Multiobjective Finite State Machine Encoding
using Non-Deterministic Evolutionary
Algorithms

Aiman El-Maleh and Sadiq M. Sait
College of Computer Sciences & Engineering
King Fahd University of Petroleum & Minerals
KFUPM # 673, Dhahran-31261, Saudi Arabia

e-mail: {aimane,sadiq}@ccse.kfupm.edu.sa

November 24, 2004

Abstract

The rapid increase in complexity of VLSI circuits along with their proliferation in
new domains have posed new challenges to the VLSI CAD industry. Mobile devices
have given rise to new requirements such as low power in addition to conventional
area (size) and Performance (timing) goals. The increase in chip complexity (size)
has further increased the complexity of VLSI devices. With ever shrinking design
to market windows, there has always been a strong need to develop synthesis tools
to address such multi-objectives efficiently. One central problem in the synthesis
of digital systems is controller synthesis which can be accomplished via FSMs, mi-
croprograms, etc. The complexity of FSM implementation depends on its state
assignment. State assignment of FSMs for efficient area implementation alone is
an NP-hard problem. The problem is further involved if we consider additional
objectives such as low-power and ease of testability. Non-deterministic evolutionary
heuristics such as Genetic Algorithms, Tabu Search and Simulated Evolution have
shown to yield good results in solving such multiobjective hard combinatorial opti-
mization problems in other areas of design automation. The objective of this work
is to develop efficient tools for FSM state assignment to address area, power and
testability issues. The main focus will be (a) to design suitable and efficient cost

functions to evaluate different generated solutions, and (b) to effectively engineer

evolutionary heuristics for FSM state assignment in order to yield controllers with

small area, low power dissipation, and ease of testability.

Keywords: VLSI Design, Iterative Algorithms, Low-Power, FSM Synthesis,
State Assignment, Testability, Multiobjective Optimization, Meta-heuristics.

1 Introduction and Motivation

Technological advancements in Very Large Scale Integration (VLSI) have em-
powered the industry to integrate millions of transistors on a single chip. The
contemporary approach adopted to address design of devices with high com-
plexity is by following concepts of structured designing and design abstrac-
tion [1]. Abstraction is used to utilize the efforts of designers at higher levels.
This allows fast initial prototyping with refinements left to be added at lower
stages using detailed circuit information. Typical levels of abstraction, to-
gether with their corresponding functionalities, are illustrated in Figure 1.
Computer Aided Design (CAD) tools automate the VLSI design process at all
levels of design abstraction.

CAD subproblem level Generic CAD tools

Behavioral/ArchitecturalCl |Architectural design I thawc_)ral modeling andCJ
Simulation tool
[

Register transfer/logic [| Logical design I Functional and logic minimization,
logic fitting and simulation tools
|
Cell/mask | Physical design I Tools for partitioning, O
T placement, routing, etc.
| Fabrication I

Figure 1: Levels of abstraction and corresponding design steps [2].

With the rapid increase in system functionality, new paradigms such as
mobile computing have emerged. Mobile computing have added a new facet
of power efficiency in the complexity of VLSI design [3]. At the same time,
the increasingly complex VLSI devices are proving more and more difficult to
test. Efficient testing is no longer the sole responsibility of test engineers and
the focus is now on better design strategies to make the device more easily
testable [4]. Thus, testability of a VLSI chip adds another objective to the

increasingly complex task of designing VLSI circuits.

1.1 Motivation

The complexity of today’s digital systems is tackled by partitioning and au-
tomating the design process using CAD tools. Digital Systems are broadly
composed of two sub-components namely a controller and a datapath. The

datapath performs all the arithmetic and logical operations required on the

data. The controller is responsible for controlling the sequence of operations
on the datapath and is generally implemented as a finite state machine (FSM).

Traditionally, synthesis of FSMs was targeted for area minimization which
itself is an NP-hard problem [5]. Various heuristics have been proposed and
employed to address the NP-hard nature of the problem. The inclusion of
power and testability optimization objectives, increases the difficulty of FSM
synthesis. Therefore, efficient heuristics that address this hard multiobjective
combinatorial optimization problem are needed.

Non-deterministic evolutionary heuristics/meta-heuristics like Genetic Al-
gorithms, Simulated Evolution and Tabu Search have shown good results in
solving various combinatorial optimization problems [6]. These heuristics try
to optimize user defined goals of the problem encapsulated within a cost func-
tion. The quality of the solution depends on how closely the problem is mod-
eled using the cost function.

The focus of this work is to address the complex problem of FSM state
assignment targeting small area, low power and testability at a higher level,
where there is greater degree of flexibility for trying out different alternatives.
Design of various cost metrics will be investigated to develop models for esti-

mating the quality of solutions that satisfy our objectives.

2 Finite State Machine State Assignment

State assignment in FSMs [5] is one of the main problems in the synthesis of
sequential machines. The complexity of FSMs combinational circuit, hence the
area, depends on its state assignment or encoding. Also, power dissipation,
and testability are functions of state assignment. Thus, depending on the
requirements, the assignment of states can be subject to different constraints.
Gaining insight into the problem of assigning states can be fruitful in coming
up with solutions which will lead to structures and complexity that will satisfy
the above mentioned objectives and constraints. Below we discuss the relevant

theory.

2.1 Encoding and Partitioning

The state assignment problem of an FSM can be viewed as a coding problem
or as a partitioning problem [7, 8, 5]. The coding problem requires each state
to be assigned a unique binary pattern. From the partitioning point of view,
each state variable, y; (one of the bits of the memory part of FSM), partitions

the assigned states into two sets. All states in one set are those for which y;
is 1, and those in the other set for which y; is 0.

Therefore a partition on a set S of states is a collection of disjoint subsets
whose set union is 5. The disjoint subsets are called the blocks of the partition.
A partition is called an m-block partition if the number of blocks in it are m.

The partition induced by a state variable y; is represented with the Greek
symbol Tau, 7(y;). As an example, consider a machine M with four states
(A,B,C,D) and a single input (x) as given in Table 1. The above state machine

PS NS

x=0 x=1
A A D
B A C
C C B
D C A

Table 1: State Machine - 1

with a state assignment is shown in Table 2.

Yiy2 Y1Y,
x=0 x=1
A — 00 00 10
B — 01 00 11
C—11 11 01
D — 10 11 00

Table 2: A sample encoding for State Machine - 1

In the assignment used in Table 2, y; = 0 for states A and B, and y; = 1 for
states C' and D. Therefore, y; induces a 2-block partition 7(y;) = (AB; C'D).
Similarly, y, induces another 2-block partition 7(y,) = (AD; BC), on the
states of machine M.

If every state of the state machine is assigned a unique code then the
product of all the partitions is a partition that has as many blocks as the
number of states. We call such a partition as a zero partition represented by
7(0). Mathematically

k

I1 7(y:) = =(0) (1)

=1
where k is number of partitions (which is also the number of state variables).
For example, the product of the partitions induced by coding of Table 2,

7(y1) and 7(y2) is given as

(1) - 7(y2) = (A4, B; C; D) = m(0) (2)

where the dot operator (-) refers to the intersection operation on the states
of blocks in the individual partitions.
The problem of state assignment is to find a set of partitions such that (1)

is true.

Closed Partition

A partition is said to be closed if for any two states 5; and S; which are in
the same block, and for any input I, the next states denoted by I;.S5; and
I;.5; are in a common block of the partition. This condition must be true for
all pairs of states in every block. Such a partition is said to be closed and is
represented by 7. For example, partition 7(y;) in Table-2 is a closed partition.
A closed partition is a special form of a partition in which the next block
can be uniquely determined from the knowledge of present block and inputs.
For example, suppose that r-state variables are assigned to a closed partition,
where r = [log, |7|| (|7] is the number of blocks in a closed partition) among
k-state variables of the sequential machine, where k = [log,(n)], n being
the number of states. Then, according to the definition of a closed partition,
the r state variables are independent of the remaining & — r state variables.
Closed partition is thus referred to as zero-dependency condition. In the above

example, y; 1s independent of y,. The equation for Y] is

Vi = XY, + XV, (3)

Note that the partition 7(y2) is not a closed partition

Parallel and Serial Decompositions

The presence of closed partition indicates that some of the state variables can
be independently determined irrespective of the other state variables. Thus, if
we can find a set of closed partitions such that Condition (1) above is satisfied,

then the machine can be decomposed into parallel sub-machines, equal to

NS
PS | yiyays x1x2
00

—_

1

000
111
010
110
100
111

H0H O O T =
wlc i el
HO W m A=
©TOoOWws Do
e o N=Nc s>

Table 3: State Machine - 2

the number of closed partitions in the set, operating independently. Such a

decomposition is referred to as parallel decomposition. Mathematically

m(1).7(2)---w(k) = 7(0) (4)
However, if such a set of closed partitions could not be found, we need to find
a partition denoted by T such that Condition (1) can be satisfied, i.e.,

r(1)-w(2)- 7o) T =x(0); (v <k) (5)

In such a case, the partitions 7(1) to m(v) are still closed and so self-
dependent. However, the partition T is not closed and so is dependent on state
variables other than those assigned to itself. This yields a serial decomposition
of a state machine in which independent subsets of the state machine feed the

dependencies required for dependent subset of the machine.

