

DEPARTMENT OF COMPUTER ENGINEERING

DHAHRAN 31261, SAUDI ARABIA

FINAL REPORT
SUBMITTED TO THE RESEARCH COMMITTEE

PROJECT No. FT2000/07

ENTITLED

A GEOMETRIC-PRIMITIVES-BASED COMPRESSION SCHEME

FOR TESTING SYSTEMS-ON-A-CHIP

Period

December, 2000 to June, 2002

Submitted By:
DR. Aiman H. El-Maleh (Principal Investigador)

March, 2005

 ii

CONTENTS

ABSTRACT.. V

ملخص البحث ... 6

1. INTRODUCTION.. 1

2. THE PROPOSED ENCODING ALGORITHM.. 4

2.1 TEST SET SORTING ... 4
2.2 TEST SET PARTITIONING.. 6
2.3 ENCODING PROCESS... 7

3. DECODING PROCESS ... 8

3.1 SOFTWARE DECODER... 9
3.2 HARDWARE DECODER ... 11

3.2.1 Data Path Implementation... 11
3.2.2 Implementation of the FSM .. 15

3.3 DECODER INTERFACE .. 18
3.3.1 Interface of the software decoder .. 18
3.3.2 Interface of the hardware decoder .. 19

4. FREQUENCY-DIRECTED RUN-LENGTH (FDR) CODE... 19

4.1 TEST DATA ANALYSIS ... 20

5. EXTENDED FDR (EFDR) CODE ... 22

6. HYBRID TEST COMPRESSION SCHEME... 23

6. EXPERIMENTAL RESULTS... 24

7. CONCLUSIONS ... 31

8. PROJECT OBJECTIVES VS. ACCOMPLISHMENTS .. 32

LIST OF PUBLICATIONS RESULTING FROM THIS WORK ... 34

ئج المشروعملخّص نتا .. 38

ACKNOWLEDGMENT... 38

REFERENCES.. 39

APPENDIX (PUPLISHED PAPERS) ... 41

 iii

List of Figures

FIGURE 1 TEST DATA TRANSFER BETWEEN THE TESTER AND THE CIRCUIT UNDER TEST. ... 1
FIGURE 2 TEST VECTORS ENCODING ALGORITHM... 5
FIGURE 3 TEST VECTORS DECODING ALGORITHM... 10
FIGURE 4 DATA PATH IMPLEMENTATION OF THE DECODER... 12
FIGURE 5 THE FSM OF THE DECODER... 16
FIGURE 6 INTERFACE OF THE SOFTWARE DECODER. .. 18
FIGURE 7 INTERFACE OF THE HARDWARE DECODER.. 19
FIGURE 8 DISTRIBUTION OF RUNS OF 0’S AND 1’S FOR CIRCUIT S15850. 21
FIGURE 9 DISTRIBUTION OF RUNS OF 0’S AND 1’S FOR CIRCUIT S35932D. 22
FIGURE 10 DISTRIBUTION OF RUNS OF 0’S AND 1’S FOR CIRCUIT S9234. 22

 iv

List of Tables

TABLE 1 THE USED PRIMITIVE GEOMETRIC SHAPES. .. 4
TABLE 2 WEIGHTS FOR THE 0-DISTANCE BETWEEN TWO TEST VECTORS. 6
TABLE 3 WEIGHTS FOR THE 1-DISTANCE BETWEEN TWO TEST VECTORS................................... 6
TABLE 4 WEIGHTS FOR THE 0/1-DISTANCE BETWEEN TWO TEST VECTORS................................ 6
TABLE 5 AN EXAMPLE OF TEST VECTOR SORTING. ... 7
TABLE 6 FDR CODE. ... 20
TABLE 7 ANALYSIS OF NUMBER OF RUNS IN TEST DATA... 21
TABLE 8 EXTENDED FDR (EFDR) CODE. ... 23
TABLE 9 GEOMETRIC-FDR (GFDR) & GEOMETRIC-EFDR (GEFDR) COMPRESSION BLOCK

ENCODING FORMAT. .. 24
TABLE 10 COMPRESSION RESULTS OF THE PROPOSED SCHEME FOR DIFFERENT SORTING

CRITERIA. .. 25
TABLE 11 COMPRESSION RESULTS OF THE PROPOSED SCHEME FOR VARIOUS BLOCK SIZES.

... 25
TABLE 12 COMPARISON WITH THE TECHNIQUES OF [17] (FDR) AND OF [16] (GOLOMB). 26
TABLE 13 COMPRESSION RESULTS OF THE PROPOSED SCHEME FOR DIFFERENT TEST SIZES.

... 26
TABLE 14 STATISTICS ON BLOCK ENCODING (8X8 BLOCKS). .. 27
TABLE 15 STATISTICS ON BLOCK ENCODING (16X16 BLOCKS). .. 27
TABLE 16 STATISTICS ON BLOCK ENCODING (32X32 BLOCKS). .. 27
TABLE 17 TIMING PERFORMANCE OF THE HARDWARE DECODER. ... 28
TABLE 18 COMPRESSION RESULTS OF FDR & EFDR.. 29
TABLE 19 COMPRESSION RESULTS OF GEOMETRIC, FDR, EFDR, GFDR, AND GEFDR

TECHIQUES. .. 30
TABLE 20 DETAILED ANALYSIS OF BLOCK ENCODINGS FOR GEOMETRIC, GFDR, AND

GEFDR COMPRESSION. .. 30

 v

Abstract

The increasing complexity of systems-on-a-chip with the accompanied increase in their test data size has
made the need for test data reduction imperative. In this work, we introduce a novel lossless compression
technique for testing systems-on-a-chip based on geometric shapes. The technique exploits reordering of
test vectors to minimize the number of shapes needed to encode the test data. After sorting the test vectors,
the test set is partitioned into blocks and each block is encoded separately. For testing a chip, the
compressed test data is transferred from the automatic test equipment to the chip where it gets
decompressed. Test data decompression is performed on chip and is performed either in hardware using a
decoding circuitry or in software using an embedded processor on chip. In both cases, test decompression
requires the availability of memory to store the decoded block. In this work, we have deomnstrated both
cases. The effectiveness of the technique in achieving high compression ratio is demonstrated on the largest
ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits. The proposed technique achieved
significantly higher compression ratio in comparison to other test compression techniques. Frequency-
directed run-length (FDR) code is a variable-to-variable code based on encoding runs of 0’s. In this work,
we demonstrate that higher test data compression can be achieved based on encoding both runs of 0’s and
1’s. We propose an extension to the FDR code (EFDR) and demonstrate by experimental results its
effectiveness in achieving higher compression ratio. In the Geometric-Primitives-Based Compression
technique, some of the blocks are encoded by storing the real test data because the encoded block size is
larger than the actual test data block size. Reducing the number of these blocks could result in higher test
data compression. In this work, we propose hybrid test data compression techniques that exploit the use of
either FDR or EFDR codes to reduce the number of blocks that are encoded by storing the real test data.
Based on experimental results, we demonstrate the effectiveness of the proposed hybrid compression
techniques in increasing the test data compression ratios over those obtained by the Geometric-Primitives-
Based compression technique.

Key Words

Testing, System-on-a-Chip, Test Compression, Run-length Coding

 vi

 ملخص البحث

ان زيادة التعقيد في الشرائح الحاوية لأنظمة متكاملة والذي يتطلب زيادة حجم بيانات الاختبارات الخاصة بهذه الشرائح يجعل الحاجة الى

بحث، نقدم طريقة جديدة وفعالة لضغط بيانات اختبارات الشرائح الحاوية لأنظمة متكاملة في هذا ال. تقليل حجم هذه البيانات أمرا مهما
هذه الطريقة تعتمد على اعادة ترتيب متجهات الاختبار بهدف . بدون فقد أي معلومات باستخدام الأشكال الهندسية الأساسية ثنائية الأبعاد

ترتيب المتجهات، تقسم البيانات الى قوالب متساوية الحجم ويطبق خوارزم الترميز على وبعد . التقليل من الأشكال اللازمة لترميز البيانات
يمكن . انات مرمزة من جهاز الاختبار الى داخل الشريحة حيث يتم فك رموز البياناتيولاختبار شريحة ما، تنقل الب. القوالب كلا على حدة

تا الحلتين، يحتاج فك الرموز الى كمية من الذاكرة المؤقتة لتخزين قطعة من وفي كل. فك رموز البيانات باستخدام برنامج أو جهاز خاص
نتائج التجارب على الدوائر القياسية . في هذا البحث، تم تنفيذ كلتا الطريقتين السابقتين لفك رموز البيانات. القوالب التي تم فك رموزها
(ISACS85 & ISCAS89)لقد تمكنت هذه الطريقة المقترحة .صول على نسبة ضغط عالية جدا أظهرت فعالية الطريقة المقترحة في الح

)FDR(طول الجري الموجّه بالتّكرار ان شفرة . ختبارلالضغط بيانات ا طرق أخرى مقارنة معمن الحصول على نتائج أفضل بكثير
تبار أعلى يمكن أن يُحَقَّق على أساس تشفير نبيّن أن ضغط بيانات اخ, في هذا العمل .٠ متغيّر لمتغيّر على أساس تشفير جري الشفرة

في .و نبيّن بالنّتائج التّجريبيّة فاعليّتها في تحقيق نسبة انضغاط أعلى) FDR)EFDRى شفرة نقترح امتدادًا إل .١ و ٠لاكلا الجريين
 تُشَفَّر بتخزين بيانات الاختبار الحقيقيّة لأنّ البالقوبعض من , ستخدام الأشكال الهندسية الأساسية ثنائية الأبعاد المبني على اتكنيك الضّغط

في .تقليل عدد هذه الكتل يمكن أن يتسبّب في ضغط بيانات اختبار أعلى .حجم الكتلة المشفّر أكبر من حجم كتلة بيانات الاختبار الفعليّ
 لتقليل عدد الكتل التي تُشَفَّر EFDR أو FDRراتشف نقترح تكنيكات ضغط بيانات اختبار هجين التي تستغلّ الاستعمال لإمّا, هذا العمل

نبيّن فاعليّة تكنيكات ضغط الهجين المقترحة في زيادة نسب ضغط بيانات , تجريبيّةالنتائج ال بناء على .بتخزين بيانات الاختبار الحقيقيّة
 .الأساسية ثنائية الأبعاد ستخدام الأشكال الهندسية المبني على االاختبار على هؤلاء المحصولين بتكنيك الضّغط

 1

1. Introduction

With today’s technology, it is possible to build complete systems containing millions of transistors on a

single chip. Systems-on-a-chip (SOC) are comprised of a collection of pre-designed and pre-verified cores

and user defined logic (UDL). As the complexity of systems-on-a-chip continues to increase, the difficulty

and cost of testing such chips is increasing rapidly [1], [2]. To test a certain chip, the entire set of test

vectors, for all the cores and components inside the chip, has to be stored in the tester memory. Then,

during testing, the test data must be transferred to the chip under test and test responses collected from the

chip to the tester as illustrated in Figure 1.

Figure 1 Test data transfer between the tester and the circuit under test.

One of the challenges in testing SOC is dealing with the large size of test data that must be stored in the

tester and transferred between the tester and the chip. The amount of time required to test a chip depends on

the size of test data that has to be transferred from the tester to the chip and the channel capacity.

The cost of automatic test equipment (ATE) increases significantly with the increase in their speed,

channel capacity, and memory. As testers have limited speed, channel bandwidth, and memory, the need for

test data reduction becomes imperative. To achieve such reduction, several compaction and lossless

compression schemes were proposed in the literature.

The objective of test set compaction is to generate the minimum number of test vectors that achieve the

desired fault coverage. There are two main types of compaction, static compaction and dynamic compaction.

In static compaction, the number of test vectors is reduced after they have been generated. Examples of

System-on-a-Chip

Core1

Core2

Core3

UDL

Channel
Bandwidth

Tester

Test Data Storage
00011111010
10001000011
10000011111

 2

static compaction algorithms include reverse order fault simulation [3], forced pair merging [4], N_by_M

[5], and redundant vector elimination (RVE) [6]. In dynamic compaction, the number of test vectors is

minimized during the automatic test pattern generation (ATPG) process. Examples of dynamic compaction

algorithms include COMPACTEST [7], and bottleneck removal [8].

In test data compression, the objective is to reduce the number of bits needed to represent the test data.

For test data compression, it is essential that the compression is lossless. Run length coding, Huffman codes,

Lempel-Ziv algorithms, and arithmetic codes are examples of lossless compression [9].

Several test data compression/decompression techniques were proposed in the literature. These

techniques can be classified into two categories; one is based on BIST and Pseudo-Random Generators

(PRG) and the other is based on deterministic test compression.

Examples of BIST-based compression techniques are test width compression [10], variable length

reseeding [11], and Design For High Test Compression (DFHTC) [12].

Deterministic test compression techniques take advantage of the high correlation between test vectors.

One of these techniques is proposed in [13] and uses Burrows-wheeler (BW) transformation and a modified

version of run-length coding to encode the test data. This technique has been improved in [14] by applying

the GZIP compression scheme to strings that are not effectively compressed by run-length coding. Another

technique proposed in [15] uses what is called variable-to-block run-length coding. In this technique, a

codeword is used to encode a block of data based on the number of zeros followed by a one in that block.

This technique is used for compressing fully-specified test data that feeds a cyclical scan chain. A cyclical

scan chain is used to decompress this data and transfer it to the “test scan chain”. Golomb code is a variable-

to-variable run-length code that is used in [16] to enhance the scheme described above. It divides the runs

into groups, each is of size m. The number of groups is determined by the length of the longest run, and the

group size m is dependent on the distribution of test data. Another enhancement to the works done in [15]

and [16] was proposed in [17]. It uses frequency-directed run-length (FDR) codes, which is another variable-

to-variable coding technique. FDR code outperforms Golomb code based on the observation that the

frequency of runs decreases with the increase in their lengths. Hence, assigning smaller codewords to runs

with small lengths and larger codewords to those with larger lengths will decrease the overall cost. In [18],

statistical coding is used for encoding deterministic test data. The technique uses a modified version of

Huffman coding as to minimize the bits needed for codewords. Although this technique has less

compression ratio than Huffman coding, the hardware implementation of the decoder is simpler. Another

technique was proposed in [19] which performs decompression of test data based on an embedded

processor. The technique is based on storing the differing bits between two test vectors. It divides each test

vector into blocks and stores those blocks that are different from the preceding vector. The use of variable

length input Huffman codes for SOC test data compression has been proposed in [20]. Techniques for

 3

resuing scan chains from other cores in a SOC to increase the test data bandwidth have been described in

[21], and automatic test patern generation techniques for producing test cubes that are suitable for encoding

using the above technique have been described in [22]. A fault-simulation-based technique to reduce the

entropy of the test vector set by pattern transformation is described in [23]. Such transformations increase

the amount of compression that can be achieved on the transformed test set using statistical coding. ATPG

algorithms for producing test vectors that can more effectively be compressed using statistical codes have

been described in [24]. Several dictionary-based compression compression methods have recently been

proposed to reduce SOC test data volume. A dictionary with fixed-length indices is used to generate all the

distinct output vectors in [25]. A test data compression technique based on LZ77 and LZW methods are

proposed in [26] and [27], respectively. The former uses a dynamic dictionary and the latter uses a memory

in the on-chip decoder. A compression technique using dictionary with fixed-length indices is proposed in

[28]. Commercial test data compression tools that can provide high compression for industrial designs have

been recently proposed in [29-31].

In this work, we introduce a novel compression scheme for deterministic testing of SOCs based on

geometric shapes. This scheme is designed based on test cubes to maximize the compression ratio. Test

vector decompression is performed on chip and is implemented either in hardware or software. For

hardware decompression option, a decoding circuitry is placed on the chip to perform the decompression

algorithm. However, for software decompression option, an embedded core is used to execute the

decompression algorithm and decompress the test data, which is then applied to the circuit under test. The

decompression algorithm can be stored in a ROM on the chip.

