are listed below.
» Use an 8-bit carry look-ahead adder.
» Use an 8-bit ripple-carry adder
» Use two 4-bit carry look-ahead adders and ripple the

carry between stages.
» Use a 1-bit adder and perform the addition serially in 8

clock cycles.

1-13

Our Choice

Since it is specified that the cost must be
minimum, the last option seems best.

MUX A

MA

MUX B

MB

SA

SB

Din FA

Q D

S

CoutCin

Start
Clock

Load A
Load B

Add

MA

MB
SB
SA
RD
Rc

Read A

Read B

(a) (b)

1-14

Organization of a Serial Adder

Start
Clock

Load A
Load B

Add

MA

MB
SB
SA
RD
Rc

Read A

Read B

MUX A

MA

MUX B

MB

SA

SB

Din FA

Q D

S

CoutCin

(a) (b)

1-15

Data Path of Serial Adder

Consists of two 8-bit shift regiseters
A full adder
A D-flipflop
Two multiplexers
A three bit-counter (to count the number of
times bit-wise addition is performed)

1-16

Control Path of Serial Adder

The relevant control signals are:
» SA to Shift the register A right by one bit
» SB to shift the register B right by one bit
» MA to control multiplexer A.
» MB to control multiplexer B
» RD to Reset the D flip-flop
» RC to Reset the counter
» START to commences the addition

1-17

Control Algorithm of Serial Adder

Forever do
While (START = 0) skip;
Reset the D flip-flop and the counter;
Set MA and MB to 0;
Repeat

Shift registers A and B right by one
counter = counter + 1;

Until counter = 8;

1-18

Some Observations

Design involves trade-offs between
» Cost
» Performance
» Testability
» Power dissipation
» Fault tolerance
» Ease of design
» Ease of making changes to the design.
Serial is cheap but slow, parallel fastest in terms of
performance but most costly
The different ways we can think of building an 8-bit
adder constitutes what is known as design space (at a
particular level of abstraction).

» Each method of implementation is called a point in the design
space.

1-19

High-Level Synthesis

A circuit specification may pose constraints on one or
more aspects of the final design.

» Example: When the spec says that the circuit must operate at
15MHz, we have a constraint on timing performance of the
circuit.

Given a spec, the objective is to arrive at the design
which meets all the constraints, and optimizes on or more
design aspect.
This problem is known as hardware synthesis
Programs are available for both data path synthesis and
control path synthesis
The automatic generation of data path and control path
is known as high-level synthesis.

1-20

High-Level Synthesis

Tasks involved in HLS (the process of automatically translating
abstract behavioral models of digital systems to implementable
hardware) are scheduling and allocation
Scheduling distributes the execution of operations throughout
time steps
Allocation assigns hardware to operations and values.

– Allocation of hardware cells include functional unit allocation, register
allocation and bus allocation.

– Allocation determines the interconnections required.

1-21

Behavioral Description and its CDFG

X = W + (S * T)
Y = (S * T) + (U * V)

*

+

*

+

W S T U V

X Y

(a)

CDFG

(b)

*

*+

+

W S T U V

X Y

1

2

3

(c)

Scheduled CDFG

1-22

Example 1: A CDFG and 3 Solutions

1 2

4 5 63

87

9
245(e)

335(d)

344(c)

FUsREGsCSs

(a) (b)

1-23

Example 1

3

1

2

1

2

1

2

4

6

5

6

4

5

4

3

8

7

3

8

6

5

9

7

7

8
9

9

(c)

(d)

(e)

1 2 3 4 5

1-24

Register Allocation

+

+

*

+

V3 V1 V2

a1 a2

a3

m1

V4 V5

V6

V7

1

2

3

V4 = V1 + V3
V5 = V1 + V2
V6 = V4 * V5
V7 = V2 + V6

(a)

(b)

V1

V2

V3

V4

V5

V6

V7

1 2 3

Lifetimes

(c)

1-25

Register Assignment & Synthesis

Register Assignment

R1 : V1 , V6
R2 : V2
R3 : V3
R4 : V4
R5 : V5, V7

(d)

R4 (V4) R5 (V5,V7)

+ (1) + (2) *

R3 (V3) R1 (V1,V6) R2 (V2)

a2
a3

a1

m1

(e)

1-26

Final Output

MUX

X Y W

+

Z MUXMUX

*

S U T V

Bus 1 Data Path

(f)

1-27

Logic Design

Data path and control path (derived automatically or
manually) will have components such as ALU, registers,
multiplexers, buffers, and so on.
Further design steps depend on

» How the circuit is implemented (PCB/VLSI)
» Are all the components readily available as off-the-shelf

components/ICs
If the circuit is implemented on PCB, then the next stage
is to select the components to minimize
cost/performance
Following the selection procedure ICs are selected and
placed on one or more circuit boards and interconnected.
A similar procedure is used when implementing on a VLSI
chip using pre-designed components from a module library
(called macro cells).