Partition Pairs

The structure of sequential machines is much more complicated than a bunch
of parallel or serially connected sub-machines. There are sub-machines that
are cross dependent. The concept of partition-pairs helps analyze such depen-
dencies.

A partition pair (T, T7) on the states of a sequential machine M is an
ordered pair of partitions such that, if S; and 5; are in the same block of 7,
then for every input I in I, [;.5; and [;.5; are in the same block of 7. The
partition T is called the predecessor partition and 7" the successor partition.

Consider a state machine with a state assignment shown in Table-3. Par-

titions induced by state variables, y, and y; are given as

T(y2) =71 =(AFE;, B,C,D,F) (6)

T(ys) = =(AC,D,E; B, F) (7)

Clearly, (71,72) form a partition pair since the next state at any input
for a pair of states in a block in 7 lie in some block of 7. 71 is said to be
predecessor partition and 7, the successor. Thus, to uniquely determine the
next block in the successor partition, one needs to know the present block in
the predecessor partition along with inputs. That is to say that the successor
partition is dependent on the information of the state variables that induce
the predecessor partition. Thus, a partition pair can be thought of as one (or

single) dependency condition.

P-Dependency Condition

A P-dependency condition, where P is greater than one, can be derived in
a similar manner. This requires the computation of what is known as Mm-
pairs [5].

A partition M(T’) is the summation (union) of all partitions 7; such that
(T;, T°) is a partition pair. Thus, M(T’) is the largest partition, i.e., a parti-
tion containing the biggest blocks whose successor blocks are contained in 7".
Similarly, a partition m(T) is the product (intersection) of all partitions Tj
such that (T, Ty) is a partition pair; where m(T) is the smallest partition,
i.e., a partition containing the smallest blocks that can be the successors of
the blocks of T.

The P-dependency condition states that if the next-state variable Y; can
be computed from the external inputs and a subset P; of the state variables,
then the product of partitions induced by the subset P; should be contained
within M of the partition induced by y;. Mathematically

IT (y;) € Ml (y:)] (8)
y; €P;
where 7(yi) represents the partition induced by variable y;. The product is
taken over all 7(y;), such that y; is contained in the subset P;.

The P-dependency condition is also referred to as information flow inequal-
ity [5]. The condition can be used to find the number of dependencies required
for state variables.

Consider the state machine whose state table is given in Table-4. We begin

by finding the smallest partitions implied by pairs of states. Let T45 be parti-

tion that includes a block (AB) and leaves all other states in separate blocks
(rap =(AB;C; D; E). Then, by definition, the smallest partition containing
the block implied by 745 is m(7ap), which can be determined by looking at

the successive or next states of states in 745.

PS NS 7

co i w i@ Rve i s
EEOQOHE O
wi - w RO R
oRwvEeNNw)
BT =D
—_— o o o o

Table 4: State Machine - 3

m(tap) ={ A, C,E;B,D } =1

Clearly, (Tap, m(74p)) is a partition pair.
Similarly, the rest of the smallest partitions implied by other pair of states
can be found.

m(Tac) = m(mpg) = (é,g,D; B,E) =T

m(tap) =m(rcg) = (A; B;C, E; D) = 74
m(Tag) = m(rep) = (AL LC, D, E)=m(I)

m(tec) = m(ter) = (A; B,C, D, E) =7,

Let the three state variables needed to encode the 8-states be y1, y2 and y3
and their partitions represented as 7,1, 72, 7,3 respectively. Then the problem

of state assignment is to encode y1, y2 and y3 such that
Ty1-Ty2-Tys = 7(0)

One such state assignment can be

The corresponding M of the above partitions are found out as follows

M(ry1) = Tap + Tap + 7cr + 780 = (A, B, D; C, F)
M(7y2) = 7ap + 702 = (A, D; B; C,)
M(Tyg):TAc—I-TDE:(A,C'B')

?
where the operator + is the union of two partitions defined as union of

)
&

Y

every two blocks in the two partitions provided that the intersection of the
two blocks is not empty.

We can now use information flow inequality 8 to find out dependencies
of state variables for the given state assignment. The inequality states that
dependency of a state variable inducing partition 7, is equal to the smallest
subset of the product of partitions 7,1727,3 that is lesser or equal to M(7,,).
Thus, we see that

Ty2 = M(Tyl)
Ty2-Tys C M(7y2)
Ty1-Tys C M(7y3)

Consequently, Y1 is dependent on y2 while Y2 depends on the information
supplied by y2 and y3. Similarly, Y3 receives its inputs from y1 and y3. Thus,

Y1 = fi(Inputs,ys)
Yy = fa(Inputs,ya, ys)
Ys = fs(Inputs,yi, ys)

3 Literature Review

In this section, a detailed survey of heuristics for FSM synthesis for area,
power and testability is reported. FSM synthesis for area is usually targeted
independently for two-level and multi-level realizations. FSM synthesis for
power involves calculating transition probabilities between states and to re-
duce switching involved. FSM synthesis for testability is concerned with re-
ducing the sequential depth and the number of loops in the synthesized circuit.
Description of various cost models to model the optimization objectives at a
higher level are also detailed.

Review for FSM synthesis strategies is followed by a survey of iterative
heuristics, namely genetic algorithm, tabu search and simulated evolution.
These heuristics have shown good results in optimizing hard combinatorial

problems.

10

3.1 FSM Encoding for Area

The encoding for a finite state machine (FSM) determines its combinational
component. The number of storage bits n; used to store the state assignment
also affects the encoding and so the FSM’s complexity. The area of an FSM
is also a function of the type of flip-flop being employed. Encoding for finite
state machines have traditionally been targeted for reducing the complexity of
its combinational part. A good survey of FSM encoding for area can be found
in [9].

The use of D-type flip-flops is most prevalent in VLSI circuits today. This
work will also be implicitly using D-type flip flops for storing the finite state
machine’s state assignment.

The minimum number of state variables needed for state assignment is

given as

ro = [logy(n)] (9)
where n is equal to the number of states of the FSM.

An assignment using the minimum number of state variables has the benefit
of using the minimum number of storage devices. However, with such an
assignment, there is a potential of reduced flexibility in satisfying the number
of encoding constraints (discussed later). The problem is further investigated
in [10, 11, 12, 13, 14, 15]

Even if we consider minimal state assignments with D type flip flop, the

number of possible combinations is exhaustively large [16].

(2m — 1)!
(270 — n)lrg!

Thus, exhaustive evaluation is not feasible and heuristics are generally

N = (10)

employed to tackle the problem of FSM encoding.

Logic minimization aims to optimize the combinational logic of an FSM.
This in turn depends on the degree of freedom provided by an efficient FSM
encoding. A good encoding can help the logic minimizer to achieve a better
realization in terms of logic cost. Logic minimizers employ different heuristics
for two-level and multi-level circuits as their cost measures differ.

A two level implementation realizes a logic function as a sum of product
terms. The circuit complexity of such a representation is related to the number
of inputs, outputs, number of product terms and number of variables utilized

in a product term, i.e. the number of literals.

11

The simplest way to encode an FSM is by assigning 1-hot state codes. In
1-hot encoding for a state, the corresponding code bit for a state is set to 1 and
all others to 0. Thus, 1-hot encoding is a case of non-minimal state assignment
such that the number of variables required is equal to the number of states.
It is further noticed [17, 18] that such an encoding is poor to minimizing the
size in sum of products representation.

An objective of state encoding could be to reduce dependencies among
states [19, 20]. The rationale is that by having dependencies reduced, literal
count will decrease and so will interconnect. However, reduced dependencies
correlate weakly with the minimality of sum of products representation.

The complexity of a two level realization can be reduced by using mecha-
nisms such as implicant merging, code covering and disjunctive coding [9]. The
idea behind Implicant Merging (See Table-5) is to assign adjacent codes to
states that produce either same next-state or output or both at similar input
conditions. This yields bigger cubes while doing Karnaugh minimization, and
results in a simpler final expression. Implicant merging requires adjacency
constraints to be met by the state assignment algorithm. Code Covering
involves a code word of a state covering a code word of some other state(s),
i.e. all the bit positions for which the second code word is 1, correspond to
1 in the first code word. An example utilizing code covering is illustrated in
Table-6. Assume that Sy is encoded with 110 and S5 with 100. In this case,
the input condition (S, 001) can be treated as don’t care condition for the
next state S,, reducing the cover cardinality for Sy from three to two cubes.
Covering constraints produce covering codewords. Reducing cover cardinality
using Disjunctive Coding is illustrated in Table-7. Disjunctive constraints
require that the disjunction of state codes is equal to some other state code.
In the example shown, the states are encoded such that the code for S, is the
disjunction of the state codes for S; and S3. As such, the second implicant
with the input field 101 gets contained in other input conditions and thus is
completely saved.