The techniques in [15-17] are all based on encoding only runs of 0’s. This was motivated based on the idea

that encoding the difference vectors instead of the actual test vectors may reduce the number of 1’s in the

encoded data. However, it was demonstrated in [17] that, in general, better test data compression results are

achieved, based on both FDR and Golomb codes, by encoding the actual test vectors. Based on test data

analysis, we have observed that the frequency of runs of 1’s is as significant as runs of 0’s, for many of the

circuits. This suggests that encoding both runs of 0’s and 1’s could result in higher test data compression.

In this work, we propose an extension to the FDR code to encode the test data based on encoding both types

of runs. Furthermore, we propose hybrid test data compression techniques that exploit the use of either FDR

or EFDR codes to reduce the number of blocks that are not encoded by the geometric shapes and encoded by

storing the real test data. We demonstrate based on experimental results the effectiveness of the proposed

hybrid compression technique in increasing the test data compression ratios over those obtained by the

Geometric-Primitives-Based compression technique.

 4

2. The Proposed Encoding Algorithm

The proposed encoding algorithm is based on encoding the 0’s or the 1’s in a test set by geometric shapes.

In this work, we limited those primitive shapes to the basic four, namely: point, line, triangle, and rectangle

as shown in Table 1. These shapes are the most frequently encountered shapes in any test set. For

rectangles, a point and two distances are needed to encode the shape which costs 4*log2 N, where N is the

block dimension. However, lines and triangles can be represented by a point and a distance d and this

reduces the number of bits needed to encode them by (log2 N)-2 in comparison to encoding them by two

Table 1 The used primitive geometric shapes.

points. Two bits are used to determine the type of line or the type of triangle encoded.

Figure 2 shows the algorithm of the encoder, which consists of the following main steps:

2.1 Test Set Sorting

Sorting the vectors in a test set is crucial and has a significant impact on the compression ratio. In this

step, we aim at generating clusters of either 0’s or 1’s in such a way that it may partially or totally be fitted

in one or more of the geometric shapes shown in Table 1. Several sorting scenarios have been considered

and investigated. In this work, we used a simple correlation-based sorting technique. The sorting may be

Code=1000 Code=1001 Code=1010 Code=1011

Code=0100 Code=0101 Code=0110 Code=0111

Code=00

d
(x1,y1)

d
dd

d
(x1,y1)

d

(x1,y1)
d

(x1,y1)

d

(x1,y1)

(x1,y1)
d

d

Code=11

(x1,y1)(x1,y1)

(x1,y1)

(x1,y1)

Type 1

Type 2

Type 3

Type 4

Point
X

X

X

Lines

Triangles

Rectangle

X

X

X

 5

Figure 2 Test vectors encoding algorithm.

with respect to 0’s (0-sorting), to 1’s (1-sorting) or to both 0’s and 1’s (0/1-sorting). The technique is based

on finding the distance D between two vectors A and B that maximizes the clusters of 0’s and 1’s.

The distance D may be computed with respect to 0’s (0-distance), to 1’s (1-distance) or to 0’s and 1’s

(0/1-distance) as follows:

 D (A, B) = ∑
−

=
+++−

1k

0i
)1iB,i W(A)iB,i W(A)1iB,iW(A

where k is the test vector length and W(Ai ,Bi) is the weight between bits Ai and Bi. Table 2, Table

3 and Table 4 specify the weights used in computing the 0-distance, the 1-distance, and the 0/1-

distance between two vectors, respectively. Note that for i = 0, W(Ai , Bi-1) = 0 and for i = k-1,

W(Ai , Bi+1) = 0.

The assignment of a 0.25 weight for an ‘x’ to each of its immediate neighbors be it an ‘x’ or the sorted bit

(‘0’ for 0-sorting, ‘1’ for 1-sorting, and ‘0’ and ‘1’ for 0/1-sorting) is chosen due to the following reasons.

First, this weight may help in completing or generating additional geometric shapes that can lead to a better

Encoder (N)
 Sort_Test_Set ();
 Partition_Test_Set (N);
 For i = 1 to # of segments
 For j = 1 to # of blocks in i
 Extract_Shapes (1, j);
 α1 = Encode_Shapes ();
 Extract_Shapes (0, j);
 α0 = Encode_Shapes ();
 B = # of bits in j + 2;
 E = min (α0, α1,B);
 Store_Encoded_Bits ();
 E_total += E;
End Encoder;

Extract_Shapes(b, j)
 For each bit x in block j {
 If x = b Then {
 Find the largest line of each type started at x
 Find the largest triangle of each type such that x is the vertix of the right angle
 Find the largest rectangle such tha x is its up-left corner
 }
 }
 Solve a covering problem to find the best group of shapes covering all bits b in block j.
End Extract_Shapes;

 6

solution. Second, this can help in generating blocks filled by ‘x’s which can be minimally encoded.

Different weights have been experimented with, and a weight of 0.25 has been found to produce better

results in most of the cases.

Table 2 Weights for the 0-distance between two test vectors.
 0 1 x

0 1.0 0.0 0.25
1 0.0 0.0 0.0
x 0.25 0.0 0.25

Table 3 Weights for the 1-distance between two test vectors.

 0 1 x
0 0.0 0.0 0.0
1 0.0 1.0 0.25
x 0.0 0.25 0.25

Table 4 Weights for the 0/1-distance between two test vectors.

 0 1 x
0 1.0 0.0 0.25
1 0.0 1.0 0.25
x 0.25 0.25 0.25

In Table 5, we show a simple example to illustrate the impact of sorting on test vector compression. As

can be seen, sorting the vectors based on the 0-distance requires the encoding of two triangles to encode the

0’s. However, sorting the vectors based on the 1-distance requires the encoding of one triangle and two lines

to encode the 1’s. Thus, for this example sorting based on the 0-distance results in higher compression.

The sorting algorithm requires O(VT2) time; where T is the number of vectors in the test set and V is the

vector length.

2.2 Test Set Partitioning

A set of sorted test vectors, M, is represented in a matrix form, RxC, where R is the number of test

vectors and C is the length of each test vector. The test set is segmented into LxK blocks each of which is

NxN bits, where L is equal to  NR / and K is equal to  NC / . A segment consists of K blocks. In other

words, the test set is segmented into L segments each contains K blocks. For test vectors whose columns

and/or rows are not divisible by the predetermined block dimension N, a partial block will be produced at

the right end columns and/or the bottom rows of the test data. Since the size of such partial blocks can be

deduced based on the number of vectors, the vector length, and the block dimension, the number of bits used

 7

to encode the coordinates of the geometric shapes can be less than log2 N. The decoder recognizes those

special cases and decodes them properly. The partitioning step requires constant time; i.e. it runs in O(1)

time.

Table 5 An example of test vector sorting.

v1 0 0 1 X 1 0 X X
v2 0 X 1 1 0 0 0 1Original

Vectors
v3 1 1 X 1 1 X 0 1
v2 0 X 1 1 0 0 0 1
v1 0 0 1 X 1 0 X X

Sorted
Vectors
(0-dist.) v3 1 1 X 1 1 X 0 1

v3 1 1 X 1 1 X 0 1
v2 0 X 1 1 0 0 0 1

Sorted
Vectors
(1-dist.) v1 0 0 1 X 1 0 X X

2.3 Encoding process

As mentioned earlier, the encoding process will be applied on each block independently. The procedure

Extract_Shapes(b) will find the best group of shapes that cover the bits that are equal to b as shown in the

algorithm. Encode_Shapes determines the number of bits, α, needed to encode this group of shapes. There

are two cases that may occur:

(a) The block contains only 0’s and x’s or only 1’s and x’s. In this case, the block can be encoded as a

rectangle. However, instead of this, it is encoded as “01” (indicating that the block can be filled by 0’s or

1’s) followed by the bit that fills the block. Hence, the number of bits to encode the block α = 3. We call

such blocks filled blocks.

(b) The block needs to be encoded by a number of shapes. We call such a block encoded block. In this

case, we need the following:

• 2 bits to indicate the existence of shapes and the type of bit encoded. If the encoded bit is 0, then the

code is 10, otherwise it is 11.

• P = (2*Log2 N – 3) bits to encode the number of shapes, S. If the number of shapes exceeds 2P, then

the number of bits needed to encode the shapes is certainly greater than the total number of bits in the

block. In this case, the block is not encoded and the real data is stored. Therefore, selecting N = 4 or

less is not effective in our technique because the maximum possible number of shapes in this case = 2P

= 22*2-3 = 21 = 2 shapes. Hence, we have experimented with 8x8, 16x16, and 32x32 block sizes.

• ∑
=

S

i
iL

1
bits; where Li is computed as follows

- If shape i is a point, Li = 2 + 2*log2 N (shape type + 2 coordinates).

 8

- If shape i is a line or a triangle, Li = 2 + 2 + 3*log2 N (shape type + type of line or triangle + 2

coordinates + distance).

- If shape i is a rectangle, Li = 2 + 4*log2 N (shape type + 2 coordinates + 2 distances)

 Therefore, α = 2 + P + ∑
=

S

i
iL

1

For partial blocks, the encoder will output the needed bits and the decoder will take care of that. If α0

(number of bits needed to encode shapes with 0) and α1 (number of bits needed to encode shapes with 1) are

greater than B which equals (N*N+2), then it is better not to encode the block. Instead, the real data is stored

after a 2-bit code (00). We call such blocks real-data blocks. The procedure Store_Encoded_Bits will

decide which case is the best (encoding 0’s, encoding 1’s, or storing the real data) based on E, which is the

minimum of α0, α1, and B.

There are N2 bits in a block; where N is the dimension of the block. Extracting each type of shape

covering a bit requires O(N2) time at most (for example, the rectangle). Since we have constant number of

shapes, the time complexity of extracting all shapes for each block is O(N4). Then, a covering step is

performed to select the best group of shapes. The maximum number of shapes for any block (before

selecting) is 10*N2; where 10 is the number of shape types. Therefore, this step requires O(N2). Hence, the

encoding algorithm for each block requires O(N4) time. There are L*K blocks; where L =






N
T and K =







N
V . Therefore, the total time complexity of the encoding algorithm is O (LKN4) = O (TVN2). Since the

maximum value of N in our algorithm is 32, then N2 = 1024 at most, which means that N2 is constant.

Hence, the time complexity of the algorithm is O(TV), which means that the algorithm runs in linear time

with respect to the size of the test set. The (N2) term gives an indication that the time needed by the encoding

algorithm increases with the increase in the block size.

3. Decoding Process

One of the main issues when designing a compression scheme for testing data is the implementation of

the decompressor (or the decoder). The decoder of any compression scheme must be simple enough to

achieve two requirements, minimizing the time needed for decompression and minimizing hardware

overhead. Decoders of the compression schemes described in the literature can be classified into three main

categories:

1. The scan chains available in the SOC are exploited to implement the decoder with possibly some

additional logic.

 9

2. An FSM is used to decompress the test data. Sometimes, additional hardware is needed.

3. If there exists an embedded processor in the SOC, a microcode is loaded to this processor and used

to decode the compressed data.

In our work, we have implemented the decoder using both the second category, called the hardware

decoder, and the third category, called the software decoder.

3.1 Software Decoder

Most of the SOC’s have embedded processors and some amount of memory inside the chip. In this case, the

decoder can be implemented as a microcode executed by the processor to output the original test vectors. In

our scheme, some amount of temporary memory is needed to store the blocks one after the other until a

whole segment is decoded. Then, the test vectors of that segment are applied to the scan chains in order.

Figure 3 shows the pseudo-code of the decoding algorithm. It first reads the arguments given by the

encoder and computes the parameters needed for the decoding process. These parameters include the

number of segments, the number of blocks in a segment and the dimensions of the partial blocks. In order to

reconstruct the vectors, each segment has to be stored before sending its vectors to the circuit under test. For

each segment, its blocks are decoded one at a time. The first two bits indicate the status of the block as

follows:

• 00: the block is not encoded and the following N*N bits are the real test data.

• 01: fill the whole block with 0’s or 1’s depending on the following bit.

• 10: There are shapes that are filled with 0’s.

• 11: There are shapes that are filled with 1’s.

For those blocks that have shapes, the procedure Decode_Shapes is responsible for decoding these shapes. It

reads the number of shapes in the block and then for each shape it reads its type and based on this it reads its

parameters and fills it accordingly.

Based on the arguments read first, the decoder can determine the number of bits needed for each variable

(e.g. the coordinates and the distances). These are used for the partial blocks when only one block of each

segment remains and when the last segment is being decoded.

After all the blocks in a segment have been decoded, the segment is output to the circuit under test,

vector by vector.

Similar to the complexity analysis for the encoding algorithm, we can conclude that the time required by

the software decoder is O(VT). This means that it runs in linear time with respect to the test set size. It

should be noted here that this algorithm is much simpler than the encoding algorithm because it does not

 10

Figure 3 Test vectors decoding algorithm.

require extracting shapes; i.e. the (N2) term found in the analysis of the encoding algorithm does not exist

here.

Decoder ()
 Read (N, # of segments (L), # of blocks per segment (K),
row remainder (R), column remainder (C));
 For i = 1 to # of segments {
 For j = 1 to # of blocks in i {
 b1b0 = Read_Bits (2);
 Case b1b0
 00 : Read_Bits (N* N);
 01 : b_type = Read_Bits (1);
 Fill_Block (j, b_type);
 10 : Decode_Shapes (0);
 11 : Decode_Shapes (1);
 End Case;
 }
 Output_Segment ();
 }
End Decoder;

Decode_Shapes (b)
 Num_Shapes = Read_Bits (2log2 N -3);
 For j = 1 to Num_Shapes
 Shape_type = Read_Bits (2);
 Case Shape_type
 00 : c = Get_Coordinate ();
 Fill_Point (b,c);
 01 : t = Get_Type ();

 c = Get_Coordinate ();
 d = Get_Distance ();
 Fill_Line(b,t,c,d);
 10 : t = Get_Type ();
 c = Get_Coordinate ();
 d = Get_Distance ();
 Fill_Triangle(b, t, c,d);
 11 : c = Get_Coordinate ();

 d1 = Get_Distance ();
 d2 = Get_Distance ();

 Fill_Rectangle (b,c1,d1,d2);
End Decode_Shapes;

 11

3.2 Hardware Decoder

If there exists no embedded processor on chip, some additional hardware is needed for decoding the test

data. The hardware decoder is implemented using an FSM controlling the data path which consists of some

counters, registers and some basic gates. The hardware decoder has been designed and then modeled and

verified using VHDL [32] .

3.2.1 Data Path Implementation

The data path is shown in Figure 4 and consists mainly of some registers and counters. The registers are:

• A shift register I is used to hold the input data before loading it to the corresponding register or counter.

So, the size of this register is the maximum size of all registers and counters, which is 12 bits. A shift-left

signal (SHL I) is used to shift a bit from the input data to the LSB of I and a clear signal (CLR I) is used

to reset the register.

• Another shift register (code) is used to save the type of the shape that is currently decoded (point, line,

…etc) and the type of that shape if it is line or triangle. The size of this register is 4 bits. Only one signal

is needed to control this register which is (SHL code) that shifts a bit from the input data to the LSB of

code.

• A 1-bit register (B) to save the bit with which the current block is filled. This FF can be loaded from

either the input data or from I0. So, a MUX is needed to select between these two inputs. The signals

needed here are Load B and the select signal.

• A 2-bit register (N) is used to save the block dimension (8, 16 or 32). We need to get the actual size N

from two bits given by the encoder as follows:

- 00 N = 8 = 00111 (we start counting from 0).

- 01 N = 16 = 01111.

- 11 N = 32 = 11111.

Let the two bits given by the encoder be I1 and I0 and the needed 5 bits be N4N3N2N1N0. Then, we find

that N4 = I1, N3 = I0, and N2 = N1 = N0 = 1. The last three bits can be stored as wires connected to VDD.