1-28

Historical Glimpses/Background of HDLs

1960's - 1980's AHPL, CDL, DDL in
classroom.
» Number of languages mushrooms to over 200

languages, all of them either proprietary or academic
1983 VHSIC Program initiates definition of
VHDL
1987 VHDL Standard (IEEE 1076) approved
1990 Verilog dominates the marketplace.
» VHDL gaining acceptance as the second language due

to standards effort and DoD mandated use.

1-29

VHDL- Time Line

Very High Speed Integrated Circuits

Start Of
VHDL Development

1981
1985

First Publication
(Base-Line)

1987

1993
First Publication Of

VHDL Standard

Publication Of Revised
VHDL Standard

VHDL = VHSIC Hardware Description Language

1-30

Background, continued

1992 IEEE 1164 (3, 4, 9-valued logic
standard adopted)
1993 VHDL re-balloted
» minor changes make it more user-friendly.

1994 Widespread acceptance of VHDL.
» CAE tools operate at speeds comparable to

Verilog. Mentor, Cadence, Viewlogic, Synopsys
all provide full VHDL compilation/simulation and
synthesize with subsets of VHDL.

1-31

Applications of HDLs
HDLs exist to satisfy a variety of purposes and
are used in a number of different ways.
Therefore,
» there are features of VHDL (and any other design

language) that will be useless in some applications, and
confusing in other applications.

» Some descriptive features of VHDL may even lead to bad
synthesis.

A major aspect of this course will be understanding
how VHDL should be used to permit synthesis tools
to produce good implementations of designs.

1-32

Objective of VHDL

The main objective of VHDL was to provide
a unified notation to describe Electronic
Systems (digital hardware) at various levels
of abstractions.
Abstraction, what does it mean
Levels of Abstractions (gate level, upwards)

1-33

Objectives (re-visited)

The models (or VHDL descriptions) are both human/machine
readable.
» Like all HDLs, VHDL also comes with a simulator (to verify the

correctness of models)
Also, one single hardware description is used for
» simulation and verification,
» synthesis (translation to hardware), and
» testing.

To support the communication of design data (no more black
boxes)
To aid the maintenance, modification, and procurement of
hardware.

1-34

Purposes Served by VHDL
To understand why VHDL looks the way it does, it will

help to examine the variety of purposes it serves
» Design Specification
» Design Documentation
» Design Verification
» Product Test Generation
» Hardware Synthesis

Language must seek to support these!

1-35

Design Specification

Definition of functional interfaces
» concurrent ==> structure (space)
» sequential ==> behavior (time)

Definition of design functions (behavior)
» by control flow (procedural)
» by data flow (concurrent)

Project partitioning
» in space (structural)
» in time (behavioral)

1-36

Design Documentation

Language standardization
» to improve quality and efficiency of communication,

broaden audience
Interface description for users
» often as components of next level higher system:

physical, structural, and "pin" functions
Express usage constraints
» e.g. disallowed input timings, combinations, output loads

Express functional behavior of the design:
» internal states, data structures (e.g. format used in a

floating point unit)
» algorithms implemented

Show communication protocols between design
entities

1-37

Design Verification - SIMULATION

The Usual Method
» Highly developed tools
» Inherently behavioral (structural simulators consist of ordered calls

to primitive procedures to model corresponding primitive
structures)

» Limited by the effectiveness of the design test program developed

Requires
» Language semantics to be executable

1-38

Design Verification - Formal Methods

Require
» common language for specification of design goals and

description of implementation to meet those goals
» formal (mathematically rigorous) language definition to permit

logical transformation of descriptions to prove equivalence.
Such mathematical languages inherently are declarative

» language that can describe both time and structure

Correctness by construction (silicon
compilation) more nearly realized
» than automatic verification systems