The major difficulty for 2-level realization of an FSM is the simultaneous
consideration of all the types of constraints [15]. In general, it is not possible
to satisfy all the coding conditions with a code using the minimum number
of bits rg. By increasing the number of code bits to r > ry, more coding
constraints can be satisfied. The increase in the number of storage elements
and state signals to be generated has to be justified against the potential of
reducing combinational logic by satisfying additional coding constraints.

The problem with many approaches to two-level assignment is that no ex-

act predictions are possible, as to how the satisfaction of coding conditions

12

PS|I| NS|z
Si il S
Se il S
Ss il S
0- |1 S |o

Table 5: Implicant Merging

PS| I NS | z
S 1001 | S5
S 1000 | 52
S 1 01- | 52
S 1001 | 110
S | 0- | 100

Table 6: Code Covering

affects the complexity of the resulting combinational logic, since the different
coding conditions interact with each other in a complex way. The application
of coding constraints and finding out their effect would be excessively costly
as it would require a huge number of logic minimizations. To mitigate this
problem, [12] proposed an elegant solution of symbolic minimization. By
using symbolic minimization techniques, it is possible to optimize the func-
tion independently of the encoding and determine the codes at a later time.
This requires performing the minimization at the symbolic level, before the
encoding.

In contrast to two level circuits, multiple level circuits provide much more
degree of freedom in optimizing combinational network. This is because of
the flexibility provided due to operations such as common sub-expression ex-

traction and factorization. Unfortunately, it comes with an increase in the

13

PS| I NS | z
S 1001 | S5
S 1101] 5,
S 1L || S
S | -01 | 100
S | 1-1 | 010

Table 7: Disjunctive Coding

difficulty of modeling and optimizing the multi-level network themselves.

The complexity measure for multi-level circuits is the encoding length and
the number of literals in the optimized logic network. Since encoding length
is mostly taken constant, literal saving by extracting common sub-expressions
has been the focus of most of the work done for multi-level FSM optimization.
This involves finding the state pairs which when encoded carefully can result
in extracting common sub-expressions. In contrast to two level circuits, state
pairs in multi-level implementations do not necessarily have to be given adja-
cent codes. If two states have n state bits in common, the combination of the
two states result in a common sub-expression with n literals. To identify the
states to assign close codes, two heuristics proposed by [21, 22] standout. The
first called fanout oriented, tries to assign closer codes to the states that have
same next state transition. The rationale is to maximize the size of common
cube by assigning closer codes (lesser hamming distance) to such states. The
second approach is referred as fanin oriented in which state pairs with incom-
ing transitions from the same states are given high weights for closer code
assignment. Here the motivation is to maximize the frequency of common
cubes in the encoded next state function. The schemes are improved upon
in [23]. Rules for detecting potential common cubes and formulae for more
precise evaluation of literal savings have been proposed in [24]

There have been a few attempts of utilizing genetic algorithm for solving
state assignment problem [25, 26]. Almaini et al [25] utilize ESPRESSO tool
in SIS for their cost calculation which though being accurate is computation-
ally infeasible. Amaral et.al use a cost function proposed by Armstrong [27].

The cost model tries to combine the properties of fanin and fanout oriented

14

algorithms. The contribution in the above work is in the design of genetic algo-
rithm for state assignment problem. However, the authors did not try to take
advantage of the availability of the state codes in cost function computation.

In Jedi [23], the encoding affinity cost is modeled as a function of how many
times a pair of states are represented in next state and output functions. The

cost function of Jedi is given in equation-11.

mo Mg

[o) [o) nE S S
Ji} :ZEE:(}E¢ + P + ji‘jzj(}EJ + P (11)

i=1 i=1
where,
Py, is the number of times state & is represented in output ¢,
Py, is number of times state k is represented in state 1,
m, 1s the number of outputs,
n, is the number of states,
ng 1s the number of encoding bits.
For example, consider the state machine in Table-4. The next state equa-

tions for states A-E are given as.

A=AL+D.I,
B=AIl,+B.Is+ D.I,
C=Alh+B1L+Cly+Cls+ E.I3
D=Al:+B1L,+CIL+ D.Is+ E.I
E=Bly+ClL+D.ly+ E.ly+ E.I2

and the output equation is given as
Oy=F

Here, P¢ pp is number of times state (' is present in next-state equation of
state D which is equal to one. Similarly, P 5 is two. P2y = 0and Pg, =1
Once the affinity cost for every state is calculated, Jedi uses Simulated

Annealing to minimize 12

Y = JPAGL) (12)

i=1j=1
where A(7,) is the Hamming distance between codes of state i and j.
Mustang [22], observed that if P,i/io = 50 and Pﬁi/o = 2, states k and [are
less strongly connected than they would be when P,i/io = 26 and Pﬁi/o = 26,
even though the sums are the same. They thus proposed use of multiplica-
tion in place of addition to represent encoding affinity. The cost function of

Mustang is given in equation-13

15

mo Ng

[o) [o) nE S S
lel = Z(le * P;) + 3 Z(le *) (13)

i=1 i=1

Jedi and Mustang both try to reduce the Hamming distance between highly
recurring states in the next state equations. However, since it is the flip flop
equations that are synthesized and not the next state equations, the measures
contain inherent inaccuracy. Moreover, Jedi does not give weightage to pair
of states that appear together in next state function. This may yield codes
for a pair of states that though being closer in Hamming distance, appear in
different flip-flop functions and so the reduction in Hamming distance could not
be utilized in reducing the logic. Mustang, by the virtue of its multiplication
operation, is immune to such a situation. Moreover, both Jedi and Mustang
do not try to reduce two-level logic in their cost models.

In this work we will evaluate the various cost functions and proposed in the
literature with regards to their correlation with the multi-level implementation
cost. Furthermore, we will investigate an efficient cost measure that correlates

well with the multi-level implementation cost.

3.2 FSM Encoding for Low Power

Power dissipation has always been one of the major concerns in logic circuits
design. Excessive power dissipation often causes chip run-time failure, reduc-
tion in chip life-time, and costs more expensive packaging. In recent times,
portable electronics applications have given power-aware computing a whole
new importance. This is due to the fact that limitations in battery capaci-
ties and progress trail far behind the ever increasing computing requirements.
Power consumption is thus constrained and optimized at all levels of design
hierarchy including technology selection, architectural transformation, logic
synthesis and physical design [3]. VLSI designers have thus been faced with
another optimization parameter of low power. Recently, a lot of work is re-

ported in the literature to automate the exploration of low power solutions at

different levels of VLSI hierarchy [3, 28]

Power Estimation for FSMs

The exact power consumption of a VLSI device is a complex function of many
parameters and thus can only be accurately found out by running numerous
power simulations on the final device. However a simpler measure for power
dissipation by a CMOS logic gate can be found out by the following equation.

16

dd*FE
P,,. = CLV—SW (14)
2 T

where T,,. is the cycle time, (', the load capacitance of a CMOS gate and
Esw being the expected switching activity at the gate’s outputs.

The above equation shows that by reducing switching, supply voltage or
capacitance seen by the gate, the power consumption of a CMOS device can
be reduced.

There is a rich amount of work reported in the literature for power esti-
mation of sequential circuits [29, 30, 31, 32]. The power estimation techniques
can be broadly classified into statistical [33] or probabilistic [34]. Both the ap-
proaches are implemented in SIS [35] version 1.2. The statistical approaches
work by simulating the state machine using the user provided input vectors
and determining the state probabilities based on it. Probabilistic approaches
on the other hand try to correlate the various probabilities in order to cal-
culate state probabilities if the FSM is simulated for infinite amount of time.
Statistical techniques can be fast and accurate if a short representative se-
quence for an FSM can be determined. However, determining such a sequence
is an open research problem. [36] reports a statistical power estimation tech-
nique using randomly generated input sequences until a desired accuracy is
achieved. Najm et al in [37] propose a technique to estimate power within a
desirable accuracy of an FSM by simulating fraction of a large input set. The
technique tries to simulate FSM repeatedly by blocks of consecutive vectors
at random until a desired accuracy is achieved. A Monte-Carlo approach for
power estimation for sequential circuits is also proposed [38]. The technique
generates mutually independent power samples using multiple copies of the
circuit that are simulated in parallel with mutually independent input vec-
tor streams. Samples are collectively analyzed to check for the terminating
condition.

The power estimation problem is addressed even at a more higher level
using entropy as power estimating function [39, 40]. The rationale is that
since entropy is a measure of information-carrying capacity, a higher entropy
on a state line means higher number of transitions on it. The maximum
transition can be attributed when the probability on a line is exactly half and
corresponds to its maximum entropy value.