Therefore, the only hardware added here is a two-bit register connected directly to the least significant

two bits of the input shift register I as shown in Figure 4. For this register, only a Load signal is required.

• Another two 5-bit registers are used to save the row remainder R and the column remainder C. These two

registers will be loaded directly from the input register I. For these two registers, only a Load signal is

required.

 12

Figure 4 Data path implementation of the decoder.

• In order to know how many bits are to be read for each dimension (for the coordinates and the distances),

log2 of the current dimension (N, R, or C) is required. In addition, we need to know how many bits are

RCNT

I0I1I4 I2I3

Load
DecCLR
Inc

CCNT

Load
DecCLR
Inc

5

5

Temp
5

01

I0 --> I4

Temp / I

Load

Dec

S=0

I0
I1I6

(0 --> 6)S

clkLoad

SHL

Input

code
SHL

I

I0I1I2I3I4I5I6I7I8I9I10I11
D Q

Q'
I0

0I/Input

B0

1

CLR

I0I1I11

Load

Dec

L0L1L2L3L4L5L6L7L8L9L10L11

L (1 --> 11)

L=0 L=1

I0I1I9

Load
Inc

K

CLR

BCNT

BCNT=K

BCNT=K-1

1010

Decrementer
10

N R

0 1L=1

0 1

I0 --> I4

Load

Rdist
Dec

Rdist=0

(0 --> 4)

dist/fullblock

5 5

5

5

5

5

NC

01 BCNT=K-1

01

I0 --> I4

Load

Cdist
Dec

Cdist=0

(0 --> 4)

dist/fullblock

5 5

5

01

Rdist

5

5 5

5

5

Rdist / I

Load

R

I0I1I4 I2I3

LR

Load

C

I0I1I4 I2I3

LC TempSel

Load

Temp
Dec

temp=0

5

2

10
3

101
4

1100
4

1010
3

P3

3

LN|LR
3

LN|LC

0

3

Minimum
5

Cdist

1

01234567

)LC|LN| ()LR|LN(

3

Load

I0I1
1

N

PLN

1

LN LR

0 1L=1

LNLC

01 BCNT=K-1

LN|LCLN|LR

01

Minimum

3 3 3 3

 13

needed to store the number of shapes. This number (P) depends on the dimension of the block N such

that P = 2*log2 N – 3. All these can be obtained from the N, R and C registers using some combinational

logic. We illustrate this as follows:

 First, we want to get log2 N (LN) as follows:

- N = 00111 LN = 011 (log2 8 = 3).

- N = 01111 LN = 100 (log2 16 = 4).

- N = 11111 LN = 101 (log2 32 = 5).

We can notice that LN2 = N3, LN1 = 3N and LN0 = N4 XNOR N3.

We can get the value of P from N as follows:

- 00111 (N = 8) 011 (2*log2 8 –3 = 3).

- 01111 (N = 16) 101 (2*log2 16 – 3 = 5).

- 11111 (N = 32) 111 (2*log2 32 – 3 =7).

Notice that P2 = N3, P1 = N4 XNOR N3 and P0 = 1.

For the partial blocks, the dimensions range between 1 and 31. We need to get log2 of these dimensions to

know how many bits need to be read for the coordinates and distances in these blocks. Let the input (the

dimension given by the encoder) be A4A3A2A1A0 and the output (the bits needed) be B2B1B0, then the

following truth table is obtained:

A4 A3 A2 A1 A0 B2B1B0

1 x x x x 1 0 1 5 bits needed for 16 to 31

0 1 x x x 1 0 0 4 bits needed for 8 to 15

0 0 1 x x 0 1 1 3 bits needed for 4 to 7

0 0 0 1 x 0 1 0 2 bits needed for 2 and 3

0 0 0 0 1 0 0 1 1 bit needed for 1

Using K-map technique, we get the following equations for B2, B1, and B0:

- B2 = A4 + A3.

- B1 = 34 A . A . (A2 + A1).

 - B0 = A4 + 3A . (A2 + 1A).

• The last register needed in the data path is K which holds the number of blocks in a segment. In our

implementation, we assume that the maximum vector length is 8K. Therefore, the maximum number of

blocks in a segment is 1K blocks (when the dimension of a block = 8) and hence K is a 10-bit register.

Now, let us discuss the counters used in the data path:

 14

(1) The first counter needed is L which is initially loaded with the number of segments in the test set. We

assume that the maximum number of vectors in a test set is 32K vectors. Therefore, the maximum

number of segments = 32K / 8 = 4K. So, the size of L = 12 bits. Whenever a segment is decoded, it is

sent to the scan chains and L is decremented. When L = 0, the process is terminated. This condition can

be checked by NORing all bits of L. Another condition that has to be checked is when L = 1 whereby

the last segment is to be decoded. This can be checked also by NORing all bits of L with inverting L0.

The signals that we need here are Load and Dec (Decrement).

(2) Another counter (BCNT) is required to keep track of the block number within the current segment. The

size of this counter equals the size of register K which is 10 bits. This counter must start counting from

0 because it is used for addressing the memory (as will be explained shortly). Therefore, we did not use

this counter as in the case of the number of segments L. Instead, we added some comparators to check

for the last block and to check if all blocks in a segment have been decoded. For each segment, BCNT is

cleared first and then incremented for every block decoded until it equals K, which means that all

blocks in the current segment have been decoded. This condition can be checked by XNORing every bit

of BCNT with the corresponding bit of K then ANDing the results. To know when the last block of the

current segment is to be decoded, BCNT is compared with K-1, which is obtained by decrementing the

content of K and XNORing the result with BCNT. The signals needed to control BCNT are CLR (Clear)

and Inc (Increment).

(3) In each block, there may be some shapes encoded. To know how many shapes are in the block, a

counter S is used. The size of this counter = 7 bits (2*log2 32 – 3) which is the maximum possible for all

block sizes. For each block that has shapes, S is loaded with the number of shapes. Whenever a shape is

decoded, S is decremented until it reaches 0. Also here we need to check for 0 (similar to L). The

signals needed are Load and Dec.

(4) Four 5-bit counters are used for decoding shapes and writing them to memory. These are RCNT,

CCNT, Rdist and Cdist. RCNT and CCNT are used to address the bit to be written within the current

block in the form (row, column), respectively. They are loaded with the coordinate of a shape and then

incremented or decremented according to the direction of writing. Rdist and Cdist are used for the

length of writing in each direction. They are loaded with the distance and then decremented until they

reach 0. Hence, a check for 0 is needed for each. The loading can be from N, R, or I for Rdist and from

N, C, I or Rdist for Cdist. This depends on the block number, on whether a full block is to be filled or

only a portion of it and on the type of the shape (line, triangle, or rectangle). For RCNT and CCNT, the

signals needed are Load, CLR, Inc and Dec. For Rdist and Cdist, the signals are Load, Dec and the

select signals.

 15

(5) The last counter is a temporary counter (temp) that is used mainly to decide the number of bits to be

read from input data. Since there are many cases, the value that is loaded to temp must be selected

depending on the parameter to be read. The values LN|LR, LN|LC, and Minimum are used to select

between full blocks and partial blocks. Note that Minimum is used to determine the minimum number

of bits needed to encode a coordinate or a distance. This is used in the case of a partial block. Each

value is selected in a certain case as shown in Figure 5. For reusing resources, temp is used as a

temporary register in the case of decoding a triangle. In this case, it is loaded from Cdist. In all cases,

we need to know when temp = 0 to stop reading data. So, a check for 0 is required. The signals required

to control temp are Load, Dec and the select signals.

For hardware implementation as well as for software implementation, some amount of memory is

required to store a segment before applying its vectors to the CUT. The size of this memory is equal to the

size of the scan chain times the number of vectors per segment, which is in our case equal to 32 as

maximum. For the hardware decoder to be simple and fast, we need to address this memory bit-wise. This

can be achieved by dividing the address into three fields:

1) Block #: this specifies the block to be decoded among the blocks of the current segment. The size of

this field =  Klog 2 ; where K = the number of blocks per segment.

2) Row #: this indicates the row of the current block. The size of this field = log2N = 5 as maximum

(when N=32).

3) Column #: this indicates the column of the current block. The size of this field = log2 N = 5 as

maximum (when N=32).

The three counters BCNT, RCNT, and CCNT are used to decide the address of the bit to be written.

As we mentioned before, the maximum vector length is assumed to be 8K. Therefore, the maximum

memory size required = 32*8K = 256 Kbit. This needs an address of 18 bits. Since we have 5+5+10 = 20

bits in the three counters, we need to select the bits to represent the address in each case (N=8, 16, or 32)

using multiplexers. The outputs of the multiplexers are connected directly to the memory address bus.

3.2.2 Implementation of the FSM

The FSM controlling the decoding process is shown in Figure 5. It consists of 62 states, which means that

6 FFs plus some combinational logic are enough to implement it. This FSM is designed to decode the whole

test set, not only one segment or one block. The FSM can be summarized in the following:

• The decoding process is activated at state S0 when a starting signal start = 1.

 16

Figure 5 The FSM of the decoder.

Load B from I0
S21

Write bit from B'
S22

Dec Cdist
Inc CCNT

0Cdist ≠

Dec Rdist
Inc RCNT
Load Cdist
CLR CCNT

0Rdist&
0Cdist
≠

=

S23 S24

Rdist=0
& Cdist=0

Temp = P
Clr I

S25

SHL I
Dec Temp

S26

Temp=0

Load S
S27

SHL code
S28

SHL code
Clr I

Temp = LN|LR

S29

code=(00 || 11)
SHL I

Dec Temp
S30

Temp=0

Load RCNT
Clr I

Temp = LN|LC

S31

SHL I
Dec Temp

S32

Temp=0
Load CCNT from I
Load Cdist from I

Clr I
Temp = LN|LR

S33

code=(01 || 10)

Write bit

code=00

Dec S

code=00 ||
(code=11
&Rdist=0
&Cdist=0)

S34

S35

S=0

code=11

SHL I
Dec Temp

S36

Temp=0

Load Rdist
Clr I

Temp = LN|LC

SHL I
Dec Temp

S38

Temp=0

S37

Load Cdist
Temp = Cdist

Dec Cdist
Inc CCNT

Dec Rdist
Inc RCNT
Load Cdist

Load CCNT from Temp

code=11&
C

dist≠0

code=11&
C

dist=0&
R

dist≠0

S39

S40

S41

Clr I
Load CCNT from I
Load Cdist from I

Temp = LN|LR

Clr I
Load CCNT from I
Load Cdist from I
Temp = Minimum

Clr I
Load CCNT from I
Load Cdist from I

Temp = LN|LC

SHL I
Dec Temp

S50

Load Rdist
Load Cdist

Temp = Cdist

S51

Write bit
S52

(c
od

e=
01

xx
&

R
di

st
=0

) |
|

(c
od

e=
10

xx
&

R
di

st
=0

&
C

di
st

=0
)

0Temp≠

0Temp≠

0Temp≠

0Temp≠

0Temp≠

0Temp≠

start start=0

Temp=10

S0

S1 start=1

SHL I
Dec Temp

S2

Temp=0

Load N
Temp = 1100

S3

SHL I
Dec Temp

S4

Temp=0

Load L
Temp = 1010

S5

SHL I
Dec Temp

S6

Temp=0

0Temp≠

Load K
Temp = 101

S7

SHL I
Dec Temp

S8

Temp=0

Load R
Temp = 101

S9

SHL I
Dec Temp

S10

Temp=0

Load C
S11

CLR BCNT
S12

Load Cdist, Rdist
CLR CCNT, RCNT

SHL I

S13

SHL I
S14

Load B from
input

S15 I1=0

I1=1

Write bit
S16

Dec Cdist
Inc CCNT

0Cdist ≠

I0=1
Dec Rdist
Inc RCNT
Load Cdist
CLR CCNT

0Rdist&
0Cdist
≠

=

I0=1

I0=0I0=0

S17 S18

Rdist=0
& Cdist=0

Inc BCNT

BCNT=K /
Dec L

Send segment

KBCNT ≠

0L&1ACK ≠=

S19

S20

ACK=1&L= 0

ACK=0

0S ≠

0Temp≠

0Temp≠

0Temp≠

0Temp≠

SHL code
S42

SHL code
S43

SHL I
Dec Temp

S44

Load RCNT
Temp = LN|LC

S45

SHL I
Dec Temp

S46

Temp=0

Temp=0&
code=0101

Temp=0&
code=0100

Temp=0&
code=(10xx ||
0110 || 0111)

S47 S48 S49

0Temp≠

0Temp≠

Dec Rdist
Inc RCNT

co
de

=0
10

0&
R

di
st

≠0

Dec Rdist
Inc CCNT

Dec Rdist
Inc RCNT
Inc CCNT

Dec Rdist
Dec RCNT
Inc CCNT

Dec Rdist
Inc RCNT

Load CCNT from Temp Dec Cdist
Inc CCNT

co
de

=0
10

1&
R

di
st

≠0

co
de

=0
11

0&
R

di
st

≠0

co
de

=0
11

1&
R

di
st

≠0

co
de

=(
10

00
 ||

 1
01

1)
&

C
di

st
=0

&
R

di
st

≠
0

co
de

=(
10

01
 ||

 1
01

0)
&

C
di

st
=0

&
R

di
st

≠0

co
de

=1
01

x&
C

di
st

≠0
&

R
di

st
≠0

co
de

=1
00

x&
C

di
st

≠0
&

R
di

st
≠0

Load Cdist from Rdist

S53 S54 S55 S56 S57 S58

S59 S60

S61

Dec Cdist
Dec CCNT

Dec Rdist
Dec RCNT

Load CCNT from Temp

 17

• From S1 to S11, the five parameters (block dimension (N), # of segments (L), # of blocks per segment

(K), row remainder (R), and column remainder (C)) are read and loaded to the appropriate counters and

registers. Then, the counters used for addressing the memory are initialized in states S12 and S13 and this is

done for each block.

• In S14, there are two possibilities:

(i) There are no shapes to be decoded: in this case the whole block will be filled with either 1 bit (0

or 1) or filled with real data. In the former case, S15 is visited only once to initialize the bit with

which the block is filled and then the process goes through states S16, S17 and S18. In the latter

case, S15 is visited for each bit read.

(ii) There are shapes to be decoded: in this case the process goes to state S21.

• States S21 to S24 initialize the block with the complement of the bit with which all shapes are encoded.

This is important to make sure that all bits in the block have the correct values. When the shapes are

decoded, the corresponding bits will be overwritten.

• The number of shapes is read in states S25 to S27.

For each shape, S28 is visited to read the first bit in that shape.

• The type of the shape is determined in S29. If it is a point or a rectangle, the process continues in S30.

Otherwise, it goes to S42.

• States S30 to S33 read the coordinate of the point and the rectangle shapes. If the shape is a point, it is

written in S34. If, on the other hand, it is a rectangle, the process goes to states S36 to S39 to initialize the

counters and then goes through S34, S40 and S41 until the whole rectangle is written.

• If the shape is a line or a triangle, the process goes through states S42 to S51 to initialize the counters and

determine the type of the shape. Then according to the type of the shape and the status of the counters,

the process goes to one of the states S53 to S60. Then, the process repeats until the shape is written.

• After every shape is decoded, the number of shapes is decremented in S35. If there are other shapes, the

process goes back to S28. Otherwise, it goes to S19 in which the number of blocks (BCNT) is

incremented. If there are still other blocks, the process goes to S13; otherwise it goes to S20 if all blocks

of the current segment have been decoded.

• In S20, the segment just decoded is sent to the scan chains and the process waits for an acknowledgment

to proceed. If there are other segments, the process goes to S12. Otherwise, the process is terminated and

goes back to the initial state. This is the only case where a mealy output is required. Therefore, we can

say that our FSM is almost Moore.