1-39

Product Test Generation

Requires
» constrained sets of values, especially for inputs
» behavioral descriptions of sequential designs
» machine analyzable design specifications

UUTStimuli
Generation

Response
control

model tb_model

1-40

Hardware Synthesis

Stepwise refinement of design
» by architectural decomposition (either structural or

behavioral)
Transformations from behavioral models to
corresponding structural and physical models,
» e.g. PLA generators, standard cells for shift registers,

adders, etc.
Relating scaling parameters with expressions
Enforcement of design constraints
Register transfer level allocation,
» dataflow optimizations
» expression transformations for optimization

1-41

VHSIC Motivations for Creating/Using VHDL

Standardization of Documentation
» improved communication of requirements

between military, contractors, and
subcontractors

System Design Time and Cost
» reduced ambiguity in specification of design

interfaces and design functions
» reusability of existing designs

1-42

VHSIC Motivations for Creating/Using VHDL

Open-system CAE Tools
» can change CAE system without losing use of existing designs
» elimination of language translators

Improved Integration of Multi-vendor Designs
» shared design databases become possible
» standard cells, behavioral models

Improved Understanding of Design Science
» top-down, middle-out, bottom-up

1-43

VHDL Basics/Overview

Sadiq M. Sait, Ph.D.

sadiq@ccse.kfupm.edu.sa
Department of Computer Engineering

King Fahd University of Petroleum and
Minerals

Dhahran, Saudi Arabia

March 17 - 21, 2001

1-44

VHDL Basics/Overview

VHDL an acronym : V (of VHSIC, stands for Very
High Speed Integrated Circuit) Hardware Description
Language.
Names coined by DOD (department of defense, the
first institution to understand the benefits of design
language based documentation, modeling, and
simulation of electronic devices)
VHDL simulators took hold in early ‘90s.
PLA/FPGA designers started using them on larger
designs.
Note: The word “synthesis’’ was not mentioned as one
of the reasons for creating VHDL (as it was primarily
intended for documentation, and modeling/simulation)

1-45

How a System Communicates

How a System Communicates with its environment?
» Whatever function a system performs, it must get some

input from its environment and output some data.
» In other words the system must communicate with its

environment.
» The communication part of a system specification is called

the interface (without which the system would be useless).

The system’s interface is described in VHDL by its
entity.
» This is the basic design unit for any system
» It is impossible to have a VHDL system without entity

1-46

Body of a System

To accomplish the desired functionality, data
must undergo some transformation inside the
system.
This is handled by the system’s inner part of
body (also called the architecture).
The functionality can be simple as turning

some switch on/off, or as complicated as an
autopilot of a jetliner.
However, in each case a system can be
considered as a composition of a body
(architecture) and an interface (entity)

1-47

External Support

Some systems may derive additional features through
supportive elements.
» Example: A plug-in card that speed graphic in PC

While such an add-on card can be considered a part
of the system, for the sake of clarity let’s consider it
as a third element of systems’s design (called package
in VHDL).
All 3 elements of a system design
» Interface (entity)
» Body (architecture)
» Add-ons (package)

will be discussed in this session.

1-48

Entity

A good practice to start any design is with
the analysis of its environment, entity is the
main part of any spec.
In VHDL, the name of the system is the same
as the name of its entity.
Entity comprises two parts:
» parameters of the system as seen from outside

such as bus-width of a processor or max clock
frequency

» connections which are transferring information to
and from the system (system’s inputs and outputs)

1-49

Illustration of Entity

Din1 Din2 Din3 Din4 Din5 Din6 Din7 Din8

CLK

Dout1 Dout2 Dout3 Dout4 Dout5 Dout6 Dout7 Dout8

8-bit register
fmax = 50MHz

entity Eight_bit_register is

parameters

connections

end entity Eight_bit_register

CLK one-bit input

1-50

Parameters/Connections

All parameters are declared as generics and are
passed on to the body of the system
Connections, which carry data to and from the
system, are called ports. They form the second part
of the entity.
Note: The importance of entity is so great that the
architecture in VHDL is specified as the architecture
of entity
» Example

entity My-Digi-System is
..
..
..

end entity My-Digi-System;

1-51

Entity
Examples

entity ALU is
Port (A,B : in bit_vector(7 downto 0); -- comment 1

Mod1, Mod2 : inout bit_vector(3 downto 0); -- comment 2
C : out bit_vector(7 downto 0) -- comment 3

);
end entity ALU;

-- name = Mod
-- mode = bidirectional
-- type = 4-bit wide bus
-- note,

port declarations are separated by semicolon,
no semicolon after the last port declaration.
Double hyphen for comments.
Multiple ports of the same mode and type can be declared in one
statement.
Properly documenting ports is as good as a good entity description
Also you will see generics (and their applications) in subsequent
lectures.