A state transition graph (STG) is denoted by G(V, E) where a vertex
S; € V represents a state of the FSM and an edge ¢;; € E represents a
transition from state S; to S;. Let Pg; denote the state probability, that is,
the probability of finding the state machine in 5; at any given time, and p;;

17

denotes the conditional (state) transition probability, which is the probability

of the machine making a transition from state 5; to state S;, that is

pij = Probability(Next = S;|Present = 5;) (15)

A STG can be interpreted as a Markov chain. A Markov chain is a repre-
sentation of a finite state Markov process [41]. A Markovian process is termed
as memory-less since the probability distribution at any time depends only on
the present time and not on how the process arrived till that period. For a
large class of Markovian processes for which our STG is also a member, the
probability of a state is the limiting value approached as it is run for infi-
nite amount of time. This is termed as limiting state probability theorem [42].
Mathematically

limitn_»opij(n) == PS]‘ (16)

The above can be iteratively found out by solving Chapman-Kolmogorov

equations [43] as follows

Psi(n+1) = > pjiPs;(n)

j€In_State(i)
P=1,2, M—1

where n is iteration number and In_State(?) is the set of fanin states of ¢
in the STG.

The process is terminated once state probabilities converge so that the
difference between successive iterations is within a user defined tolerance value.
To tackle the complexity of solving the above system of equations, approximate
methods have been proposed in [44, 45]

The Total State Transition Probability for a transition from a state 5; to
state S; is the probability that the machine transits to state 5; from state .5;.
The total state transition probability can thus be calculated [46] as follows

Py = pi;.Ps; (18)

where P;; is the total state transition probability from state 5; to state .S;.
The sum of total state transition probabilities in between two states indi-
cates the amount of switching in between them. This sum can be treated as a

weight between the two states attributed on a single edge connecting them.

18

Wij = Bij + Pii (19)

A STG in which all the transitions between two states are replaced with
a weighted edge is called a weighted graph. The weight on an edge indicates
the relative proximity in the state assignment of the two connected states
on that edge. By assigning shorter distance codes to states connected with
higher weights, i.e higher transition probability, the overall switching on the
state lines of the FSM can be minimized. Thus a cost model for minimizing

power consumption can be to have Minimum Weighted Hamming Distance

(MWHD). Mathematically

> Wi;H(S:, Sj) (20)

;5,8

Previous Work

Most of the work reported in the literature [47, 48, 49] tries to achieve minimum
weighted hamming distance by optimizing the above equation for low power
realization of FSMs.

However, as (14) shows, power consumption depends on how much ca-
pacitance is switched. A reduced amount of switching on greatly increased
load capacitance may well offset any savings achieved. Thus, by reducing the
switching activity, the problem is only half solved. However, the knowledge of
the gate loading can only be accurately found out once the design is synthe-
sized and mapped on a specific library.

Kang et al in [50] try to take into account area into their cost equation for
low power FSM realization. The cost function used is a linear combination
of minimum weighted hamming distance for power and the literal savings by
Jedi for area. However, since there is no correlation between the two terms,
the technique does not aim at minimizing switched capacitance but merely
tries to achieve a low power and area FSM solution. The rationale being that
a low area solution will anyhow contribute towards a low power solution. The
problem is solved using genetic local search algorithm.

Suresh et al [51] describe a modification of MWHD scheme. The algorithm
tries to identify code swaps between states such that the final cost in terms of
weighted switching can be reduced. The authors define base switching as the
minimum amount of switching that is possible if the all the states are assigned
a unidistance code. Relative switching is defined as a measure of goodness
of how close the average switching is to the minimal possible base switching

value. The algorithm then identifies ’slack’ values which is the amount by

19

which the cost can be decreased if two state codes are exchanged. Edges with
high slack values are first identified, then sorted and finally those that yield
better costs are exchanged. The algorithm terminates when there is no more
good exchanges remaining. The algorithm suffers from complexity of O(n?) as
for every exchange, it has to take care of its effect on other edges connected to
the two nodes in focus. Moreover, the greedy algorithm proposed is vulnerable
to get stuck in a local minima.

Roy et al addressed the problem of minimizing power in sequential circuits
in Syclop [52]. The authors use conditional transition probabilities in place of
steady state probabilities while solving a MWHD solution. The hard nature
of the problem is addressed by using simulated annealing algorithm. Once
the state codes with reduced MWHD cost are found out, constrained multi-
level logic synthesis is performed. A set of kernels are computed for each logic
expression and a non-trivial intersection of kernels is selected so that fanout
for nodes having high transition density can be reduced. The rationale is
that reduced fanout on highly switched state lines will result in low switched
capacitance.

A MWHD scheme is employed for non-minimal state encoding by Koegst
et al in [53]. The authors advocate the use of a user specified input sequence
for measuring total state transition probabilities, and thus weights, instead of
equation-17. Koegst in [54] used a multi-criterianon-minimal state assignment
for low power where assignment helps deactivating idle parts of FSM along
with reducing MWHD.

A novel technique for low power state assignment is proposed by Majid et
al [55]. The authors note that an optimal solution for MWHD problem can be
obtained using Integer Linear Programming (ILP). However, any such tech-
nique suffers from exponential complexity of ILP itself. This can be mitigated
if ILP has to be applied on small finite sets. They thus proposed a semi-gray
encoding technique in which the states are partitioned into small groups in
decreasing order of their weights. The states within a group are then assigned
gray codes using ILP.

A low power FSM realization is proposed using Huffman style to provide
non-uniform state codes in [56]. The technique proposes shorter codes for
states with higher switching activities and more for lesser switched states.
The rationale being that lesser state lines will yield lesser weighted switching
as well as switched capacitance. However, the overhead of the scheme barred
the authors to implement it as it is. Instead, the state set is encoded using
only two different code lengths. Moreover, a logic is proposed to shut off clock

for the inactive set.

20

Another interesting variation in MWHD approach is proposed by Silvano
et al [57]. The authors note that the state assignment procedure can be broken
down into state ordering and state encoding sub-steps. For state ordering, var-
ious techniques have been proposed so that a chain of highly probable states
is formed. The rationale in doing so is that consecutive states from a highly
probable state are more likely to be visited than stand alone nodes with high
probability. Once states are ordered, they are encoded using encoding tech-
niques described in [58]. The sate encoding techniques try to reduce hamming
distance between consecutive states in the state ordering list as well as the
states that are connected to those states.

Benini [59] proposed state assignment technique for low power based on
total state probabilistic MWHD algorithm. The authors propose the use of
a greedy variation of column-based encoding [18, 60]. The cost function also
tries to minimize area using cost metrics of multi-level minimizers of Jedi and
Mustang. However, the cost function again lacks any correlation between area
being saved and power attributed to it. Thus, the technique is essentially
aiming for low power and low area solutions independently.

Pedram et al in [61] describe a novel technique for low power state assign-
ment by introducing the concept of literal power savings in MWHD algorithm.
The authors propose the usage of area saved times its power savings as the cost
function. Power cost models for both two and multi-level logic implementation
are described. The cost models are power extension for area cost models for
two-level and multi-level circuits. Simulated Annealing algorithm is used as
search strategy.

Another interesting work for power and area minimization is presented in
[62] by Chao et al. The authors use entropy measure to calculate the probabil-
ity distribution of an FSM. They then distribute the number of possible codes
into groups such that the codes within a group have equal number of ones.
Each state is then assigned to a group so as to minimize the overall switching.
A state is finally assigned a unique code within a group using literal saving
estimates.

In some recent work, Almaini et al [63] have employed Genetic Algorithm
[6] to solve the problem of MWHD. The cost function aims at optimizing both
area and power separately. The area estimate is the number of cubes in a
synthesized circuit. Pomeranz et al [64] have also used Genetic Algorithm to
partition the FSM such that inactive partitions be turned off to reduce power.
They propose to do state encoding such that it can also determine the partition
as well as state assignment.

In this work we will investigate the use of efficient power cost estimators

21

including the one proposed in [61].

3.3 FSM Encoding for Testability

Testability of a VLSI circuit is attributed to how efficiently the various faults
in the circuit can be excited and observed. This involves generation and appli-
cation of test sets at primary inputs of a circuit to excite its various faults and
observing them at the outputs. The test sets can either be manually generated
or using automatic CAD tools. Automatic test generation tools are efficient in
terms of cost and effectiveness and so are generally employed to find the test
patters. This work will also consider the use of Computer Aided Automatic
Test Pattern Generation (ATPQG) tools.

ATPG tools use both random and deterministic techniques to build the
test set. Deterministic test set takes into account the behavior and structure
of the circuit under test to build its test set. They thus yield higher fault cov-
erage though being more computationally expensive. The complexity and type
of a circuit, whether combinational or sequential, determines how efficiently
automatic test pattern generator performs.