 18

3.3 Decoder Interface

In this section, we outline the interface between the decoder and the tester and between the decoder and the

scan chains. First, we discuss the interface of the software decoder and then we discuss the interface of the

hardware decoder.

3.3.1 Interface of the software decoder

Figure 6 shows the interface between the software decoder and the tester. The decoding program is stored in

a ROM on chip. When the tester starts sending the encoded data to the processor, the processor reads the

instructions from the ROM and executes them in order to decode the test data. Then, it writes the decoded

data to the memory. After a whole segment is decoded, the processor will send a signal to the controller to

start applying the test vectors to the scan chains. It should be stated here that there must be some

synchronization mechanism between the processor and the tester in order to avoid overflow.

Figure 6 Interface of the software decoder.

Tester

Memory

 Hardware
decoder

Controller
Scan chain 1

Scan chain 2

Scan chain n

 19

Figure 7 Interface of the hardware decoder.

3.3.2 Interface of the hardware decoder

Similar to the interface explained above for the software decoder, the hardware decoder can be interfaced to

the tester in place of the processor. This is shown in Figure 7. Here, the hardware decoder reads the encoded

data from the tester and writes the decoded data to the memory. After decoding a complete segment, the

decoder sends a signal to the controller to apply the test vectors and waits for the acknowledgement to start

decoding another segment. Also here, we need some synchronization mechanism between the tester and the

decoder.

4. Frequency-Directed Run-Length (FDR) Code

Many of the test data compression techniques are based on run-length coding. A run is a consecutive

sequence of equal symbols. A sequence of symbols can be encoded using two elements for each run; the

repeating symbol and the number of times it appears in the run. Frequency-directed run-length (FDR) code

is a variable-to-variable coding technique based on encoding runs of 0’s. In FDR code, the prefix and the

tail of any codeword are of equal size. In any group Ai, the prefix is of size i bits. The prefix of a group is

the binary representation of the run length of the first member of that group. When moving from group Ai

to group Ai+1, the length of the code words increases by two bits, one for the prefix and one for the tail.

Tester

Memory

 Hardware
decoder

Controller
Scan chain 1

Scan chain 2

Scan chain n

 20

Runs of length i are mapped to group Aj, where ()  13log2 −+= ij . The size of the i’th group is equal to 2i,

i.e., group Ai contains 2i members. The FDR code for the first three groups is shown in Table 6.

Table 6 FDR code.

4.1 Test Data Analysis

Based on test data analysis, it has been observed that test sets contain a large number of runs of 1’s in

addition to runs of 0’s. By considering both types of runs, the total number of runs will decrease, which

could result in higher test data compression.

To support this observation, we have analyzed test data for the largest ISCAS 85 and full-scanned

versions of ISCAS 89 circuits. We have used the test sets generated by MinTest [6], using both static and

dynamic compaction. Test sets generated by dynamic compaction option have the letter d appended in their

name. All the test sets used achieve 100% fault coverage of the detectable faults in each circuit. Test sets

generated based on static compaction were relaxed, as this has the advantage of keeping unnecessary

assignments as X’s, which enables higher compression.

Given a relaxed test set, techniques based on encoding only runs of 0’s fill all the X’s by 0’s to reduce the

number of runs that need to be encoded. However, to encode both runs of 0’s and 1’s in a test set, X’s are

filled by 1’s if they are bounded by 1’s from both sides, otherwise they are filled by 0’s. This results in a

reduction in the total number of runs that need to be encoded.

Table 7 shows the analysis of the number of runs on the used test sets. The first column indicates the

circuit name. The second column shows the number of runs of 0’s in the test set assuming that only runs of

0’s will be encoded. The third, fourth, and fifth columns indicate the number of runs of 0’s, runs of 1’s, and

the total number of runs, respectively, assuming that both types of runs will be encoded. As can be seen

from the table, for most of the circuits, the number of runs of 1’s is as significant as the number of runs of

0’s. For all the circuits, the total number of runs decreases and for some circuits the reduction is significant.

Group Run
Length Group Prefix Tail Code Word

0 0 00 A1
 1

0
1 01

2 00 1000
3 01 1001
4 10 1010

A2

5

10

11 1011
6 000 110000
7 001 110001
8 010 110010
9 011 110011

10 100 110100
11 101 110101
12 110 110110

A3

13

110

111 110111

 21

Table 7 Analysis of number of runs in test data.
 Encoding

 0 Runs
Encoding

0 and 1 Runs
Circuit Original

Bits
0 Runs 0 Runs 1 Runs Total

 Runs
c2670 10252 1677 505 414 919
c5315 6586 1628 561 454 1015
c7552 15111 2695 652 1111 1763
s13207 163100 4804 2615 1157 3772
s15850 57434 4635 2514 1106 3620
s35932 21156 7554 1236 1071 2307
s38417 113152 20970 5331 3761 9092
s5378 20758 2915 1072 806 1878
s9234 25939 3843 1770 980 2750

s13207d 165200 5021 2581 1210 3791
s15850d 76986 5329 2644 1202 3846
s35932d 28208 10018 235 346 581
s38417d 164736 29473 5773 4834 10607
s38584d 199104 16814 7585 4074 11659
s5378d 23754 3537 1237 1001 2238
s9234d 39273 4816 2347 1212 3559

Figures 8, 9, and 10 show the frequency of both runs of 0’s and runs of 1’s for test sets of the circuits:

s15850, s9234, and s35932d, respectively. As can be seen from the figures, the frequency of runs of 1’s

follow a similar shape to that of runs of 0’s, although with a smaller magnitude. For the circuit in Figure 8, it

can be observed that there are more runs of 1’s than 0’s for run length < 5, but for run length > 5 there are

more runs of 0’s. For the circuit in Figure 9, we can see that runs of 0’s with any length are on the average

more that the runs of 1’s with the same length. For the circuit in Figure 10, it can be observed that runs of

1’s of small and large run length are more than those of 0’s. But for middle run length ranges, the number of

both 0 and 1 runs is comparable.

0

20

40

60

80

100

120

140

160

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

run length

Fr
eq

ue
nc

y
of

 ru
n

runs of 1's runs of 0's

Figure 8 Distribution of runs of 0’s and 1’s for circuit s15850.

 22

0
5

10
15
20
25
30
35
40
45
50

0 19 38 57 76 95 11
4

13
3

15
2

17
1

19
0

run Length
Fr

eq
ue

nc
y

of
 ru

ns

runs of 1's runs of 0's

Figure 9 Distribution of runs of 0’s and 1’s for circuit s35932d.

0
50

100
150
200
250

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

run length

Fr
eq

ue
nc

y
of

 ru
ns

runs of 1's runs of 0's

Figure 10 Distribution of runs of 0’s and 1’s for circuit s9234.

5. Extended FDR (EFDR) Code

To encode both runs of 0’s and 1’s, we extend the FDR code based on adding an extra bit to the

beginning of a code word to indicate the type of run. If the bit is 0, this indicates that the code word is

encoding a run of type 0, otherwise it encodes a run of type 1. This code, called Extended FDR (EFDR), is

shown in Table 8. It should be observed that this code is a direct extention to the FDR code shown in Table

6. However, in this code we do not have run length of size 0. This is because we are encoding both runs of

0’s and runs of 1’s. Note that runs of 0’s are strings of 0’s followed by a 1, while runs of 1’s are strings of

1’s followed by a 0, i.e. runs of 1’s of length i are the complement of runs of 0’s of the same length, and

vice versa. As with FDR code, in this code when moving from group Ai to group Ai+1, the length of code

words increases by two bits, one for the prefix and one for the tail. Runs of length i are mapped to group Aj,

where ()  12log2 −+= ij . The size of the i’th group is equal to 2i+1, i.e., group Ai contains 2i+1 members.

 23

Table 8 Extended FDR (EFDR) code.

To illustrate the use of this code, let us consider an example. Consider the test

T={0110001111111000000001}, of size 22 bits. The number of 0 runs in this test is 10. However, the

number of both 0 and 1 runs is 5. Encoding this test using FDR code results in the encoded test TFDR={01 00

1001 00 00 00 00 00 00 110010} of size 26 bits. Thus, for this example the number of bits needed to encode

the test data using FDR code is more than the actual size of the original test data. However, encoding this

test using EFDR code, we obtain the encoded test TEFDR={000 100 001 11011 0110000}, of size 21 bits.

Obviously, for this example EFDR code outperforms FDR code. Note that FDR code suffers whenever we

have runs of 1’s, as each 1 bit will be encoded by a separate 0 run of length 0.

6. Hybrid Test Compression Scheme

 As it was mentioned before, in the Geometric-Primitives-Based compression technique there are some

blocks which are encoded by storing the real test data. This is because the size of these blocks when they

are encoded is larger than thier original size. So, no compression is achieved for such blocks. In order to

reduce the number of these blocks, we propose to combine the Geometric-Primitives-Based compression

technique with either the FDR or the EFDR compression techniques. In this case, the FDR or EFDR

techniques are applied to encode a block. The block is encoded with these techniques if its encoding size is

less than the encoding size with geometric shapes. The block encoding format for the hybrid technique

combining the geometric and FDR compression techniques, called GFDR, is shown in Table 9. Note that the

difference between this encoding scheme and the Geometric encoding scheme is in the header code starting

with 00. So, blocks that will still be encoded with real test data will have an extra bit in the header. The other

blocks have exactly the same format. The block encoding format for the hybrid technique combining the

Group Run
Length

Group
Prefix

Tail

Code Word
Runs of 0’s

Code Word
Runs of 1’s

1 0 000 100 A1
 2

0
1 001 101

3 00 01000 11000
4 01 01001 11001
5 10 01010 11010

A2

6

10

11 01011 11011
7 000 0110000 1110000
8 001 0110001 1110001
9 010 0110010 1110010

10 011 0110011 1110011
11 100 0110100 1110100
12 101 0110101 1110101
13 110 0110110 1110110

A3

14

110

111 0110111 1110111

 24

Table 9 Geometric-FDR (GFDR) & Geometric-EFDR (GEFDR) compression block encoding format.

geometric and EFDR compression techniques, called GEFDR, is similar to GFDR with the difference of

using EFDR instead of FDR.

Test data decompression will be done on chip and the decoded test will then be applied to the chip under

test. The decoders for the proposed hybrid techniques are a direct combination of the decoders for the

Geometric, FDR[17], and EFDR techniques.

6. Experimental Results

In order to demonstrate the effectiveness of our scheme, we have performed experiments on a number of

the largest ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits. The experiments were run

on a Pentium II processor with a speed of 350 MHz and a 32 Mbyte RAM. We have used the test sets

generated by MinTest [6], which are highly compacted test sets, that achieve 100% fault coverage of the

detectable faults in each circuit. Test cubes were generated from each test set as this has the advantage of

keeping unnecessary assignments as x’s, which enables higher compression. Then, the test vectors were

sorted to maximize the compression. In this work, test vectors were sorted based on a greedy algorithm. Test

vectors sorting based on the 0-distance, the 1-distance, and the 0/1-distance was performed. For both the 0-

distance and 0/1-distance sorting, the test vector with more 0’s was selected as the first vector. However, for

the 1-distance sorting, the vector with more 1’s was selected as the first vector. Table 10 shows the

compression ratio of the three sorting criteria on the 8x8 block size. As shown in the table, the 0/1 sorting

gives the best results most of the time. Therefore, we used this sorting criterion for our experiments.

The compression ratio is computed as:

100
 #

 # #
 . X

BitsOriginal
BitsCompressedBitsOriginal

RatioComp
−

=

Header
Code

Encode Block

000 with real test data
001 with FDR (EFDR) codes
010 as filled with 0’s
011 as filled with 1’s
10 with geometric shapes covering 0’s
11 with geometric shapes covering 1’s

 25

Table 10 Compression results of the proposed scheme for different sorting criteria.

Circuit 1-sorting 0-sorting 0/1-sorting
s13207 84.952 84.724 85.561
s15850 69.646 69.782 70.188
s35932 65.177 65.889 62.231
s38417 61.84 61.677 62.226
s38584 65.203 65.186 65.594
s5378 55.805 55.658 57.94
s9234 54.989 55.921 57.22

Table 11 Compression results of the proposed scheme for various block sizes.

Circuit Scan
Size

No.
Vec 8x8 16x16 32x32 CPU

(sec)
s13207 700 236 85.561 86.628 85.316 29
s15850 611 126 70.188 69.253 65.776 10
s35932 1763 16 62.231 74.688 78.123 5
s38417 1664 99 62.226 59.304 54.245 54
s38584 1464 136 65.594 65.085 61.13 33
s5378 214 111 57.94 52.854 48.657 4
s9234 247 159 57.22 55.789 52.148 14

The test sets were partitioned into blocks of sizes 8x8, 16x16, and 32x32 respectively. Then, the

proposed encoding algorithm was applied for each case separately as shown in Table 11. The second

column in the table shows the scan size, which is basically the width of a test vector. The third column

indicates the number of test vectors in the test set. As can be seen, the effectiveness of the proposed

encoding algorithm is clearly demonstrated as high compression ratio was obtained for all the circuits. A

block size of 8x8 achieves the best results for most of the circuits. The last column in Table 11 shows the

total CPU time used for compressing the test vectors based on the three block sizes, i.e. the total CPU time

used to produce the best result, which is highlighted in the table. Based on the compression results in Table

11, our technique achieves an average compression ratio of around 68% based on highly compacted tests.

In order to demonstrate the effectiveness of our technique, we compare it with the techniques proposed in

[16] and [17]. The comparison is performed based on the test sets generated using the dynamic compaction

option of MinTest [6]. Table 12 shows the comparison among the three techniques. As can be seen from

the table, for all the compared circuits, our technique achieves significantly higher compression ratio than

the other techniques.

Next, we compare the compression ratio obtained for two test sets with different sizes. The two test sets

shown in Table 13 have different sizes. The first set test is generated using the dynamic compaction option

 26

Table 12 Comparison with the techniques of [17] (FDR) and of [16] (Golomb).

Circuit Geometric FDR Golomb
s5378f 57.94 48.02 37.11
s9234f 57.22 43.59 45.25

s13207f 86.628 81.3 79.74
s15850f 70.188 66.23 62.82
s35932f 78.123 19.37 0
s38417f 62.226 43.26 28.37
s38584f 65.594 60.91 57.17
average 68.27414 51.81143 44.35143

Table 13 Compression results of the proposed scheme for different test sizes.

 Test set 1 Test set 2

Circuit Original
Bits

Comp.
Ratio

Comp.
Bits

Original
Bits

Comp.
Ratio

Comp.
Bits

s5378 23754 57.94 9991 20758 51.551 10057
s9234 39273 57.22 16801 25935 43.451 14666

s13207 165200 86.628 22091 163100 85.012 24445
s15850 76986 70.188 22952 57434 60.32 22790
s35932 28208 78.123 6171 21156 25.78 15702
s38417 164736 62.226 62228 113152 46.497 60540
s38584 199104 65.594 68504 161040 65.944 54844

of MinTest [6] while the second is generated using the static compaction option of MinTest [6]. The first set

is larger in size than the second. The effect of the test set size cannot be shown if we consider only the

compression ratio. However, if we look at the number of bits after compression, we can see that some of the

circuits ended up with a smaller number of bits although the size of the original test set is larger. These

circuits are shaded in Table 13. From this observation, we can conclude that adding some redundancy to the

test set may help in achieving higher compression.

We next show some statistics on the type of block encoding. As explained before, there are three

possibilities for encoding a block. The first is to encode the block as filled by either 0’s or 1’s. The second is

to encode the block using geometric shapes. The third is to store the real data if the number of bits needed to

encode the block is greater than the actual number of bits in that block. We call the first type of blocks filled

blocks, the second type of blocks encoded blocks and the last type of blocks real-data blocks. The cost of

each filled block is only 3 bits, while the cost of each real-data block is the size of the block + 2. The cost of

an encoded block depends on the shapes in that block.