1-52

Entity

FULL ADDER
A
B
C

SUM

CARRY

Examples
entity FULLADDER is

- -(After a double minus sign (-) the rest of
-- the line is treated as a comment)
- -
- -Interface description of FULLADDER
port (A, B, C: in bit;

SUM, CARRY: out bit);
end FULLADDER;

1-53

Entity

-- Example Data Flipflop;
entity DFF is
-- parameter: width of the data
generic (width: integer);
--input and output signals
port (CLK, NR: in bit;

D: in bit_vector(1 to width);
Q: out bit_vector(1 to width));

end DFF;

1-54

Mixing S/B in Architecture Hierarchical Design

S

BS

S BB/S

BBBBB

S: structural description
B: behavioral description
B/S: mixed description

1-55

Types of Architecture Descriptions

Each system can be either in terms of its
functionality (behavior) or structure, which requires
different kinds of information about the system.
Usually the synthesis tool works with both of them.
» First the expected functionality has to be specified and

formalized;
» And then it has to be transformed into structural equivalent
» The structural equivalent is more suitable for synthesis tool

Parts of this translation can be done automatically
However a fully functional (behavioral) synthesis tools
is not yet available.
This is because the behavioral spec is only a
description of outputs’ response to inputs’ changes.

1-56

Relationship between Entity & Architecture

Example
entity My-Digi-System is
(
...
…
);

end entity My-Digi-System;

architecture MY-Arch of My-Digi-System is
...
end architecture MY-Arch;

1-57

VHDL

PACKAGE
DECLARATION

PACKAGE
BODY

(often used
functions,
constants,
components, ….)

ENTITY
(interface description)

ARCHITECTURE
(functionality)

CONFIGURATION
(connection entity ↔ architecture)

1-58

Structural Description

Does not cope with functionality of the system, but
instead specifies
» what components should be used
» and how they should be connected to achieve the expected

results
Structural design is much easier to synthesis than
behavioral because
» it refers to concrete physical components

However, creating a structural system specification is
more difficult because it requires an experienced
designer to do it most effectively.

1-59

Structure/Behavior

STRUCTURE BEHAVIOR

SYSTEM

CHIP

REGISTER

GATE

CIRCUIT

SILICON

SCHEMETIC

Design tools

HDL Description

Boolean
Equations

Ideal

1-60

Structural Description

» Example:
architecture STRUCTURAL of FULLADDER is

signal S1, C1, C2 : bit;
component HA

port (I1, I2 : in bit; S, C : out bit);
end component;
component XOR

port (I1, I2 : in bit; X : out bit);
end component;

begin
INST_HA1 : HA

port map (I1 => B, I2 => C, S => S1, C => C1);
INST_HA2 : HA

port map (I1 => A, I2 => S1, S => SUM, C => C2);
INST_XOR : XOR

port map (I1 => C2, I2 => C1, X => CARRY);
end STRUCTURAL;

1-61

Structure of Full Adder

I1 S
HA

I2 C

I1 S
HA

I2 C I1
XOR

I2 x

A

C

B

CARRY

SUM

S1

C1

C2

1-62

Concurrent Behavioral Description

architecture CONCURRENT of FULLADDER is
begin
SUM <= A xor B xor C after 5 ns;
CARRY <= (A and B) or (B and C) or (A and C)

after 3 ns;
end CONCURRENT;

1-63

Concurrent Behavioral Description

T T + Δ T + 2Δ

A

SUM

PROD1

PROD2

PROD3

CARRY

1-64

Basic VHDL Constructs

To specify architectures, or describe
behavior, we need some basic VHDL
constructs, and some basic VHDL types.
Every piece of info inside a digital system is
stored in the form of bits and bit vectors.
Instead of long bit-vectors, hex characters
may be used.
Complex but regular data structures can be
represented by arrays.