Test generation for combinational circuits is known to be NP-hard problem
[65]. The worst case size of the search space is bounded by 2!, where 7 is
equal to the number of inputs. However, techniques have been developed to
reduce this large search space by an intelligent search of the primary input
combinations. These techniques include D-algorithm [66, 67], PODEM [68],
and FAN [69]. ATPG tools based on these algorithms are quite efficient in
finding test patterns to detect all the testable faults in an integrated circuit.

Automatic test pattern generation for sequential circuit is much more in-
volved than combinational circuits. Unlike combinational ATPG, existing se-
quential ATPG tools may not produce satisfactory results for some class of
circuits due to their complexity. For this reason, design for test techniques
like partial scan [70] have been used to improve the testability of the circuit.
The increased complexity of sequential circuits arises from memory feature in
their behavior. Thus, to excite a fault, the memory elements have to be first
initialized and then the fault has to be propagated to the primary outputs.
Finally, a justification sequence is to be derived that traverses the circuit from
the initialized state to the current state of the circuit. These sequences require
processing the sequential machine in multiple clock periods. Thus, sequential
test generation involves a time domain component. To cope with this diffi-
culty, lterative Array Model was proposed [4]. The model transforms the time

domain aspect of sequential circuit into space domain by unrolling the sequen-

22

tial behavior into multiple iterations of its combinational circuit, effectively
making it as a large combinational circuit. The iterative model thus permits
the automatic test pattern generation algorithms for combinational circuit to
be extended to sequential logic.

A sequential circuit can be classified as cyclic or acyclic. If a node can be
revisited after starting from that node in the forward direction without visiting
any other node again, then a cycle is said to be present in the sequential circuit.
The length of the cycle (cycle length) is said to be the number of sequential
elements encountered during the traversal. Sequential depth refers to the
number of sequential elements from primary input to the primary output.

The complexity of an ATPG can be attributed to the time it takes to at-
tain the required level of test completeness. This in turn is a strong function
of the complexity of the circuit. The upper bound on the number of vectors
needed to test all testable faults in an acyclic sequential circuit with ¢ inputs
and sequential depth d is d * 2 [71], which is comparable to the complexity of
a combinational circuit. However, a cyclic sequential circuit may require an
initialization sequence to test the combinational logic in a given state. This
initialization sequence can be as long as the M —1, M being the number of pos-
sible states for the state machine. Thus the upper bound for a cyclic sequential
circuit having ¢ primary inputs and M states, using s number of sequential
elements is M * 2571 = 225+ [71]. It clearly shows that the complexity
for ATPG of sequential circuit increases exponentially with the number and
length of the cycles. The complexity of sequential ATPG is investigated by
Lioy et al in [72]. The authors contend that that the complexity of sequential
ATPG depends on the number of flip-flop per loop (FF/L) and the number
of loops per flip-flop (L/FF). The former estimates the cyclic structure of the
circuit and the latter predicts how much the design is 'winded up’ on itself or
how much interdependence exists between the loops. The authors note that
the test generation complexity increases with FF/L and L/FF, while increas-
ing the number of state-controlling inputs reduces its complexity. The authors
further propose a formal algorithm to identify the loops within a sequential
circuit. Marchok et al in [73] also note that the complexity of sequential ATPG
varies with re-timing. Furthermore, the authors cite a new factor, density of
encoding, which gives the measure of degree of valid states compared to the
number of possible states in the state machine, to be key indicator in the com-
plexity of structural sequential ATPG. The complexity of ATPG is carefully
investigated in [74].

As described earlier, the nature of encoding strongly determines the struc-

ture of the sequential circuit, its various dependencies, cycles and intercon-

23

nections. The information flow inequality of state machines (8) enables us
to quickly realize its structure prior to its synthesis. This can help provide
an accurate measure of complexity of a sequential circuit at a higher level of
abstraction.

Pomeranz et al [75] explored the possibility of controlling more state lines
in order to increase the testability of a sequential circuit. They have proposed a
synthesis technique that evaluates some state variable functions using primary
inputs or primary output functions. The motivation is that since primary
outputs are directly observable and primary inputs directly controllable, an
increase in testability can be achieved.

Cheng et al [76] have proposed a novel method of encoding that reduces
the feedbacks in a sequential circuit. The motivation is to reduce the cyclic
nature of the sequential circuit. The authors propose state encoding by fol-
lowing states merging according to some rules. The first rule tries to maximize
the number of blocks in a partition while the second tries to merge two states
having the same next state. The rationale for the former rule is that by having
a large number of blocks in a partition, more information can be derived from
primary inputs alone for the next state function, that in turn reduces the num-
ber of feedbacks. The latter rule aims at area minimization by incorporating
the commonly used cost metrics used in multi-level area minimization for a
sequential circuit.

Mo-hat et al in [77] try to take into account the testability for PLA-based
FSMs. The authors propose K-hot encoding scheme to deal with various types
of PLA faults. In K-hot code, exactly K-bits are set equal to 1. The rationale
is that many types of PLA faults can be easily detected if exactly K lines are
not high.

Prinetto et al in [78] discuss testability measure for inputs and outputs of
an FSM. The authors note that optimal testability is achieved when outputs
are high for half of the possible inputs and low for the other. They further note
that such a condition runs counter to power minimization condition where the
aim is to have reduced switching.

In this work we will use testability measures based on loop count and

sequential depth as cost estimators.

3.4 Iterative Algorithms

A number of iterative algorithms are proposed in the literature. The moti-
vation for using iterative algorithms becomes clear when recalling the hard

nature of the FSM encoding problem as mentioned above. These algorithms

24

are capable of efficiently searching for a near optimal solution in a large solu-
tion space and have been very successful in solving a number of combinatorial
optimization problems in various disciplines of science and engineering. In the
following, a brief description of genetic algorithm (GA), tabu search (TS), and

simulated evolution (SimE) is presented.

Genetic Algorithm (GA)

GA is an elegant search technique that emulates the process of natural evo-
lution as a means of progressing towards the optimal solution. A high level
algorithmic description of GA is given in Figure 2 [6]. GA uses an encoded
representation of a solution in the form of a string made up of symbols called
genes. The string of genes is called chromosome. The algorithm starts with
a set of initial solutions called population that may be generated randomly or
taken from the results of a constructive algorithm. Then, in each iteration
(known as generation in GA terminology), all the individual chromosomes in
the population are evaluated using a fitness function. Then, in the selection
step, two of the above chromosomes at a time are selected from the popula-
tion. The individuals having higher fitness values are more likely to be selected.
After the selection step, different operators namely crossover, mutation, and
inverston act on the selected individuals for evolving new individuals called
offsprings. These genetic operators are described below.

Crossoveris an important genetic operator. It is applied on two individuals
that are selected in the selection step to generate an offspring. The generated
offspring inherits some characteristics from both parents in a way similar to
natural evolution. There are different crossover operators namely simple, or-
der, partially mapped, and cycle. The simple crossover operation for instance,
works by choosing a random cut point in both parent chromosomes (the cut
point should be the same in both parents) and generating the offspring by
combining the segment of one parent to the left of the cut point with the seg-
ment of the other parent to the right of the cut [6]. For description of other
crossover operators, see [79, 6, 80].

The mutation operator is used to introduce new random information in
the population. It helps to prevent the search process from trapping in local
minima. An example of mutation operation is the swapping of two randomly
selected genes of a chromosome. The importance of this operation is that it
can introduce a desired characteristic in the solution that could not be intro-
duced by the application of the crossover operator alone. However, mutation
is applied with a low rate so that GA does not turn into a memory-less search

process [79].

25

Algorithm (Genetic_Algorithm)
(N, = Population Size)
(Ng = Number of Generations)
(No = Number of Offsprings)
(P, = Inversion Probability)
(P, = Mutation Probabilty)
Begin
(Construct initial population)
Construct_Population(N);
Forj=1toN,
Evauate Fitness (Population[j])
EndFor;
For i =1toNg
For j=1to N,
(Choose parents with probability proportiona to fitness value)
(x,y) € Choose_parents,
(Perform crossover to generate offsprings)
offspring[j] € Crossover(X,y)
Fork=1toN,
With probability P, apply Mutation (Population[K])
With probability P, apply Inversion (Population[k])
EndFor;
Evaluate Fitness(offspring][j])
EndFor;
Population €< Select(Population, offspring, N)
EndFor;
Return highest scoring configuration in population
End. (Genetic Algorithm)

Figure 2: Outline of simple Genetic Algorithm [6].

26

The quality of the solution obtained from GA is dependent on the choice of
certain parameters such as population size, number of generations, crossover
and mutation rates and also the type of crossover used. The selection of values
for these parameters is problem specific and so there are no hard and fast rules
for this purpose. The choice of these parameters is left to the conception and

intuition of the person applying GA to a specific problem.