Table 14, Table 15, and Table 16 show the percentage of these types of blocks for the benchmark circuits

used for block size 8x8, 16x16, and 32x32, respectively. From these tables, we can notice the following:

 27

Table 14 Statistics on block encoding (8x8 blocks).

 8x8

circuit total # of
blocks

of real
blocks % # of filled

blocks % # of encoded
blocks %

s13207f 2640 68 2.5758 2041 77.31061 531 20.113636
s15850f 1232 82 6.6558 614 49.83766 536 43.506494
s35932f 442 2 0.4525 56 12.66968 384 86.877828
s38417f 2704 189 6.9896 1068 39.49704 1447 53.513314
s38584f 3111 347 11.154 1180 37.92993 1584 50.916104
s5378f 378 78 20.635 143 37.83069 157 41.534392
s9234f 620 60 9.6774 150 24.19355 410 66.129032
average 8.3057 39.89559 51.798686

Table 15 Statistics on block encoding (16x16 blocks).

 16x16

circuit total # of
blocks

of real
blocks % # of filled

blocks % # of encoded
blocks %

s13207f 660 22 3.3333 356 53.93939 282 42.727273
s15850f 312 27 8.6538 75 24.03846 210 67.307692
s35932f 111 1 0.9009 0 0 110 99.099099
s38417f 728 41 5.6319 162 22.25275 525 72.115385
s38584f 828 98 11.836 145 17.51208 585 70.652174
s5378f 98 17 17.347 13 13.26531 68 69.387755
s9234f 160 17 10.625 7 4.375 136 85
average 8.3325 19.34043 72.327054

Table 16 Statistics on block encoding (32x32 blocks).

 32x32

circuit total # of
blocks

of real
blocks % # of filled

blocks % # of encoded
blocks %

s13207f 176 0 0 44 25 132 75
s15850f 80 6 7.5 3 3.75 71 88.75
s35932f 56 1 1.7857 0 0 55 98.214286
s38417f 208 2 0.9615 31 14.90385 175 84.134615
s38584f 230 44 19.13 21 9.130435 165 71.73913
s5378f 28 5 17.857 2 7.142857 21 75
s9234f 40 7 17.5 0 0 33 82.5
average 9.2478 8.56102 82.191147

1) The percentage of filled blocks decreases with the increase in block size while the percentage of

real-data blocks does not change much. This shows why the 8x8 block size gives the best

 28

results most of the time followed by the 16x16 block size. From this point, we can notice the

advantage of partitioning the test set into blocks.

2) Some of the circuits have high percentage of real-data blocks. This shows that there is a room

for improvement if these blocks are encoded using another compression scheme.

All the compressed test sets were decoded and verified by fault simulation. The decoding algorithm is

very fast and the decoding time for each test set was in fractions of a second. We have modeled the hardware

decoder using VHDL and based on simulation counted the clock cycles needed to complete decoding each

circuit. If we assume a certain clock rate, then we can find the time required by the decoder by dividing the

number of clock cycles by the clock rate. Table 17 shows the results for a clock rate of 500 MHz and for

different block sizes. The time given in the table is in µ seconds. We should indicate here that this timing is

for the decoding process only and does not include the test application time.

Table 17 Timing performance of the hardware decoder.

 8x8 16x16 32x32
circuit clock cycles time (µs) clock cycles time (µs) clock cycles time (µs)

s13207f 366506 733.012 373039 746.078 406249 812.498
s15850f 191193 382.386 200540 401.08 220739 441.478
s35932f 83120 166.24 80880 161.76 77967 155.934
s38417f 438157 876.314 464892 929.784 516920 1033.84
s38584f 509046 1018.092 542300 1084.6 562884 1125.768
s5378f 61748 123.496 67458 134.916 72380 144.76
s9234f 107482 214.964 113818 227.636 118152 236.304
average 251036 502.072 263275.286 526.55057 282184.4286 564.36886

Based on the results given in Table 17 and Table 11, we can notice that the number of clock cycles

needed to decode a test set increases with the decrease in the compression ratio. The only exception in this

trend is in the case of circuit s13207f, where the highest compression ratio is for the 16x16 block size while

the smallest number of clock cycles is for the 8x8 block size. The reason for this is that the compression

ratios for the two block sizes are very close to each other while the percentage of real-data blocks is higher

for the case of 16x16 block size. Since the real-data blocks need more time for decoding (because they

require more reading cycles), the number of clock cycles increases with the increase in the percentage of

real-data blocks.

Table 18 compares the compression results using the FDR and EFDR code. The first column shows the

circuit name and the second column shows the size of the test set in bits. The third and fourth columns show

the number of compressed bits using FDR and EFDR codes, respectively. The last two columns indicate the

respective compression ratios. As can be seen from the table, significant improvements in the compression

 29

Table 18 Compression results of FDR & EFDR.
Circuit Original

Bits
FDR
Bits

EFDR
Bits

FDR
CR

EFDR
CR

c2670 10252 5760 4807 43.82 53.11
c5315 6586 5238 4700 20.47 28.64
c7552 15111 9500 8843 37.13 41.48

s13207 163100 34608 33637 78.78 79.38
s15850 57434 24992 25105 56.49 56.29
s35932 21156 20312 11502 3.99 45.63
s38417 113152 70536 53914 37.66 52.35
s5378 20758 11032 10210 46.85 50.81
s9234 25939 16912 16127 34.80 37.83

s13207d 165200 30880 29992 81.31 81.85
s15850d 76986 26016 24643 66.21 67.99

 s35932d 28208 22746 5554 19.36 80.31
s38417d 164736 93452 64962 43.27 60.57
s38584d 199104 77798 73853 60.93 62.91
s5378d 23754 12356 11419 47.98 51.93
s9234d 39273 22148 21250 43.61 45.89

ratio are obtained for some of the circuits. Consider for example the circuit s35932. For the first test set of

this circuit, the compression ratio improves from 3.99% using FDR to 45.63% using EFDR code. For the

second test set of the same circuit, the compression ratio increases from 19.36% using FDR to 80.31% using

EFDR code. This result is not surprising as based on the statistics for this circuit given in Table 7, the total

number of runs reduces significantly when both types of runs are used versus using only 0 runs. Similarly,

significant increase in the compression ratio is obtained for the test sets c2670, c5315, s38417, and s38417d.

For all the test sets except one, using EFDR code achieves higher compression ratio.

For test data decompression based on EFDR code, the decoder design follows a direct extention of the FDR

decoder proposed in [17].

Table 19 shows the compresion ratios obtained for five compression schemes namely, geometric, FDR,

EFDR, GFDR, and GEFDR, respectively. The best result from the three block sizes (8x8, 16x116, 32x32) is

reported for each case.

As can be seen from the table, the two hybrid compression techniques, GFDR and GEFDR, both improved

the compression ratio over the Geometric compression technique for all the circuits. However, the GEFDR

compression scheme achieved better results and improved the compression ratio on average from 59.06% to

62.13%. Among the five compared compression schemes, the GEFDR compression scheme achieved the

best results in 9 out of 14 test sets. However, the GFDR compression scheme achieved the best results in 3

out of the 14 test sets. The best compression ratio for the remaining test sets is achived by the EFDR

compression technique.

Table 20 shows a detailed analysis of the number blocks encoded by the different encoding formats for the

Geometric, GFDR, and GEFDR compression schems. This analysis is shown for an 8x8 block size. The

 30

Table 19 Compression results of Geometric, FDR, EFDR, GFDR, and GEFDR techiques.

Circuit Test Set Size Geometric CR FDR CR EFDR CR GFDR CR GEFDR CR
c2670 10252 51.85 43.82 53.11 54.14 54.56
c5315 6586 27.88 20.47 28.64 29.03 29.21
s13207 163100 85.01 78.78 79.38 85.48 85.40
s15850 57434 60.32 56.49 56.29 61.70 61.43
s35932 21156 25.78 3.99 45.63 26.27 44.93
s38417 113152 46.50 37.66 52.35 48.37 51.45
s5378 20758 51.55 46.85 50.81 53.12 53.18

s13207d 165200 86.63 81.31 81.85 87.60 87.74
s15850d 76986 70.19 66.21 67.99 71.21 71.42
s35932d 28208 78.12 19.36 80.31 78.12 81.71
s38417d 164736 62.23 43.27 60.57 63.09 65.23
s38584d 199104 65.59 60.93 62.91 66.30 67.03
s5378d 23754 57.94 47.98 51.93 58.32 58.62
s9234d 39273 57.22 43.61 45.89 58.39 57.87
AVG 59.06 46.48 58.40 60.08 62.13

Table 20 Detailed analysis of block encodings for Geometric, GFDR, and GEFDR compression.

Geometric GFDR GEFDR Circuit
#Blocks #Filled #Shapes

Encoded
#Real #Shapes

Encoded
#FDR

Encoded
#Real #Shapes

Encoded
#EFDR
Encoded

#Real

c2670 180 56 99 25 70 33 21 68 40 16
c5315 115 8 61 46 52 22 33 51 23 33
s13207 2640 1671 963 6 895 72 0 906 62 1
s15850 924 127 787 10 677 120 0 698 97 2
s35932 442 76 191 175 182 54 130 129 196 41
s38417 1872 252 1484 136 1214 348 58 1059 534 27
s5378 351 73 220 58 193 46 39 185 63 30

s13207d 2640 2041 531 68 487 76 36 487 87 25
s15850d 1232 614 536 82 470 110 38 481 112 25
s35932d 442 56 384 2 384 0 2 334 50 2
s38417d 2704 1068 1447 189 1290 220 126 1129 453 54
s38584d 3111 1180 1584 347 1413 284 234 1442 332 157
s5378d 378 143 157 78 142 24 69 134 43 58
s9234d 620 150 410 60 367 71 32 375 60 35

AVG(%) 28.97 55.87 15.16 48.78 12.23 10.02 46.16 17.50 7.37

second column shows the total number of encoded blocks. The third column shows the number of blocks

encoded as a block filled with either 0 or 1. The fourth and fifth columns show the number of blocks

encoded by geometric shapes and those encoded by the real test data, respectively for the Geometric

compression scheme. The sixth, seventh and eightth columns show the number of blocks encoded by

geometric shapes, those encoded by FDR codes, and those encoded by the real test data, respectively for the

GFDR compression scheme. Similarly, the last three columns show the number of blocks encoded by

geometric shapes, those encoded by EFDR codes, and those encoded by the real test data, respectively for

the GEFDR compression scheme. As can be seen from the table, both the GFDR and GEFDR compression

schemes reduce the number of blocks encoded by the real test data and hence improve the compression ratio.

For the circuits considered, the average number of real blocks is 15.16% for the Geometric compression

scheme, 10.02% for the GFDR compresion scheme, and 7.37% for the GEFDR technique. Thus, the GEFDR

 31

compression technique reduces the number of real blocks by more than 50%. As indicated by the results,

there is still a percentage of blocks that achieve no compression and are encoded by storing the real test data.

The average number of blocks encoded by FDR codes in the GFDR technique is 12.23% and the average

number of blocks encoded by EFDR codes in the GEFDR technique is 17.5%. This indicates that these

blocks achieve better compression if encoded by these codes rather than by geometric shapes, which adds to

the benefit of the proposed hybrid compression schemes.

7. Conclusions

In this work, a novel compression/ decompression scheme for testing systems-on-a-chip has been

presented. The technique is based on encoding the test data by geometric shapes. The test data is partitioned

into blocks and then each block is encoded separately. To increase the compression ratio, the scheme

exploits test vectors reordering, the block size, the type of bit to be encoded, and whether or not to encode

the block. Experimental results on ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits have

demonstrated the effectiveness of the technique in achieving high compression ratio. In comparison to other

test compression techniques, our technique achieves significantly higher compression ratio. We have

demonstrated that starting with a test set with a larger size could result in higher test data compression. Thus,

adding some redundancy to the test set may help in achieving higher compression. Based on statistics on the

type of block encoding, we have demonstrated that some of the circuits have high percentage of real-data

blocks. This shows that there is a room for improvement if these blocks are encoded using another

compression scheme.

Test data decompression can be performed in software by an embedded processor or in hardware. In this

work, we have demonstrated both options.

In this work, we have also proposed an extension to the recently proposed FDR code, namely Extended

FDR (EFDR) code. The proposed technique is based on encoding both runs of 0’s and 1’s as opposed to

encoding only runs of 0’s. Based on experimental results on ISCAS benchmark circuits, it has been

demonstrated that the proposed EFDR code outperformed FDR code and resulted in significant increase in

test data compression ratio for several circuits, improving the compression ratio from 19.36% to 80.31% for

one of the benchmark circuits. Furthermore, we have proposed two hybrid compression schemes that

combine the Geometric and FDR compression schemes (GFDR), and the Geometric and EFDR compression

schemes (GEFDR). The objective of these schemes is to reduce the number of blocks in the Geometric

compression scheme that are encoded with the actual test data. Based on experimental results on ISCAS

benchmark circuits, it has been demonstrated that the proposed hybrid compression schemes improved the

 32

test data compression ratio for all the circuits over those obtained by the Geometric compression scheme.

The GEFDR technique achieved the best results and improved the compression ratio on average from

59.06% to 62.13% over the Geometric compression scheme.

8. Project Objectives vs. Accomplishments

The principle objectives of this work as submitted in the proposal are as follows:

1. Study and examine the existing lossless test vectors compression/decompression schemes.

2. Propose a new compression/decompression scheme that is two-dimensional and geometric-

primitives-based capable of compressing test vectors with higher compression ratio and that is

simple to implement.

3. Implement the proposed scheme and conduct experiments on benchmark circuits to determine

the quality of the proposed scheme and compare it with existing schemes.

4. Investigate a hardware implementation of the decoding algorithm of the proposed scheme.

5. Publish the results of this research in refereed international conference on testing and a

refereed journal.

All the mentioned above objectives have been achieved. A summary of the accomplished work is given

below:

1. Literature Survey: We have performed extensive literature survey of all compression and

compaction techniques for combinational and sequential circuits. Detailed information about the

conducted survey is not included in the report to make the report more concise.

2. Generating compacted test vectors for benchmark circuits: we have used the automatic test

pattern generation tool (HITEC) and the fault simulators (HOPE & PROOFS) to generate and

compact the generated test sets before compressing them. Test compaction was achieved by

implementing the reverse order fault simulation algorithm. These test sets were used in the initial

phase of the project but later we used the test sets generated by Mintest for comaprison purposes

with published results.

3. Implementing test relaxation algorithm: In order to have effective test data compression, it is

important to identify those bits whose value is an X. We have implemented test relxation based

on a brute force method by changing every bit to an X and doing fault simulation to see whether

the relaxation is possible or not.

 33

4. Test Vector Reordering: We have developed several test vector ordering algorithms and

implemented them. The algorithms were based on a gready ordering and near-optimal ordering.

Several weight functions were experimented with and the one that gave the best results was

chosen.

5. Developing & Implementing the encoding algorithm: we have developed the encdoding

algorithm and implemented it. Many improvements in the encoding algoithm were made based

on analysis of experimenta results.

6. Developing & Implementing the decoding algorithm in software: we have developed and

implmented the decoding algorithm in software to be run utilizing on-chip processor. The results

of the decoding algorithm were verified by fault simulation.

7. Comparison with Published Results: We have compared our results with two recently

published and found that our technique achieves the best compression ratios. We have

experimented with our technique on different test sets and we demonsrated its effectiveness.

8. Design of the decoding algorithm in hardware: This step is necessary in case the chip does not

have a processor and the decoding circuitry has to be inserted. We have designed the decoding

circuitry in hardware and modeled it in VHDL and verified its correctness.

9. Improved FDR Compression teschnique: Recently an effective test compression technique has

been proposed with the advantage of simple decoding circuitry. Based on test data analysis, we

found that we could improve the compression effectiveness of this technique without increasing

the decoder complexity. We have extended this technique and called it EFDR and implemented

it. The technique has resulted in significant improvement in test compression.