1-65

An Example of Behavioral Description
entity LOW_HIGH is

port (A,B C: integer;
MI, MA: out integer);

end LOW_HIGH;

architecture BEHAV of LOW_HIGH is

begin
L: process

variable LOW: integer := 0;
begin
wait on A, B, C;
if A < B then LOW := A;

else LOW :=
B;

end if;
if C < LOW then LOW := C;
end if;
MI <= LOW after 1 ns;

end process;

H:process
variable HIGH: integer := 0;

begin
wait on A, B, C;
if A > B then HIGH := A;

else HIGH := B;
end if;
if C > HIGH then HIGH := C;
end if;
MA <= HIGH after 1 ns;

end process;
end BEHAV;

1-66

Quick Overview: Types

Scalar type is a generic name referring to all types
whose objects have a single value at any time instant.
All values of scalar type are ordered and the values
are specified either as falling within a range or
explicitly enumerated. Examples:
» Boolean (T/F),
» Character (all characters defined by ISO 8859-1,
» Integer (all integers within a specified range),
» Real (floating point numbers with a specified range),
» Bit (enumeration type specified by ‘0’ or ‘1’).

We can also have user defined enumeration types,
such as
» type FSMStates is (Idle, Fetch, Decode, Execute);

There are also other, such as physical types, user
defined records, arrays, etc. (You will see this in a
later lecture).

1-67

Quick Overview: Expressions/Operators

Input signals must always be transformed or
processed in some way to generate the desired output
signals.
» Outputs <- transformations(inputs)

Transformations are performed by expressions
(formulae that consist of operators with an
appropriate number of operands)
Any specification of a systems behavior can be seen
as an ordered set of expressions on the inputs
assigned to the outputs.
The basic element of each expression is an operator
(which is assigned a specific type) and requires one or
more operands.
It is illegal to use an operator on operands of non
supported type (except via operator overloading).

1-68

Quick Overview: Other Operators

Logical Operators (and, or, nand, nor, xor, xnor, not, these
are defined for types Bit, Boolean, and Bit_Vector)
Numerical Operators (+, -, *, /, mod, rem, **, abs)
Relational Operators (=, /=, <, >, <=, >=) that return T/F
Shift Operators (sll, srl, sla, sra, rol, ror) restricted to
arrays whose elements are of the type Bit or Boolean
Catenation operator (denoted by ‘&’)
Assignment operator (assigning expressions to signals
» x<=y<=z; (y less or equal to z, to a Boolean signal x)
» a<= b or c; (logical operation, correct for Boolean, bit and

bit_vector)
» k<= ‘1’; (assignment of a single bit or character, note apostrophes)
» m<=“0101”; (assignment of bit vector or string)
» n<= m & k; (target signal must be declared as 5-bits, why?).

1-69

Quick Overview: Other Operators

Other things you will see later include
» Delays

– How an assignment can be delayed?
– What is propagation/inertial delay?
– What is transport delay?

» How to declare constants
– Use of constants and constants versus generics

1-70

One Entity Many Descriptions

Entity

Architecture
A

Architecture
B

Architecture
C

Architecture
D

1-71

One Entity Many Descriptions

Since different types of architectures can
perform the same function, a system (an
entity) can be specified with different
architectures. For example:
» A number of 80xx51 processors produced by

different vendors can be used in place of each
other as long as they have the same interface.

» This means that one entity can be assigned
multiple architectures.

The reverse is not true, since architectures
may NOT have different interfaces.

1-72

The Concept of Package

What do you do when you face an unknown concept or
word like “subclavian”? Most probably you would turn
for some help, either from a person or a dictionary!
If you are planning to use a dictionary, you could say
that you are going to use a library unit (i.e., a book)
Moreover, if you live far away from any library, the
book may be delivered to you by mail as a package.
Use these packages (external sources of description)
when something is undefined in the standard
language.

1-73

More on the Concept of Package
A packages is used as a collection of often used
» datatypes,
» components,
» functions, and so on.

Once these object are declared and defined in a
package, they can be used by different VHDL design
units.
In particular, the definition of global information and
important shared parameters in complex designs or
within a project team is recommended to be done in
packages.
It is possible to split a package into a declaration part
and the so-called body.
» Advantage is that after changing definitions in the package

body only this part has to be recompiled and the rest of the
design can be left untouched. Therefore, a lot of time
consumed by compiling can be saved.