Tabu Search (TS)

Tabu search is an iterative heuristic that has been applied for solving a range
of combinatorial optimization problems in different fields [6]. Tabu search
starts from an initial feasible solution and carries out its search by making
a sequence of random moves or perturbations. A tabu list is maintained that
stores the attributes of a number of previous moves. This list prevents bringing
the search process back to already visited states. In each iteration, a subset of
neighbor solutions is generated by making a certain number of moves and the
best move (the move that resulted in the best solution) is accepted, provided
it 1s not in the tabu list. Otherwise, if the said move is in the tabu list,
the best solution is checked against an aspiration criterion and if satisfied,
the move is accepted. Thus, the aspiration criterion can override the tabu list
restrictions. It is desirable in certain conditions to accept a move even if it is in
the tabu list, because it may take the search into a new region due to the effect
of intermediate moves. The behavior of tabu search heavily depends on the
size of tabu list as well as on the chosen aspiration criterion. Different sizes
of tabu list result in short-term, intermediate term, and long-term memory
components that can be used for intensifying or diversifying the search. The
aspiration criterion determines the extent to which the tabu list can restrict
the possible moves. If a tabu move satisfies aspiration criterion, then the move
is accepted and tabu restriction is overridden. The structure of TS is given in

Figure 3. The detailed description of tabu search can be found in [6].

Simulated Evolution (SimE)

SimE is a general iterative heuristic proposed by Ralph Kling [81, 82, 83].
It falls in the category of algorithms which emphasize the behavioral link
between parents and offspring, or between reproductive population, rather
than the genetic link [84]. This scheme combines iterative improvement and
constructive perturbation and saves itself from getting trapped in local minima
by following a stochastic perturbation approach.

The algorithm for Simulated Evolution is given in Figure-4. As can be

seen, simulated evolution iteratively operates a sequence of evaluation, se-

27

Algorithm Tabu_Search

Q Set of feasible solutions
S Current solution
S Best solution

Cost; Objective function
N(9): Neighborhood of Se Q

V* . Sample of neighborhood solutions
T : Tabulist

AL : Aspirartion level

Begin

Start with aninitial feasible solution Se Q
Initialize tabu list and aspiration level
For fixed number of iterations Do
Generate neighbor solutions V* N(S)
Find best S* € V*
If move Sto St isnotinT Then
Accept move and update best solution
Update T and AL
Else
If Cost(S*) <AL Then
Accept move and update best solution
Update T and AL
End If
End If
End For

End.

Figure 3: Outline of Tabu Search algorithm [6].

28

lection, and allocation steps till the stopping criteria is met. Unlike genetic
algorithm and tabu search, simulated evolution algorithm works on only one
solution(population). The algorithm proceeds with evaluating goodness of its
members. The goodness value is then used to partition the members in two
sets, Ps and Pr. Pr contains those members that have achieved a desired
level of goodness. The rest are placed in Ps. The idea behind selection is
to save the state of good members from further perturbations. Members that
did not satisfy required goodness, i.e. members in set Ps, are then perturbed
in the allocation step. The exact nature of perturbation is problem-specific
and usually requires designer’s ingenuity. The goal of allocation is to favor
improvements over the previous generation.

Non-determinism in simulated evolution resides at selection stage. A mem-
ber that has achieved desired goodness level still has a nonzero chance to be
assigned to Ps set. It is this non-determinism that provides simulated evolu-
tion algorithm the capability of uphill climbing.

From the results reported in the literature, SimE algorithm is a sound and
robust randomized search heuristic. It is guaranteed to converge to the optimal

solution if given enough time [6].

ALGORITHM Simulated_Evolution(M, L);
/* M: Set of movable elements; */
/* L: Set of locations; */
/* B: Selection bias; */
/* Stopping criteria and selection bias can be automatically adjusted; */
INITIALIZATION;
Repeat

EVALUATION:

ForEach m € M Do gm, = g—: EndForEach;

SELECTION:
ForEach m € M Do
If Selection(m,B) Then P, = P,U{m}
Else Pr = P-u{m}
EndlIf;
EndForEach;
Sort the elements of Ps;

ALLOCATION:
ForEach m € P; Do Allocation(m) EndForEach;
Until Stopping-criteria are met;
Return (BestSolution);
End Simulated_Fvolution.

Figure 4: Outline of Simulated Evolution Algorithm [6].

29

4 Problem and Cost Functions Formulation

In this project, a high level tool for finite state machine synthesis will be
designed and implemented with the objective of optimizing power, area and
testability.

4.1 Problem Statement

The finite state machine synthesis problem can be stated as follows: Given a
state machine with a number of inputs, outputs and states, define a state en-
coding that promises maximum potential in minimizing the objective functions

while working at a higher level.

4.2 Cost Function

Various cost functions for area, power and testability for FSMs have been
described in detail in section-3. One of the goals of the proposed work is to
define a cost function that best formulates the given problem at a higher level,

with an efficient execution time.

5 Project Objectives

The proposed research work will aim to develop a CAD tool that has the
potential to efficiently solve the multiobjective problem of FSM encoding for
area, power and testability objectives. The work entails investigation and
fine tuning of cost functions for area, power and testability of an FSM. The
cost functions that best correlate with the respective parameter will then be
utilized to solve the multiobjective problem using some aggregating function.
The quality of the solution obtained based on single-objective optimization will
be compared to those obtained based on multiple-objective optimization. The
work will be utilizing iterative algorithms like Genetic Algorithm, Simulated

Evolution and Tabu Search to explore the search-space for an efficient solution.

6 Tasks Outline

The details of the major tasks to be carried out during the project work are

enumerated as follows:

30

Task 1: Study and evaluation of cost estimators for area. In partic-
ular, cost estimators proposed by Jedi, Mustang, and others
will be studied and evaluated. New efficient area cost esti-

mators will be investigated.

Task 2: Employ and integrate suitable testability measures with area

costs.

Task 3: Investigate the incorporation of power dissipation in the cost
function and model a multiobjective cost function for reduc-
ing area, reducing power dissipation, and improving testabil-
ity.

Task 4: Engineer GA for solving the multiobjective optimization prob-
lem for state assignment. This will include design of suitable

chromosomes, choice of operators, tuning of parameters, etc.

Task 5: Employ TS for the above problem. This will include choice of
suitable moves and their attributes, aspiration criteria, choice
of parameters, etc.

Task 6: Tailor SE to solve the above multiobjective optimization prob-
lem. This task will include design of suitable goodness func-
tions for the assignment of a state to a code, and choice of

appropriate operators (selection and allocation).

Task 7: Experimentation with benchmarks and comparison of the 3

algorithms with other heuristics proposed in the literature.

Task 8 Documentation of implemented software, documentation of

findings, and Publication of results.

7 Schedule & Management Plan

The work schedule is shown in the table below. All investigators and graduate
students will be involved in all the tasks of the project for the entire duration.

31

(Months)
01-03 | 04-06 | 07-09 | 10-12 | 13-15 | 16-18

Task 01
Task 02
Task 03
Task 04
Task 05
Task 06
Task 07
Task 08

The project team will consist of a principal investigator, a co-investigators,
and one part-time graduate-student. Responsibilities will be divided among
the three senior investigators on the basis of their previous experience and

background.

Dr. Aiman El-Maleh holds a B.Sc. in Computer Engineering, with first hon-
ors, from King Fahd University of Petroleum & Minerals in 1989, a M.A.SC.
in Electrical Engineering from University of Victoria, Canada, in 1991, and a
Ph.D in Electrical Engineering, with dean’s honor list, from McGill University,
Canada, in 1995. Dr. El-Maleh is an Assistant Professor in the Computer Fn-
gineering Department at King Fahd University of Petroleum & Minerals since
September 1998. He was a member of scientific staff with Mentor Graphics
Corp., a leader in design automation, from 1995-1998. His research interests
are in the areas of synthesis, testing, and verification of digital systems. In
addition, Dr. El-Maleh has research interests in VLSI design, design automa-
tion, and computer arithmetic. He is the winner of the best paper award for
the most outstanding contribution in the field of test for 1995 at the Furopean
Design & Test Conference. His paper presented at the 1995 Design Automa-
tion Conference was also nominated for best paper award. He holds one US
patent. Dr. El-Maleh was a member of the program committee of the Design
Automation and Test in Europe Conference (DATE98).

Dr. Sadiq M. Sait has major interests in VLSI Design automation, and, in
engineering and applications of computers. He has published several papers
in the area of VLSI physical design automation. He has co-authored two
books, which are directly related to the project: (a) VLSI Physical Design
Automation: Theory and Practice, McGraw-Hill Book Co., Furope, Decem-
ber 1994. Also Co-published by IEEE Press, USA, January 1995 (Hard
bound edition), and, (b) [lterative Computer Algorithms with Applications in

32

Engineering: Solving Combinatorial Optimization Problems. December 1999,
IEEE Computer Society Press, California.

All investigators will take the responsibility of the overall management of
the project. Students will be computer engineering/science graduates with
good programming background and will work under the guidance of investiga-
tors. The investigators will hold meetings as often as necessary to coordinate
their work and to make necessary decisions. Frequent meetings will be neces-

sary, minimum once a week.