10. Hybrid compression technique: We have proposed hybrid compression techniques that

combine the Geometric compression technique with either FDR or EFDR techniques and

demonstrated improvement in the compression ratio.

11. Publications: we have published four conference papers and submitted one paper for journal

publication.

It should be noted here that the accomplished work in 9 and 10 was more than was planned in the

proposal.

 34

List of Publications Resulting from this Work

 AimanEl-Maleh, Saif Al-Zahir, and Esam Khan,“A Geometric-Primitives-Based

 Compression Scheme for Testing Systems-on-a-Chip,” 19’th IEEE VLSI Test Symposium

 (VTS), pp. 54-59, 2001.

 Saif Al-Zahir, Aiman El-Maleh, and Esam Khan, “An Efficient Test Vector Compression

 Technique Based on Geometric Shapes,” the 8th IEEE International Conference on

 Electronics, Circuits and Systems (ICECS 2001), pp. 1561-1564, 2001.

 Aiman El-Maleh and Raslan Al-Abaji, “Extended Frequency-Directed Run Length Code

 with Improved Application to System-on-a-chip Test Data Compression” Proc. of the 9th

 IEEE International Conference on Electronics, Circuits and Systems, pp. 449-452, Sep.

 2002.

 Aiman El-Maleh, “A Hybrid Test Compression Technique for Efficient Testing of Systems-

 on-a-Chip,” 10th IEEE International Conference on Electronics, Circuits and Systems, pp. 599-

 602, December 2003.

The following paper was also submitted and it is still under processing:

 AimanEl-Maleh, Saif Al-Zahir, and Esam Khan,“A Geometric-Primitives-Based

 Compression Scheme for Testing Systems-on-a-Chip,” submitted to IEEE Transactions on

 Computer-Aided Design..

 It is also worth mentioning that our work in this project has inspired us to the importance of

 relaxing a test set and has led to do work in this direction that has resulted in the following

 publication:

 Aiman El-Maleh and Ali Al-Suwaiyan, "An Efficient Test Relaxation Technique for

 Combinational and Full-Scan Sequential Circuits" Proc. of the 20’th IEEE VLSI Test

 Symposium (VTS), pp. 53-59, 2002.

 Aiman El-Maleh and Ali Al-Suwaiyan, “An Efficient Test Relaxation Technique for

 Combinational Circuits Based on Critical Path Tracing” Proc. of the 9th IEEE

 International Conference on Electronics, Circuits and Systems, pp. 461-465, Sep. 2002.

 35

 Aiman El-Maleh and Khaled Al-Utaibi, "An Efficient Test Relaxation Technique for

 Synchronous Sequential Circuits" Proc. of the 21’th IEEE VLSI Test Symposium (VTS),

 pp. 179-185, 2003.

 Aiman El-Maleh and Khaled Al-Utaibi, "An Efficient Test Relaxation Technique for

 Synchronous Sequential Circuits" Proc. of the IEEE International Symposium on Circuits

 and Systems (ISCAS), pp. V-545 - V-548, 2003.

In addition, our publications that resulted from this project have been cited by several

references as shown below, which clearly indicate the usefulness of the results obtained in

this project:

 AimanEl-Maleh, Saif Al-Zahir, and Esam Khan,“A Geometric-Primitives-Based

 Compression Scheme for Testing Systems-on-a-Chip,” 19’th IEEE VLSI Test Symposium

 (VTS), pp. 54-59, 2001.

 Citations:

• Bayraktaroglu, I, Orailoglu, A., ”Concurrent application of compaction and compression for test

time and data volume reduction in scan designs” IEEE Transactions on Computers, ,Volume: 52

, Issue: 11 , Pages:1480 – 1489, Nov. 2003.

• Lei Li; Chakrabarty, K.;”Test set embedding for deterministic BIST using a reconfigurable

interconnection network” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Volume: 23 , Issue: 9 , Pages:1289 – 1305, Sept. 2004.

• A. Chandra and K. Chakrabarty, “Analysis of Test Application Time for Test Data Compression

Methods Based on Compression Codes”, JOURNAL OF ELECTRONIC TESTING: Theory and

Applications 20, pp. 199–212, 2004.

• M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-Coded Compression Technique with

Application to Reduced Pin-Count Testing and Flexible On-Chip Decompression,” Proceedings of

the 2004 Design and Test in Europe conference, pp. 1284-1289, Feb. 2004.

• M. Flottes, R. Poirier, and B. Rouzeyre, “An Arithmetic Structure for Test Data Horizontal

Compression,” Proceedings of the 2004 Design and Test in Europe conference, pp. 428-433, Feb.

2004.

 36

• Lei Li and K. Chakrabarty, “Deterministic BIST Based on a Reconfigurable Interconnect

Network”, IEEE Int. Test Conf., Oct. 2003.

• A. Chandra and K. Chakrabarty, “ A unified Approach to Reduce SOC Test Data Volume, Scan

Power and Testing Time”, IEEE Trans. Computer-Aided Design, Vol. 22, No 3, pp. 352-362, Macrh

2003.

• P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Variable-Length Input Huffman Coding for System-

on-a-Chip Test”, IEEE Trans. CAD, Vol. 22, No 6, pp. 783-796, June 2003.

• P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Improving Compression Ratio, Area Overhead, and

Test Application Time for System-on-a-Chip Test Data Compression/Decompression”, IEEE

Design Automation and Test in Europe Conf., Feb. 2002.

• Lei Li and K. Chakrabarty, “Test Data Compression Using Dictionaries with Fixed-Length

Indices”, IEEE VLSI Test Symposium, pp. 219-224, April 2003.

• Lei Li, K. Chakrabarty and Nur A. Touba “Test Data Compression Using Dictionaries with

Selective Entries and Fixed-Length Indices”, ACM Trans. on Design Automation of Electronic

Systems, Vol. 8 , No 4, pp. 470-490, Oct. 2003.

• A. Jas, J. Ghosh-Dastidar, and N. Touba, “An Efficient Test Vector Compression Scheme Using

Selective Huffman Coding”, IEEE Trans. Computer-Aided Design , Vol. 22, No 6, pp. 797-806,

June 2003.

• A. Jas, and N. Touba, “Deterministic Test Vector Compression/Decompression for Systems-on-

a-Chip Using an Embedded Processor”, Journal of Electronic Testing: Theory and Applications, 18,

pp. 503-514, 2002.

• K. Balakrishnan and N. Touba, “Deterministic Test Vector Decompression in Software Using

Linear Operations”, IEEE VLSI Test Symposium, pp. 225-231, April 2003.

• K. Balakrishnan and N. Touba, “Matrix-Base Test Vector Decompression using and Embedded

Processor”, IEEE Symp. on Defect and Fault Tolerance, pp. 159-165, 2002.

• Ichihara, H.; Kinoshita, K.; Isodono, K.; Nishikawa, S.,”Channel width test data compression

under a limited number of test inputs and outputs,” Proceedings. 16th International Conference on

VLSI Design, pp. 329 – 334, Jan. 2003.

• Ichihara, H.; Shintani, M.; Ohara, T.; Inoue, T., “Test response compression based on Huffman

coding,” 12th Asian Test Symposium, Page(s): 446- 449, Nov. 2003.

• Schafer, L.; Dorsch, R.; Wunderlich, H.-J., “RESPIN++ - deterministic embedded test,”

Proceedings of the Seventh IEEE European Test Workshop (ETW’02), pp. 37- 44, 2002.

 37

• V Iyengar, A Chandra , “A Unified SOC Test Approach Based on Test Data Compression and

TAM Design,” Proceedings of the 18th IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT’03).

 Aiman El-Maleh and Raslan Al-Abaji, “Extended Frequency-Directed Run Length Code

 with Improved Application to System-on-a-chip Test Data Compression” Proc. of the 9th

 IEEE International Conference on Electronics, Circuits and Systems, pp. 449-452, Sep.

 2002.

 Citations:

• Lei Li; Chakrabarty, K.; Kajihara, S.; Swaminathan, S.; ”Efficient Space/Time Compression to

Reduce Test Data Volume and Testing Time for IP Cores” 18th International Conference on

VLSI Design, Pages:53 - 58 Jan. 2005

• Chandra and K. Chakrabarty, “Analysis of Test Application Time for Test Data Compression

Methods Based on Compression Codes”, JOURNAL OF ELECTRONIC TESTING: Theory

and Applications 20, pp. 199–212, 2004.

• Lei Li and K. Chakrabarty, “Test Data Compression Using Dictionaries with Fixed-Length

Indices”, IEEE VLSI Test Symposium, pp. 219-224, April 2003.

• Lei Li and K. Chakrabarty, “Test Data Compression Using Dictionaries with Selective Entries

and Fixed-Length Indices”, ACM Trans. On Design Automation of Electronic Systems, Vol. 8

, No 4, pp. 470-490, Oct. 2003.

• Kajihara S., Yasumi Doi Lei Li, Chakrabarty K., “On combining pinpoint test set relaxation

and run-length codes for reducing test data volume,” Proceedings. 21st International

Conference on Computer Design, pp. 387 - 392 Oct. 2003.

• Kay D., Mourad S., ”Interactive built-in self-test compression for testing a system-on-a-chip,”

IEE Proceedings- Computers and Digital Techniques, Vol. 150, No. 4, pp. 189 – 200, July

2003.

• M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-Coded Compression Technique with

Application to Reduced Pin-Count Testing and Flexible On-Chip Decompression,”

Proceedings of the 2004 Design and Test in Europe conference, pp. 1284-1289, Feb. 2004.

 38

• Xiaoyun Sun, Larry Kinney, Bapiraju Vinnakota, “Combining dictionary coding and LFSR

reseeding for test data compression “, Proceedings of the 41st annual conference on Design

automation, pp. 944 - 947, 2004.

Contribution of this project to stutdents:

1. Master Thesis: Esam Khan, MsC in Computer Engineering "A Two-Dimensional Geometric-
Primitives-Based Compression Scheme for Testing Systems-on-a-Chip".

2. Graduate Student Training: The following two students were trained by working on this
project:

• Mr. Esam Khan and his work on this project has resulted in 2 conference publications.

• Mr. Raslan Al-Abaji and his work on this project has resulted in 1 conference publication.

3. Undergraduate Student Training: Two students were trained by doing his senior design project
on issues related to the project:
• Mr. Faisal Ba-Haidarah, Senior Design Project, “Hybrid Test Compression”.

• Muhammad Kalkattawi, Senior Design Project, "Test Data Compression/Decompression for
System on Chip".

 ملخّص نتائج المشروع

ل اطريقة جديدة وفعالة لضغط بيانات اختبارات الشرائح الحاوية لأنظمة متكاملة بدون فقد أي معلومات باستخدام الأشك اقتراح .١

 .الهندسية الأساسية ثنائية الأبعاد
 .باستخدام الأشكال الهندسية الأساسية ثنائية الأبعاد المضغوطة بيانات اختبارات الشرائحئرة كهربائية لفك ظغط تصميم دا .٢
يبيّة فاعليّتها في ن بالنّتائج التّجرييّبت و١ و ٠لاعلى أساس تشفير كلا الجريين)إي إف دي آر(إلى شفرة إف دي آرامتداد اقتراح .٣

 .انضغاط أعلىتحقيق نسبة
شفرات إف دي آر أو إي إف دي آر لتقليل عدد الكتل التي تكنيكات ضغط بيانات اختبار هجين التي تستغلّ الاستعمال لإمّا احاقتر .٤

 .استخدام الأشكال الهندسية الأساسية ثنائية الأبعاد باستخدام طريقة الضغطالمبنية على تُشَفَّر بتخزين بيانات الاختبار الحقيقيّة

Acknowledgment

This work is supported by King Fahd University of Petroleum & Minerals under project FT2000/07. The

author would like to thank Dr. Saif Alzahir, Mr. Esam Khan, Mr. Raslan Al-Abaji, Mr. Faisal Ba-Haidarah,

and Mr. Muhammad Kalkattawi for their contribution in this project. Special thanks are also to Dr. Alaaeldin

Amin for his useful coments on the hardware impementation of the decompression circuitry for the

Geometric compression technique.

 39

References

 [1] R. Chandramouli, and S. Pateras, “Testing Systems on a Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.

 [2] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing Embedded-Core Based System Chips,” Proc. of Int.

Test Conference, pp. 130-143, 1998.

 [3] M. Schulz, E. Trischhler, and T. Sarfert, “SOCRATES: A Highly Efficient Automatic Test Pattern

Generation System,” IEEE Trans. Computer-Aided Design, pp. 126-137, Jan. 1988.

 [4] J. Chang and C. Lin, “Test Set Compaction for Combinational Circuits,” IEEE Trans. Computer Aided

Design, pp. 1370-1378, Nov. 1995.

 [5] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy, “Cost-Effective Generation of Minimal Test sets

for Stuck-at Faults in Combinational Circuits,” IEEE Trans. Computer Aided Design, pp. 1496-1504, Dec.

1995.

 [6] I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational Circuits’’, Proc. Int.

Conf. Computer-Aided Design, pp. 260-267, Nov. 1998.

 [7] I. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST: A Method to Generate Compact Test Sets for

Combinational Circuits,” Proc. of Int. Test Conference, pp. 194-203, 1991.

 [8] S. Chakradhar and A. Raghunathan, “Bottleneck Removal Algorithm for Dynamic Compaction in

Sequencial Circuits,” IEEE Trans. Computer-Aided Design, Vol. 16, No. 10, pp. 1157-1172, Oct. 1997.

 [9] G. Gibson, Toby Berger, David Lindbergh, Richard L., III Baker, Digital compression for multimedia,

(Morgan Kaufmann Publishers)., 1998.

 [10] K. Chakrabarty, B.T. Murray, J. Liu, and M. Zhu, “Test Width Compression for Built-In Self-Testing,”

Proc. of International Test Conference, pp. 328-337, 1997.

 [11] J. Rajski, J. Tyszer, and N. Zaccharia, “Test Data Decompression for Multiple Scan Designs with

Boundary Scan,” IEEE Trans. Computers, pp. 1180-1200, Nov. 1998.

 [12] A. Jas, K. Mohanram, and N.A. Touba, “An Embedded Core DFT Scheme to Obtain Highly

Compressed Test Sets,” Proc. of IEEE Asian Test Symposium, pp. 275-280, 1999.

 [13] T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An Efficient Method for Compressing Test Data,”

Proc. of Int. Test Conference, pp. 191-199, 1997.

 [14] M. Ishida, D.S. Ha, and T. Yamaguchi, “COMPACT: A Hybrid Method for Compression Test Data,”

Proc. of VLSI Test Symposium, pp. 62-69, 1998.

 [15] A. Jas and N.A. Touba, “Test Vector Decompression via Cyclical Scan Chains and its Application to

Testing Core-Based Designs,” Proc. of Int. Test Conf., pp. 458-464, 1998.

 [16] A. Chandra and K. Chakrabarty, “Test Data Compression for System-On-a-Chip using Golomb Codes,”

Proc. of IEEE VLSI Test Symposium, pp. 113-120, 2000.

 40

 [17] A. Chandra, and K. Chakrabarty, “Frequency-Directed Run-Length (FDR) Codes with Application to

Systems-on-a-Chip Test Data Compression,” Proc. of IEEE VLSI Test Symposium, pp. 42-47, 2001.

 [18] A. Jas, J.G. Dastidar and N.A. Touba, “Scan Vector Compression/ Decompression Using Statistical

Coding,” Proc. of Int. Test Conference, pp. 202-207, 1994.

 [19] A. Jas and N.A. Touba, “Using an Embedded Processor for Efficient Deterministic Testing of System-

on-a-Chip,” Proc. of IEEE Int. Conf. on Computer Design (ICCD), pp. 418-423, 1999.