1-74

Using Packages in VHDL

A similar situation to the one described in the
previous slide happens with VHDL specs.
You may occasionally need to use something not
defined in the standard VHDL libraries.
Packages allow you to define items that are outside
the VHDL standards.
The only restriction in using packages is that they
need to be declared in advance, usually at the
beginning of an entity.
There are two clauses, which serve this purpose:
» Library and
» Use.

1-75

Using Packages in VHDL

entity SomeSyst is
….
end entity SomeSyst;

architecture FirstARC of SomeSyst is
…
Logarithm
…
end architecture FirstArch;

1-76

Non Standard Concept
Call a library NewConceptLib; “use concept Logarithm
which is defined in package Arithm stored in library
NewConceptLib” (read it always from the end).

Library NewConceptLib;
Use NewConceptLib.Arithm.Logarithm

entity SomeSyst is
…
end entity SomeSyst;

architecture FirstArch of SomeSyst is
Logarithm

end architecture FirstArch;

1-77

Predefined Packages

VHDL is a robust design environment and has some
well defined packages. The most popular packages
defined by the IEEE are:
» STANDARD – contains basic declarations and definitions of

language constructs and it is included in all VHDL
specifications by default;

» TEXTIO – contains declarations of basic operations on texts;
» STD_LOGIC_1164 – this package is not a part of the VHDL

standard but is a standard on its own; it contains the most
often used language extensions.

Apart from the three IEEE packages, each VHDL—
tool vendor adds (and encourages to use) his/her own
package.
In such cases the library usually bears the vendor’s
name.

1-78

Predefined Packages--Standard

STANDARD
» The package STANDARD is usually integrated directly in

the simulation or synthesis program
» therefore, it does not exist as a VHDL description.
» It contains all basic types: boolean, bit, bit_vector,

character, integer, and the like.
» Additional logical, comparison and arithmetic operators

are defined for these types within the package.
» The package STANDARD is a part of the STD library.
» Thus, it does not have to be explicitly included by the use

statement

1-79

Predefined Packages--TEXTIO

TEXTIO
» The package TEXTIO contains procedures and functions

which are needed to read from and write to text files.
» This package is also a part of the library STD.
» It is not included in every VHDL description by default.
» Therefore, if required, it has to be included by the

statement use STD.TEXTIO.all;.

1-80

Predefined Packages—STD_LOGIC_1164

STD_LOGIC_1164
» The STD_LOGIC_1164 package has been developed and

standardized by the IEEE.
» It introduces a special type called std_ulogic which has nine

different logic values (shown below).
» The reason for this enhancement is that the type bit is not

suitable for the precise modeling of digital circuits due to the
missing values, such as un-initialized or high impedance.

» Declaration:
type std_ulogic is (

'U', -- uninitialized
'X', -- forcing unknown
'0', -- forcing 0
'1', -- forcing 1
'Z', -- high impedance
'W', -- weak unknown
'L', -- weak 0
'H', -- weak 1
'-'); -- "don't care"

1-81

More VHDL Examples

VHDL is NOT CaSe-SeNsItIvE , Thus:
Begin = begin = beGiN

Semicolon “ ; ” Terminates Declarations or
Statements.
Line Feeds and Carriage Returns are not

Significant in VHDL.
Lets see some views (or descriptions) of a certain
design (ones count)!

1-82

Ones Count Interface Specification

entity ONES_CNT is

port (A : in BIT_VECTOR(2 downto 0);
C : out BIT_VECTOR(1 downto 0));

-- Function Documentation of ONES_CNT
-- (Truth Table Form)
-- ---
-- This is a COMMENT
--
-- A2 A1 A0 C1 C0
-- 0 0 0 0 0
-- 0 0 1 0 1
-- 0 1 0 0 1
-- 0 1 1 1 0
-- 1 0 0 0 1
-- 1 0 1 1 0
-- 1 1 0 1 0
-- 1 1 1 1 1
-- --
end ONES_CNT;

1-83

Ones Count Architectural/Behavioral

architecture Algorithmic of ONES_CNT is
begin
Process(A) -- Sensitivity List Contains only Vector A
Variable num: INTEGER range 0 to 3;

begin
num :=0;
For i in 0 to 2
Loop

IF A(i) = '1' then
num := num+1;

end if;
end Loop;