8 Utility Value of the Project and Deliver-
ables

The utility value of this project is many-fold, namely:

1. One of the main objectives of this project is to train graduate students in
VLSI synthesis, algorithmic research, and in non-deterministic algorithms

and their applications.

2. A new lab, recently setup, will be enhanced to provide support for future
research projects in high-level synthesis, and help in research work of

faculty and graduate students.

3. It is expected that the findings of our investigation of non-deterministic
search for near optimal solutions will help in addressing other similar

NP-hard engineering problems.

4. The results of this work can be used by other investigators in academia
and industry to enhance existing methods. The project will contribute

to advancing state-of-art techniques.

9 Detailed Budget

Senior Investigators

The senior investigators will work for 18 months during the regular semesters
for the entire duration of the project. They will receive payments as per the
university regulations. A graduate student will assist in the implementation
aspects of the research, and will be required in the preparation of setup, litera-

ture search, experimentation, etc. Their total compensation will be as follows:

33

Dr. Aiman El-Maleh (PI) SR 1200/- * 18 =SR 21,600

Dr. Sadiq M. Sait (CO-I) SR 1000/- * 18 =SR 18,000
Graduate Student SR 600/- *18 = SR 10,800
Total SR 50,400/-

Equipment, Materials & Supplies, and Other Expenses

Facilities available at KFUPM will be used at no charge to the project. No
additional equipment is requested for this project as PCs and peripherals ob-
tained for the previous projects will be used. Expenses for simple peripherals
(such as CD writers, flash memories, hard-disks, remote keyboard and mouse,
wireless devices, etc.,), consumables such as floppies, tapes, zip drives, CDs,
printer toner, etc., will amount to SR 1,000/-, purchase of stationary, liter-
ature and books, etc., will require SR 500/-. Other miscellaneous and other

incidental expenses may amount to a maximum of SR 1,000/-

Total cost of consumables and supplies is estimated to be
SR 2,500/-

A secretary will work for the total duration of the project, SR 1,800/- for

payment will be required. Individual items are as summarized below.

Manpower SR 50,400/-
Consumables:

Expenses for peripherals (such as CD writers, flash memories,

hard-disks, remote keyboard and mouse, wireless devices, etc.,)

Floppies, CDs, tapes, zip drives, printer toner, etc SR 1,000/-
Books, other literature, Stationary, etc., SR 500/-
Secretary SR 1,800/-
Miscellaneous and other incidental expenses SR 1,000/-
Conference Attendance (2 Required Trips) SR 20,000/-
Total SR 74,700/-

The total cost! of the project is estimated to be SR 74,700/-

ISR 74,700/-= US $ 19,920/-

34

References

1]
2]
3]

3]
[9]

[10]

[11]

[12]

[13]

[14]

N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design:
A systems perspective, Second edition. Addison-Wesley, 1993.

Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation:
Theory and Practice. World Scientific Pubishers, 2001.

M. Pedram. Design technologies for low power VLSI. In FEncyclopedia
of Computer Science and Technology, Marcel Dekker, Inc., pages 73-96,
1997.

Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital
Systems Testing And Testable Design. IEEE Press, 1990.

7. Kohavi. Switching and Finite Automata Theory, Second edition.
McGraw-Hill Book Co., 1978.

Sadiq M. Sait and Habib Youssef. lterative Computer Algorithms with Ap-
plications in Engineering: Solving Combinatorial Optimization Problems.
IEEE Computer Society Press, California, December 1999.

R. E. Stearns and J. Hartmanis. On the state assignment problem for
sequential machines II. IRF Transaction FC-10, 1961.

H. Allen Curtis. Multiple reduction of variable dependency of sequential
machines. Journal of ACM, 9(3):324-344, 1962.

Bernhard Eschermann. State assignment for hardwired VLSI control

units. ACM Computing Survey, 25(4):415-436, 1993.

R. Amann and U. G. Baitinger. Optimal state chains and state codes in
finite state machines. IEEFE Transaction Computer Aided Design, CAD-
8:153-170, 1989.

Demicheli G., Brayton R. K., and Sangiovanni Vincenteli A. Optimal
state assignment for Finite State Machines. IEEE Transaction on Com-
puter Aided Design, CAD-4:3, 269-285, 1985.

G. DeMicheli. Symbolic design of combinational and sequential logic cir-
cuits implemented by two-level logic macros. IEFE Transaction on Com-
puter Aided Design, CAD-5:597-616, 1986.

J. L. Huertas and J. M. Quintana. A new method for the efficient state-
assigmnent of PLLA-based sequential machines. In the Internatzonal Con-
ference on Computer-Aided Digital Design, pages 156-159, 1988.

J. L. Huertas and J. M. Quintana. Efficiency of state assignment methods

for PLA based sequential circuits. [FE Proceedings E, Computer and
Digital Techniques, pages 247-253, 1989.

35

[15]

[18]

[19]

[20]

[21]

[22]

23]

T. Villa and A. Sangiovanni-Vincentelli. Nova: state assignment of finite
state machines for optimal two-level logic implementations. Proceedings of
the 1989 26th ACM/IEEE conference on Design automation conference,
pages 327-332, 1989.

P. Weiner and Smith E. J. On the number of distinct state assignments
for synchronous sequential machines. IEEFE Transaction on Elec Cornput.

EC-16, pages 220-221, 1967.

G. DeMicheli, Brayton R.K., and Sangiovanni-Vincentelli A. Optimal
State Assignment for Finite State Machines. IEEFE Transaction on CAD,
CAD-4(3):269- 284, July 1985.

G. DeMicheli. Symbolic Design of Combinational and Sequential Logic
Circuits Implemented by Two-level Logic Macros. IEEFE Trans. on CAD,
CAD-5(4):597-616, October 1986.

J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential
Machines. Prentice Hall, Englewood Cliffs, 1966.

G. Saucier, M. Crastes de Paulet, and P. Sicard. ASYL: A Rule-based
System for Controller Synthesis. IEEE Transaction on CAD/ICAS, Vol.
CAD-6, No. 6:1088-1097, November 1987.

P. Ashar, S. Devadas, and A. Newton. Sequential Logic Synthesis. Kluwer
Academic Publishers, Boston, MA, 1992.

S. Devadas, H.T. Ma, A.R. Newton, and Sangiovanni-Vincentelli. MUS-
TANG: State Assignment of Finite State Machines for Optimal Multi-
Level Logic Implememations. ICCAD, November 1987.

B. Lin and A. R. Newton. Synthesis of multiple-level logic from symbolic
high-level description languages. I[FIP International Conference on Very
Large Scale Integration, pages 187-196, August 1989.

X. Du, G. Hachtel, B. Lin, and A. R. Newton. MUSE: A Multilevel
symbolic encoding algorithm for state assignment. IEFE Trans. Computer

Atided Design, CAD-10:1.28-38, 1991.

A. Almaini, J. Miller, P. Thomson, and S. Billina. State Assignment of
state machine using Genetic Algorithm. IEEFE Proc. on Computer and
Digital Techniques, 142:279 — 286, 1995.

J. Amaral, K. Turner, and J. Ghosh. Designing Genetic Algorithm for
State Assignment Problem. [FEFE Trans on SMC, 25:659 — 694, 1995.

36

[27]

[30]

31]

32]

33]

[34]

D.B Armstrong. A programmed algorithm for assigning internal codes to

sequential machines. IRFE Transactions on Electronic Computers, pages

466 — 472, 1962.

Massoud Pedram. Power minimization in IC design: Principles and appli-

cations. ACM Transaction on Design Automation of Electronic Systems,

1(1):3-56, 1996.

F.N. Najm. A survey of power estimation techniques in VLSI circuits.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2:446 — 455, 1994.

F.N. Najm. Power estimation techniques for integrated circuits.
IEEE/ACM International Conference on Computer-Aided Design, 2:492
— 499, 1995.

Chi-Ying Tsui, J. Monteiro, Massoud Pedram, Srinivas Devadas, A.M.
Despain, and B. Lin. Power estimation methods for sequential logic cir-
cuits. [EEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 3:404 — 416, 1995.

Devadas S., Malik S., Keutzer K., and White J. Estimation of Average
Switching Activity in Combinational and Sequential Circuits. 29th DAC]
pages 253-259, 1992.

Devadas S. and Omnteiro J. Techniques for the Power Estimation of
Sequential Logic Circuits Under User-Specified Input Sequences and Pro-
grams. Int. Symp. on Low Power Design, 1995.

Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi.
Probabilistic Analysis of Large Finite State Machines. proceedings of
DAC, pages 270-275, 1994.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit synthesis. Technical

report, University of California, Berkeley, 1992.

Farid N. Najm, Shashank Goel, and Ibrahim N. Hajj. Power estimation
in sequential circuits. In Proceedings of the 32nd ACM/IEEE conference
on Design automation conference, pages 635-640. ACM Press, 1995.