 [20] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Improving Compression Ratio, Area Overhead, and Test

Application Time for System-on-a-Chip Test Data Compression/Decompression”, IEEE Design Automation

and Test in Europe Conf., Feb. 2002.

 [21] R. Dorsch and H.-J. Wunderlich, “Resuing scan chains for test pattern decompression”, European Test

Workshop, pp. 124-132, 2001.

 [22] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded testing”, Int. Test Conf., pp. 530-537,

2001.

 [23] H. Ichihara, K. Kinoshita, I. Pomeranz, and S. M. Reddy, “Test transformation to improve compaction

by statistical coding”, Int. Conf. VLSI Design, pp. 294-299, 2000.

 [24] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamara, “Dynamic test compression using statistical coding”,

Asian Test Symp., pp. 143-148, 2001.

 [25] S. M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data reduction for multiple scan chain

designs”, VLSI Test Symp., pp. 103-108, 2002.

 [26] F. G. Wolff and C. Papachristou, “Multiscan-based test compression and hardware decompression using

LZ77”, Int. Test Conf., pp. 331-339, 2002.

 [27] M. Knieser, F. G. Wolff, C. Papachristou, D. Weyer and D. McIntyre, “A technique for high ratio LZW

compression”, Design Automation and Test in Eyrope Conf., pp. 116-121, 2003.

 [28] Lei Li and K. Chakrabarty, “Test Data Compression Using Dictionaries with Fixed-Length Indices”,

IEEE VLSI Test Symposium, pp. 219-224, April 2003.

 [29] C.Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller, and B. Konemann, “OPMISR: The

foundation for compressed ATPG vectors”, Int. Test Conf., pp. 748-757, 2001.

 [30] B. Konemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D. Wheater, “A SmartBIST

variant with guaranteed encoding”, Asian Test Symp., pp. 325-330, 2001.

 [31] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, H. Tsai, A. Hertwing, N. Tamarapalli, G.

Mrugalski, G. Eide, and J. Qang, “Embedded deterministic test for low cost manufacturing test”, Int. Test

Conf., pp. 301-310, 2002.

[32] L. Baker, VHDL Programming with Advanced Topics, John Wiley & Sons, 1993.

 41

APPENDIX (Puplished Papers)

A Geometric-Primitives-Based Compression Scheme for Testing
Systems-on-a-Chi p

Aiman El-Maleh', Saif at ZahiP, and Esam Khan'

King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
'University of British Columbia, ECE Dept., Vancouver, B.C., Canada

Email: { aimane, esamkhan) @ccse.kfupm.edu.sa, saif-zahir@yahoo.com

Abstract I Tester I
The increasing complexity of systems-on-a-chip with

the accompanied increase in their test data size has
made the need for test data reduction imperative. In this
paper, we introduce a novel and very efJicient lossless
compression technique for testing systems-on-a-chip
based on geometric shapes. The technique exploits
reordering of test vectors to minimize the number of
shapes needed to encode the test data. The effectiveness
of the technique in achieving high compression ratio is
demonstrated on the largest ISCAS85 and full-scanned
versions of ISCAS89 benchmark circuits. In this paper, it
is assumed that an embedded core will be used to
execute the decompression algorithm and decompress
the test data.

1. Introduction

With today's technology, it is possible to build
complete systems containing millions of transistors on a
single chip. Systems-on-a-chip (SOC) are comprised of
a collection of pre-designed and pre-verified cores and
user defined logic (UDL). As the complexity of systems-
on-a-chip continues to increase, the difficulty and cost of
testing such chips is increasing rapidly [l l] , [12]. To
test a certain chip, the entire set of test vectors, for all the
cores and components inside the chip, has to be stored in
the tester memory. Then, during testing, the test data
must be transferred to the chip under test and test
responses collected from the chip to the tester as
illustrated in Figure 1.

One of the challenges in testing SOC is dealing with
the large size of test data that must be stored in the tester
and transferred between the tester and the chip. The
amount of time required to test a chip depends on the
size of test data that has to be transferred from the tester
to the chip and the channel capacity.

o0o11111010

1 m 1 1 1 1 1

System-on-a-Chip
Figure 1 . Test data transfer between the tester and
the circuit under test.

The cost of automatic test equipment (ATE) increases
significantly with the increase in their speed, channel
capacity, and memory. As testers have limited speed,
channel bandwidth, and memory, the need for test data
reduction becomes imperative. To achieve such
reduction, several compaction and lossless compression
schemes were proposed in the literature.

The objective of test set compaction is to generate the
minimum number of test vectors that achieve the desired
fault coverage. There are two main types of compaction,
static compaction and dynamic compaction. In static
compaction, the number of test vectors is reduced after
they have been generated. Examples of static
compaction algorithms include reverse order fault
simulation [151, forced pair merging [161, N-by-M [181,
and redundant vector elimination (RVE) [14]. In
dynamic compaction, the number of vectors is

1093-0167/01 $10.00 0 2001 EEE
54

mailto:saif-zahir@yahoo.com

minimized during the automatic test pattern generation
(ATPG) process. Examples of dynamic compaction
algorithms include COMPACTEST [171, and bottleneck
removal [6].

In test data compression, the objective is to reduce the
number of bits needed to represent the test data. For test
data compression, it is essential that the compression is
lossless. Run length coding, Huffman codes, Lempel-Ziv
algorithms, and arithmetic codes are examples of
lossless compression [131.

Several test data compressioddecompression
techniques were proposed in the literature. These
techniques can be classifies into two categories; one is
based on BIST and Pseudo-Random Generators (PRG)
and the other is based on deterministic compression.

Examples of BIST-based compression techniques are
test width compression [2], variable length reseeding [5],
and Design For High Test Compression (DFHTC) [IO].

Deterministic compression techniques take advantage
of the high correlation between test vectors. One of these
techniques is proposed in [13 and uses Burrows-wheeler
(BW) transformation and a modified version of run-
length coding to encode the test data. This technique has
been improved in [3] by applying the GZIP compression
scheme to strings that are not effectively compressed by
run-length coding. Another technique proposed in [8]
uses what is called variable-to-block run-length coding.
In this technique, a codeword is used to encode a block
of data based on the number of zeros followed by a one
in that block. This technique is used for compressing
fully-specified test data that feeds a cyclical scan chain.
A cyclical scan chain is used to decompress this data and
transfer it to the “test scan chain”. Golomb code is a
variable-to-variable run-length code that is used in [4] to
enhance the scheme described above. It divides the runs
into groups, each is of size m. The number of groups is
determined by the length of the longest run, and the
group size m is dependent on the distribution of test data.
In [9], statistical coding is used for encoding
deterministic test data. The technique uses a modified
version of Huffman coding as to minimize the bits
needed for codewords. Although this technique has less
compression ratio than Huffman coding, the hardware
implementation of the decoder is simpler. Another
technique was proposed in [7] which performs
decompression of test data based on an embedded
processor. The technique is based on storing the
differing bits between two test vectors. It divides each
test vector into blocks and stores those blocks that are
different from the preceding vector.

In this paper, we introduce a novel and very efficient
compression scheme for deterministic testing of SOCs
based on geometric shapes. This scheme is designed
based on test cubes to maximize the compression ratio.
Test vector decompression is performed on chip and is
implemented either in hardware or software. For

Table 1. The used primitive geometric shapes.

hardware decompression option, a decoding circuitry is
placed on the chip to perform the decompression
algorithm. However, for software decompression option,
an embedded core is used to execute the decompression
algorithm and decompress the test data, which is then
applied to the circuit under test. The decompression
algorithm can be stored in a ROM on the chip.

2. The Proposed Encoding Algorithm

The proposed encoding algorithm is based on
encoding the 0’s or the 1’s in a test set by geometric
shapes. In this work, we limited those primitive shapes
to the basic four, namely: point, line, triangle, and
rectangle as shown in Table 1. These shapes are the most
frequently encountered shapes in any test set. For the
rectangles, two points are needed to encode the shape
and each point costs 2*10g2 N, where N is the block
dimension. However, lines and triangles can be
represented by a point and a distance d and this reduces
the number of bits needed to encode them by (log? N)-2
in comparison to encoding them by two points. Two bits
are used to determine the type of line or the type of
triangle encoded.

Figure 2 shows the algorithm of the encoder, which
consists of the following main steps:

(i) Test Set Sorting
vectors in a test set is crucial and has a

significant impact on the compression ratio. In this step,
we aim at generating clusters of either 0’s or 1’s in such
a way that it may partially or totally be fitted in one or
more of the geometric shapes shown in Table 1. Several
sorting scenarios have been considered and investigated.
In this work, we used a simple correlation-based sorting
technique. The sorting may be with respect to 0’s (0-

Sorting the

55

Encoder (N)
Sort-Test-Set ();
Partition-Test-Set (N);
For i = I to # of segments

For j = I to # of blocks in i
Extract-Shapes (I , j) ;
a, = Encode-Shapes ();
Extract-Shapes (0, j) ;
ai, = Encode-Shapes ();
B = # of bits in j + 2;
E = min (a a,,B);
Store-Encoded-Bits ();
E-total += E;

End Encoder:

0
1

Extract-Shapes(b, j)
For each bit x in block j {

I f x = b Then {
Find the largest line of each type started at x
Find the largest triangle of each type such that

Find the largest rectangle such tha x is its up-
x is the vertix of the right angle

left corner
I

I
Solve a covering problem to find the best group of
shapes covering all bits b in block j .

End Extract-Shapes;

0 1 X
1 .o 0.0 0.25
0.0 0.0 0.0

Figure 2. Test vectors encoding algorithm.

sorting), to 1’s (I-sorting) or to both 0’s and 1’s (0/1-
sorting). The technique is based on finding the distance
D between two vectors A and B that maximizes the
clusters of 0 ’ s and 1’s.

The distance D may be computed with respect to 0’s
(0-distance), to 1’s (I-distance) or to 0’s and 1’s (WI-
distance) as follows:

D = Yw(A,,B,-~) +w(A,,B,) + w (4 ,B,+,)
!=a

where k is the test vector length and W(A, ,BJ IS the
weight between bits A, and B,. Table 2, Table 3 and
Table 4 specify the weights used in computing the 0-
distance, the I-distance, and the Oll-distance between
two vectors, respectively. Note that for i = 0,
W(A,, Bi.l) = 0 and for i = k-1, W(A, , B,+,) = 0.

The assignment of a 0.25 weight for an ‘x’ to each of
its immediate neighbors be it an ‘x’ or the sorted bit (‘0’
for 0-sorting, ‘1’ for 1-sorting and ‘0’ and ‘1’ for 0/1-
sorting) is chosen due to the following reasons. First,
this weight may help in completing, integrating, or
generating additional geometric shapes that can lead to a
better solution. Second, this can help in generating
blocks filled by ‘x’s which can be minimally encoded.
Different weights have been experimented with, and a

Table 2. Weights for the 0-distance between
two test vectors.

1 i 0.25 i 0.0 i 0.25 1
Table 3. Weights for the 1-distance between
two test vectors.

1 0 1 I l x
0 1 0.0 I 0.0 I 0.0
1 1 0.0 I 1.0 I 0.25
x I 0.0 I 0.25 I 0.25

Table 4. Weights for the O/l-distance between
two test vectors.

I l o l l l x l

0.25 0.25 0.25

Table 5. An example of test vector sorting.

weight of 0.25 has been found to produce better results
in most of the cases.

In Table 5, we show a simple example to illustrate the
impact of sorting on test vector compression. As can be
seen, sorting the vectors based on the 0-distance requires
the encoding of two triangles to encode the 0’s.
However, sorting the vectors based on the I-distance
requires the encoding of one triangle and two lines to
encode the 1’s. Thus, for this example sorting based on
the 0-distance results in higher compression.

(ii) Test Set Purtihbning
A set of sorted test vectors, M, is represented in a

matrix form, RxC, where R is the number of test vectors
and C is the length of each test vector. The test set is
segmented into LxK blocks each of which is NxN bits,
where L is equal to r R / N l and K is equal to r C I N 1 . A
segment consists of K blocks. In other words, the test set

56

is segmented into L segments each contains K blocks.
For test vectors whose columns and/or rows are not
divisible by the predetermined block dimension N, a
partial block will be produced at the right end columns
and/or the bottom rows of the test data. Since the size of
such partial blocks can be deduced based on the number
of vectors, the vector length, and the block dimension,
the number of bits used to encode the coordinates of the
geometric shapes can be less than log, N. The decoder
recognizes those special cases and decodes them
properly.

(iii) Encoding process
As mentioned earlier, the encoding process will be

applied on each block independently. The procedure
Extract-Shapes(b) will find the best group of shapes that
cover the bits that are equal to b as shown in the
algorithm. Encode-Shapes determines the number of
bits, a, needed to encode this group of shapes. There are
two cases that may occur:

(a) The block contains only 0’s and x’s or 1’s
and x’s. In this case, the block can be encoded as a
rectangle. However, instead of this it is encoded by
the code 01 followed by the bit that fills the block.
Hence, the number of bits to encode the block CI =
3.
(b) The block needs to be encoded by a number
of shapes. In this case, we need the following:

2 bits to indicate the existence of shapes and
the type of bit encoded. If the encoded bit is 0,
then the code is IO, otherwise it is 11.

P = (2*L0g2 N - 3) bits to encode the number
of shapes, S . If the number of shapes exceeds 2‘,
then the number of bits needed to encode the
shapes is certainly greater than the total number of
bits in the block. In this case, the block is not
encoded and the real data is stored.

2 I!,, ; where L, is computed as follows
,=I

- If shape i is a point, L, = 2 + 2*log2 N
(shape type, coordinates).
- If shape i is a line or a triangle, L, = 4
+ 3*10g2 N (shape type, type of line or
triangle, point and distance)
- If shape i is a rectangle, L, = 2 +
4*log2 N (shape type, 2 points)

S

Therefore, a = 2 + P + L,
r=l

If Q and rx, are greater than B (N*N+2), then it is
better not to encode the block. Instead, the real data is
stored after a 2-bit code (00). The procedure
Store-Encoded-Bits will decide which case is the best
(encoding O’s, encoding l’s, or storing the real data)
based on E, the minimum of &, al, and B .

Decoder ()
Read (# of Vectors (R), Vector-Length (C), N);
Compute-Parameters ();
For i = I to # of segments {

blbo = Read-Bits (2);
Case blbo

For j = I to # of blocks in i {

00 : Read-Bits (N* N):
01 : b-type = Read-Bits (I) ;

10 : DecodeShapes (0):
I1 : Decode-Shapes (I) ;

Fill-Block (j, b-type);

End Case;
1

Output-Segment ();
I

End Decoder;

DecodeShapes (b)
Num-Shapes = Read-Bits (2 *logz N -3);
For j = 1 to Num-Shapes

Shape-type = Read-Bits (2);
Case Shape-type

00 : c = Get-Coordinate ();
Fill-Point (b,c);

01 : t = Get-Type ();
c = Get-Coordinate ();
d = Get-Distance ();
Fill-Line(b, t, c,d);

c = Get-Coordinate 0;
d = Get-Distance ();
Fill-Triangle(b, t, c,d);

I I : cI = Get-Coordinate ();
c2 = Get-Coordinate ();
Fill-Rectangle (b,cr,c2);

10 : t = Get-Type 0;

End Decode-Shapes;

Figure 3. Test vectors decoding algorithm.

3. Decoding Process

The decoding process is simple and straightforward.
In this work, we assume that an embedded processor on
a chip will implement the decoding algorithm. A
framework illustrating the details of how the test vectors
can be transferred from the embedded processor to the
tested parts of the chip has been outlined in [7]. A
similar framework can be used for our decoding
algorithm.

Figure 3 shows the algorithm of the decoder. It first
reads the arguments given by the encoder and computes
the parameters needed for the decoding process. These
parameters include the number of segments, the number

57

Table 6. Compression results of the proposed scheme for various block sizes.