-- Transfer "num" Variable Value to a SIGNAL
CASE num is

WHEN 0 => C <= "00";
WHEN 1 => C <= "01";
WHEN 2 => C <= "10";
WHEN 3 => C <= "11";

end CASE;
--

end process;
end Algorithmic;

1-84

Ones Count Data_Flow

architecture Two_Level of ONES_CNT is
begin

C(1) <=(A(1) and A(0)) or (A(2) and A(0))or (A(2) and A(1));
--

C(0) <= (A(2) and not A(1) and not A(0))
or (not A(2) and not A(1) and A(0))
or (A(2) and A(1) and A(0))
or (not A(2) and A(1) and not A(0));

end Two_Level;

• C1 = A1 A0 + A2 A0 + A2 A1
• C0 = A2 A1’ A0’ + A2’ A1’ A0 + A2 A1 A0 + A2’ A1 A0’

1-85

architecture Macro of ONES_CNT is
begin

C(1) <= MAJ3(A);
C(0) <= OPAR3(A);

end Macro ;

Architectural/Behavioral (Data Flow) Using Functions

Functions OPAR3 and MAJ3 Must Have
Been Declared and Defined Previously

1-86

Architectural Body (another view)
architecture Truth_Table of ONES_CNT is
begin
--
Process(A) -- Sensitivity List Contains only Vector A

Variable num: BIT_VECTOR(2 downto 0);
begin

num :=A;
CASE num is

WHEN "000" => C <= "00";
WHEN "001" => C <= "01";
WHEN "010" => C <= "01";
WHEN "011" => C <= "10";
WHEN "100" => C <= "01";
WHEN "101" => C <= "10";
WHEN "110" => C <= "10";
WHEN "111" => C <= "11";

end CASE;
end process;

end Truth_Table;

1-87

Modeling Adder(s) as a function
Describing Latches
Modeling Flip-flops (DFF, edge triggered)
Describing FSMs
Structural Descriptions and Components
Instantiations
Etc.

Other Examples

1-88

Adder as a Function

function "+" (A, B: bit_vector (3 downto 0)) return bit_vector is
variable SUM: bit_vector (3 downto 0);
variable CARRY: bit;

begin
CARRY := '0';
for I in 0 to 3 loop

SUM(I) := A(I) xor B(I) xor CARRY;
CARRY := ((A(I) and B(I)) or (A(I) and CARRY) or (B(I) and CARRY));

end loop;
return SUM;

end;

1-89

DFF Edge Triggered
entity DFLOP is -- D-Type FF

port (CLK, D: in std_logic; Q: out std_logic)
end DFLOP;

architecture BEHAV of DFLOP is
begin

process (CLK)
begin
if (CLK = '1') and -- CLK = 1

(CLK'event) and -- and a new event
(CLK'last_value = '0')

-- and previous value was 0 (because of `X`...)
then Q <= D; -- rising edge

end if;
end process;

1-90

Summary & Discussion

Superset of ADA
Concurrent modeling (Blocks for example)
Generating of instances
Use of packages, libraries
Configurations, generics
Grammar and BNF
Simulation (and what they will do in the lab)

1-91

Summary

OBJECTIVES: Provide a Standard Medium For
» Design Modeling
» Design Documentation

VHDL is an IEEE Standard (Language Standard)
» IEEE VHDL-87
» IEEE VHDL-93
» VHDL-93 is Upward Compatible with the VHDL-87 (Minor

Differences May Require Code Modification)
Requires Simulation and Synthesis Tools
By The End of 1995, Most Simulation Tools Have
Incorporated Support for the VHDL-93
VHDL Is Also Used For Design Synthesis

1-92

Summary

Modular, Hierarchical, Allows Design Description
(TOP - DOWN, BOTTOM – UP), Portable, etc.
Can Describe the Same Design Entity using More than
one View (Domain):
» The Behavioral View (e.g. as an algorithm, Register-Transfer

(Data Flow), Input-Output Relations, etc)
» The Structural View.

This Allows Investigation of Design Alternatives of
the Same Entity
It Also Allows Delayed Detailed Implementations.
Can Model Systems at Various Levels of Abstraction

(System, chip RTL, Logic (Gate))
VHDL Can be Made to Simulate Timing At Reasonable
Accuracy.