Joseph N. Kozhaya and Farid N. Najm. Accurate power estimation for
large sequential circuits. In Proceedings of the 1997 IEEE/ACM interna-
tional conference on Computer-aided design, pages 488-493. IEEE Com-
puter Society, 1997.

37

38]

[41]

[42]

[43]

[44]

[45]

V. Saxena, F. N. Najm, and . N. Hajj. Monte-Carlo approach for power
estimation in sequential circuits. Furopean Design and Test Conference,

pages 416 — 420, 1997.

Mahadevamury Nemani and Farid N. Najm. Towards a High-Level Power
Estimation Capability. IEEE Transactions on Computer Aided Design of
Integrated Cicuits and Systems, pages 588 — 598, 1996.

M. Nemani and F.N. Najm. High-level area and power estimation for VLSI
circuits. [FEE Transactions on Computer Aided Design of Integrated
Cicuits and Systems, 18:697 — 713, 1999.

Gary D. Hatchel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi.
Markovian Analysis of Large Finite State Machines. IFEE Transactions
on CAD, Vol. 15, Num. 12:1479-1493, Dec. 1996.

A. W. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill,
1967.

A. Papoulis. Random Variables and Stochastic Processes. McGraw-Hill,
1984.

Chi-Ying Tsui, Massoud Pedram, and Alvin M. Despain. Exact and
approximate methods for calculating signal and transition probabilities in

FSMs. In Proceedings of the 31st annual conference on Design automation

conference, pages 18-23. ACM Press, 1994.
Jose Monteiro, Srinivas Devadas, and Bill Lin. A methodology for efficient

estimation of switching activity in sequential logic circuits. In Proceedings
of the 31st annual conference on Design automation conference, pages 12—

17. ACM Press, 1994.

K. Trivedi. Probability and Statistics with Reliability, Queuing and Com-
puter Science Applications. Prentice-Hall, 1982.

Tzong-Dar Her, Wei Kang Tsai, F. Kurdahi, and Yulin Chen. Low-
power driven state assignment of finite state machines. IEFFE Asia-Pacific
Conference on Circuits and Systems, pages 454 —459, 1994.

S. K. Hong, I. C. Park, S. H. Hwang, and C. M. Kyung. State assignment
in finite state machines for minimal switching power consumption. [FEFE

Electronics Letters, 30 Issue: 8:627 —629, 1994.

S. J. Wang and M. D. Horng. State assignment of finite state machines
for low power applications. [EFE FElectronics Letters, 32 Issue: 25:2323
2324, 1996.

38

[50]

[51]

[54]

[55]

[56]

[57]

[58]

E. Olson and S.M. Kang. State assignment for low-power FSM synthesis
using genetic local search. IFEE Custom Integrated Circuits Conference,
pages 140 —143, 1994.

V. Vamshi, T. Akhilesh, and R. Suresh. Re-encoding for Low Power
State Assignment of FSMs. ACM International Symposium on Low Power
Design, 1995.

K. Roy and S. Prasad. SYCLOP: synthesis of CMOS logic for low power
applications . ICCD, pages 464 —467, 1992.

I[. Lemberski, M. Koegst, S. Cotofana, and B. Juurlink. FSM non-minimal
state encoding for low power. 23rd International Conference on Micro-
electronics, pages 605 —608, 2002.

M. Koegst, G. Franke, and K. Feske. State assignment for FSM low power
design. FURO-DAC, pages 28 —33, 1996.

Chunhong Chen, Jiang Zhao, and Majid Ahmadi. A semi-Gray encoding
algorithm for low-power state assignment. International Symposium on

Circuits and Systems, 1SCAS, 5:V-389 —V-392, 2003.

P. Surti, L.F. Chao, and A. Tyagi. Low power FSM design using Huffman-
style encoding. Furopean Design and Test Conference, EDETC, pages 521
—525, 1997.

P. Bacchetta, L. Daldoss, D. Sciuto, and C. Silvano. Low-power state
assignment techniques for finite state machines. International Symposium
on Circuits and Systems, 2:641 —644, 2000.

L. Daldoss, D. Sciuto, and C. Silvano. State encoding for low power

embedded controllers. International Symposium on Circuits and Systems,

ISCAS, 2:421 —424, 1998.

L. Benini and G. DeMicheli. State encoding for low power embedded
controllers. TEFE Journal of Solid-State Circuits, 30:258 —268, 1995.

T. Dolotta and E. McCluskey. The coding of internal states of sequential
machines. [EFE Trans. Electron. Fcomput., FC-13:549-562, 1964.

Chi-Ymg Tsui, M. Pedram, Chih-Ang Chen, and A. M. Despain. Low
Power State Assignment Targeting Two And Multi-level Logic Imple-
mentations. [EEE/ACM International Conference on Computer-Aided
Design, pages 82-87, 1994.

[. Bhupathi and L. F. Chao. High-level area and power estimation for
VLSI circuits. ISCAS, 4:759 — 762, 1996.

39

[63]

[68]

[69]

[70]

Y. Xia and A. E. A. Almaini. Genetic algorithm based state assignment
for power and area optimisation. IEKFE Proceedings Computers and Digital

Techniques, 149:128 — 133, 2002.
G. Venkataraman, S. M. Reddy, and . Pomeranz. GALLOP: genetic al-

gorithm based low power FSM synthesis by simultaneous partitioning and
state assignment. IEEFE 16th International Conference on VLSI Design,
pages 533 — 538, 2003.

O. H. Ibarra and S. Sahni. Polynomially Complete Fault Detection Prob-
lems. IEEE Transaction on Computers, C-24, No. 3:242-249, 1975.

J. P. Roth. Diagnosis of Automata Failure: A Calculus and a method.
IBM Journal of Research and Development, 10, No. 4:278-291, 1966.

J. P. Roth, W. G. Bouricius, and P. R. Schneider. Programmed Algo-
rithms to Compute Tests to Detect and Distinguish Between Failures in
Logic Cicuits. [EFE Transactions on Electronic Computers, EC-16, No.
10:567-580, 1967.

P. Goel and B. C. Rosales. PODEM-X: an automatic test generation
system for VLSI logic structures. Proceedings of the Design Automation
Conference, IEEE Computer Society Press, pages 260-268, 1981.

H. Faujiwara and T. Shimono. On the acceleration of test generation
algorithms. IEEE Transactions on Computers, C-32, No. 12:1137-1144,
1983.

T. Trischler. Incomplete scan pat with an automatic test gernaeration
methodology. Proceedings of the International Test Conference, pages
153 — 162, 1980.

A. Miczo. Digital Logic Testing and Simulation. Harper & Row Publish-
ers, 1986.

A. Lioy, P. L. Montessoro, and 5. Gai. A complexity analysis of sequential
ATPG. IEEFE International Symposium on Clircuits and Systems, pages
1946 — 1949, 1989.

T. E. Marchok, A. El-Maleh, W. Maly, and J. Rajski. A complexity
analysis of sequential ATPG. I[EEFE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15:1409 — 1423, 1996.

Thomas Edward Marchok. Modelling the difficulty of Automatic Test
Pattern Generation for Sequential Circuits. PhD thesis, Carnegie-Mellon
University, 1995.

40

[75]

[30]

[81]

[82]

[83]

[84]

[. Pomeranz and K. T. Cheng. State assignment using input/output
functions. 29th ACM/IEEE Design Automation Conference, 1992. Pro-
ceedings., pages H73 — 577, 1992.

K. T. Cheng and V. D. Agrawal. Design of sequential machines for efficient
test generation. ICCAD, pages 358 — 361, 1989.

C. R. Mohan and P. P. Chakrabarti. EARTH: combined state assignment
of pla-based fsm’s targeting area and testability. IEEF Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 727 —
731, 1996.

S. Chiusano, F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza Re-
orda. Guaranteeing testability in re-encoding for low power. Sizth Asian
Test Symposium, pages 30 — 35, 1997.

K. Shahookar and P. Mazumder. VLSI Cell Placement Techniques. ACM
Computing Surveys, 2(23):143-220, June 1991.

J. P. Cohoon and W. D. Paris. Genetic placement. IFEE Transactions
on Computer Aided Design, pages 956-964, 1987.

R. M. Kling. Optimization by Sitmulated Evolution and its Application to
Cell Placement. PhD thesis, University of Illinois, Urbana, 1990.

R. M. Kling and P. Banerjee. ESP: Placement by Simulated Evolution.
IEEE Transaction on Computer-Aided Design, 3(8):245-255, March 1989.

R. M. Kling and P. Banerjee. Empirical and Theoretical Studies of the
Simulated Evolution Method Applied to Standard Cell Placement. I[EFE
Transaction on Computer-Aided Design, 10(10):1303-1315, October 1991.

D. B. Fogel. An Introduction to Simulated Evolutionary Optimization.
IEEE Transaction on Neural Networks, 5(1):3-14, January 1994.

41