Table 7. Comparison with the techniques by Jas and Touba [7] and Chandra and Chakrabarty [4].

of blocks in a segment and the dimensions of the partial
blocks. In order to reconstruct the vectors, each segment
has to be stored before sending its vectors to the circuit
under test. For each segment, its blocks are decoded one
at a time. The first two bits indicate the status of the
block as follows:

00: the block is not encoded and the following
N*N bits are the real data.

01: fill the whole block with 0’s or 1’s
depending on the following bit.

10: There are shapes that are filled with 0’s.
11: There are shapes that are filled with 1’s.

For those blocks that have shapes, the procedure
Decode-Shapes is responsible for decoding these
shapes. It reads the number of shapes in the block and
then for each shape it reads its type and based on this it
reads its parameters and fills it accordingly.

After all the blocks in a segment have been decoded,
the segment is output to the circuit under test vector by
vector.

4. Experimental Results

In order to demonstrate the effectiveness of our
scheme, we have performed experiments on a number of
the largest ISCAS85 and full-scanned versions of
ISCAS89 benchmark circuits. The experiments were run

on a Pentium I1 processor with a speed of 350 MHz and
a 32 Mbyte RAM. We have used the test sets generated
by MinTest [14], which are highly compacted test sets,
that achieve 100% fault coverage of the detectable faults
in each circuit. Test cubes were generated from each
test set as this has the advantage of keeping unnecessary
assignments as x’s, which enables higher compression.
Then, the test vectors were sorted to maximize the
compression. In this work, test vectors were sorted based
on a greedy algorithm. Test vectors sorting based on the
0-distance, the 1-distance, and the O/l-distance was
performed. For both the 0-distance and 011 -distance
sorting, the test vector with more 0’s was selected as the
first vector. However, for the 1-distance sorting, the
vector with more 1’s was selected as the first vector.

The test sets were partitioned into blocks of sizes 8x8
and 16x16, respectively. Then, the proposed encoding
algorithm was applied for each case separately as shown
in Table 6. The second column in the table shows the
scan size, which is basically the width of a test vector.
The third column indicates the number of test vectors in
the test set. The compression ratio is computed as:

#Original Bits - #Compressed Bits

#Original Bits
Comp. Ratio = - XI00

58

As can be seen, the effectiveness of the proposed
encoding algorithm is clearly demonstrated as high
compression ratio was obtained for all the circuits. For
most of the circuits, sorting based on the Oll-distance on
an 8x8 block size produced the best results.

The last column in Table 6 shows the total CPU time
used for compressing the test vectors based on the two
block sizes and based on the three types of distance
sorting, i.e. the total CPU time used to produce the best
result, which is highlighted in the table.

Based on the compression results in Table 6, our
technique achieves an average compression ratio of
around 54% based on highly compacted tests. In Table
7, we compare the compression ratio obtained by our
technique with that obtained by the techniques proposed
in [7] and [4]. It is important to point out that although
the test sets used in our work are different from those
used in [7] and [4], they are considerably smaller. As can
be seen from the table, for all the compared circuits, our
technique achieves significantly higher compression
ratio than the technique in [4]. Furthermore, in four of
the circuits, out of seven, our technique achieves higher
compression ratio than the technique in [7]. It should be
observed here that for the three circuits where the
technique in [7] achieves higher compression ratio, their
original test sets are significantly larger, i.e. they contain
much more redundancy, which leads to higher
compression ratio. For example, the original test set used
in [7] for the circuit c7552 is more than four times larger
than the original test set we used.

All the compressed test sets were decoded and
verified by fault simulation. The decoding algorithm is
very fast and the decoding time for each test set was in
fractions of a second.

5. Conclusions

In this paper, a fast and very efficient compression/
decompression scheme for testing systems-on-a-chip has
been presented. The technique is based on encoding the
test data by geometric shapes. The test data is partitioned
into blocks and then each block is encoded separately.
To increase the compression ratio, the scheme exploits
test vectors reordering, the block size, the type of bit to
be encoded, and whether or not to encode the block.
Experimental results on ISCAS85 and full-scanned
versions of ISCAS89 benchmark circuits demonstrate
the effectiveness of the technique in achieving high
compression ratio. An average of 54% compression
ratio is achieved on highly compacted test sets. In this
work, we assumed that the decompression of test data is
performed in software by an embedded processor.
Hardware implementation of the decompression
algorithm will be investigated in future work.

Acknowledgment

The authors would like to thank King Fahd
University of Petroleum & Minerals for support.

References

[I] T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An
Efficient Method for Compressing Test Data,” Proc. of Int. Tesr
Conference, pp. 191-199, 1997.
[2] K. Chakrabarty, B.T. Murray, J. Liu, and M. Zhu, “Test
Width Compression for Built-In Self-Testing,” Proc. of
Inrernarional Tesr Conference, pp. 328-337, 1997.
[3] M. Ishida, D.S. Ha, and T. Yamaguchi, “COMPACT: A
Hybrid Method for Compression Test Data,” Pruc. qf VLSI Tesr
Symposium, pp. 62-69, 1998.
[4] A. Chandra and K. Chakrabarty, “Test Data Compression
for System-On-a-Chip using Golomb Codes,” Proc. qf IEEE
VLS1 Test Symposium, 2000.
[5] J. Rajski, J. Tyszer, and N. Zaccharia, “Test Data
Decompression for Multiple Scan Designs with Boundary
Scan,” IEEE Trans. Computers, pp. 1180-1200, Nov. 1998.
[6] S. Chakradhar and A. Raghunathan, “Bottleneck Removal
Algorithm for Dynamic Compaction in Sequencial Circuits,”
IEEE Trans. Computer-Aided Design, 1997.
[7] A. Jas and N.A. Touba, “Using an Embedded Processor for
Efficient Deterministic Testing of System-on-a-Chip,’’ Pmc. of
IEEE Int. Conf. on Computer Design (ICCD), 1999.
[8] A. Jas and N.A. Touba, “Test Vector Decompression via
Cyclical Scan Chains and its Application to Testing Core-Based
Designs,” Proc. of Int. Test Conj, pp. 458-464, 1998.
191 A. Jas. J.G. Dastidar and N.A. Touba, “Scan Vector
Compression/ Decompression Using Statistical Coding,” Proc.
of Inr. Tesr Conference, pp. 458-464, 1998.
[lo] A. Jas, K. Mohanram, and N.A. Touba, “An Embedded
Core DFT Scheme to Obtain Highly Compressed Test Sets,”
Proc. of IEEE Asian Tesr Symposium, 1999.
[113 R. Chandramouli, and S. Pateras, “Testing Systems on a
Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.
[I21 Y. Zorian, E.J. Marinissen, and S. Dey, “Testing
Embedded-Core Based System Chips,’’ Proc. qf lnt. Tesr
Conference, pp. 130-143, 1998.
[131 G. Gibson et-al. Digital Compression fur Multimedia,
Morgan Kaufmann Publishers, Inc., 1998.
[I41 1. Hamzaoglu and J. H. Patel, “Test Set Compaction
Algorithms for Combinational Circuits”, Proc. Inr. Con$
Computer-Aided Design, Nov. 1998.
[151 M. Schulz, E. Trischhler, and T. Sarfert, “SOCRATES: A
Highly Efficient Automatic Test Pattern Generation System,”
IEEE Trans. Computer-Aided Design, pp. 126-137, Jan. 1988.
[16] I. Chang and C. Lin, “Test Set Compaction for
Combinational Circuits,” lEEE Trans. Computer Aided
Design, pp. 1370-1378, Nov. 1995.
[I71 I. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST
A Method to Generate Compact Test Sets for Combinational
Circuits,” Proc. oflnt. Test Conference, pp. 194-203, 1991.
[18] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy,
“Cost-Effective Generation of Minimal Test sets for Stuck-at
Faults in Combinational Circuits,” IEEE Trans. Compurer
Aided Design, pp. 1496-1504, Dec. 1995.

59

An Efficient Test Vector Compression Technique Based on Geometric Shapes

Saif al Zahir’, Aiman El-Maleh’, and Esam Khan2

’ University of Wisconsin, Computer Science and Information Systems Department., WI, USA
King Fahd University of Petroleum and Minerals, Dhahran 3 1261, Saudi Arabia

. Email: saif-zahir@yahoo.com, (aimane,esamkhan}@ccse.khpm.edu.sa

Abstract

One of the prime challenges of testing a system -on-a-
chip (SOC) is to reduce the required test data size.
In this paper, we introduce a novel geometric shapes
based compression / decompression scheme that
substantially reduces the amount of test data and hence
reduces test time. The proposed scheme is based on
reordering the test vectors in such a way that enables the
generation of geometric shapes that can be highly
compressed via perfect lossless compression.
Experimental results on ISCAS benchmark circuits
demonstrate the effectiveness of the proposed technique
in achieving very high compression ratio. Compared to
published results, our technique achieves signijkantly
higher compression ratio.

1. Introduction

Due to the rapid advancement in VLSI technology, it
is possible to build very large systems containing
millions of gates on a single integrated circuit. This has
resulted in a new paradigm for the design of integrated
circuits where a system-on-a-chip (SOC) is constructed
based on pre-designed and pre-verified cores and user
defined logic (UDL). As the complexity of systemson-
a-chip continues to increase, the difficulty and cost of
testing such chips is increasing rapidly [6], [7].

One of the challenges in testing SOC is dealing with
the large amount of test data that must be transferred
between the tester and the chip. The amount of time
required to test a chip depends on the size of test data
and the channel speed of data transfer. The cost of
automatic test equipment increases significantly with the
increase in their speed, channel capacity, and memory.
Thus, reducing test storage and test time is one of the
challenges for testing SOCs.

Applying lossless compression techniques can reduce
test storage and test time, which is the objective of this
work. Lossless compression techniques provide for the
exact reconstruction of the original data from its

0-7803-7057-010 1/$10.00 02001 IEEE.

compressed version. Run length coding, Huffman
codes, Lempel-Ziv algorithms, and arithmetic codes are
examples of lossless compression [8]. Several
compression/decompression techniques are proposed in
the literature to reduce test memory requirements and
test time. All the proposed compression techniques are
lossless and most of them attempt at utilizing either
Huffman coding, run-length coding, or variations of
these methods. Some sort of vector sorting to facilitate
higher compression ratio precedes the implementation of
these techniques. In [I], Burrows-Wheelers (BW)
transformation is applied on the test data to produce
longer and fewer runs, and then run length coding is
applied to compress the transformed data. In [4], a
statistical compression scheme is proposed that is based
on variable length codewords to encode fixed length
blocks of bits in test data. In [3], a compression scheme
is proposed that uses careful ordering of the test data and
formations of cyclical scan chains to achieve
compression with run-length codes. In this scheme, a
codeword is used to encode a block of data based on the
number of zeros followed by a one in that block.
Golomb code is used in [2], which is a variable-to-
variable run-length code, to enhance the scheme
described above. It divides the runs into groups, each is
of size m. The number of groups is determined by the
length of the longest run, and the group size m is
dependent on the distribution of test data. In [9], a
compression scheme using an embedded processor on a
SOC is proposed. This scheme is based on generating
the next test vector from the previous one by storing
only the information about how the vectors differ. In
[SI, a different approach is proposed to design a core that
can be tested with fewer number of test vectors.

In this paper, we introduce a novel and very efficient
compression scheme for deterministic testing of SOCs
based on geometric shapes. This scheme is designed
based on test cubes to maximize the compression ratio.
Test vector decompression is performed on chip and is
implemented either in hardware or software. For
hardware decompression option, a decoding circuitry is
placed on the chip to perform the decompression

1561

mailto:saif-zahir@yahoo.com

algorithm. However, for software decompression option,
the compressed data is loaded into an embedded core.
The embedded core will then execute the decompression
algorithm and decompress the test data, which is then
applied to the circuit under test. The decompression
algorithm can be stored in a ROM on chip. This
approach ,can reduce both the amount of test data that
must be stored on the tester and the test time.

2. The Proposed Encoding/Decoding Algorithm

The proposed encodingldecoding algorithm is based
on geometric shapes. In this work, we limited those.
shapes to the basic four namely: point, line, triangle, and
rectangle as shown in Table 1. The choice of those
shapes is made based on the following: (i) those shapes
are bounded by a maximum of two point coordinates
that can be encoded with a small number of bits; (ii) they
are the most frequently encountered shapes in the test
sets.

The following steps summarize the encoding process
of the proposed algorithm:

Step 1. Test vectors sorting:

This step is crucial and has a significant impact on the
compression ratio as inappropriate sorting may cause
lower compression ratio. In this step, we aim at
generating clusters of either zeros or ones in such a way
that it may partially or totally be fitted in one or more of
the geometric primitives shown in Table 1. Several
sorting scenarios have been considered and investigated.
In this work, we used a simple correlation-based sorting
technique. This technique works as follows: At first, we
chose the vector with the maximum number of zeros to
become the first vector in the sorted vector set.
Although this choice may not produce the optimal
sorting of vectors, it was found to be a good heuristic
based on experimentation. To determine the second
vector, the “distance”of each of the remaining vectors to
this vector is calculated and the vector that generates the
maximum distance, i.e., most correlated, is chosen to be
the second vector in the sorted set and so on. The
“distance” between two vectors can be computed based
on either the OS, referred to as the zero -distance, or the
l S , referre d to as the one-distance. For example, to
compute the zero-distance between two vectors, VI and
v2, we do the following. For each O’in VI, we assign a
weight of 1.0 to each of its immediate (vertical and
diagonal) O’neighbor, 0.25 to each of its imme diate X ’
neighbor, and 0.0 to each of the immediate ‘1 ’neighbor
in v2.
weight of 0.25 to each of its immediate 0’ or X ’
neighbor, and 0.0 to each of the immediate ‘l’neighbor
in v2. A weight of 0.0 is given for all other cases. The
assignment of a 0.25 weight for an X ’ to each of its

Furthermore, for each X ’ in VI, we assign a

Table 1. The primitive geometric shapes.

Lines I Triangles I Rectangle

I I I I I

immediate neighbor be it an X’or a O’is chosen due to
the following reasons. First, this weight may help in
completing or generating additional geometric shapes
that can lead to a better solution. Second, this can help
in generating blocks filled by X S which can be
minimally encoded. Different weights have been
experimented with, and a weight of 0.25 has been found
to produce better results in most of the cases. The one-
distance can be calculated similarly.

Since the first vector chosen is the one with the
largest number of zeros, we performed sorting based on
the zero-distance. In Table 2, we show a simple example
to illustrate this sorting procedure. Let VI, v2, and v3 be
three test vectors to be sorted using the zero-distance
approach. Then, zero-distance(vl,v2) = (0.0 + 0.25) +
(0.0 + 0.25 + 0.25) + (0.25 + 0.25 + 0.25) + (0.25 +
0.25 + 1) + (0.25 + 1) = 4.25, and zero-distance
(vl,v3)= (1.0 + 1.0) + (0.25 + 0.25 + 0.0) + (1.0 + 0.0 +
1.0) + (0.0 + 1.0 + 0.25) + (1.0 + 0.25) = 7.0. Based
on the calculated distances, the sorting scheme will
choose the order (VI, v3, v2), as shown in Table 2. Note
that this sorting produces geometric shapes that can be
encoded efficiently, as shown in the table. However, if
the vectors are sorted using the order (VI, v2, v3), more
shapes would have been needed to cover the same
number of Os. This sorting scheme produced good
results in most cases compared to other scenarios.

Table 2. An example of test vector sorting.

1562

Step 2. Test Data partitioning

A set of sorted test vectors, M, is represented in a
matrix form, RxC, where R is the number of test vectors
and C is the length of each test vector. The test data is
segmented into LxK blocks each of which is NxN bits,
where L is equal to [R / N ~ and K is equal to rC/N1.
For test vectors whose columns and/or rows are not
divisible by the predetermined size of block N, a partial
block will be produced at the right end columns andor
the bottom rows of the test data. Since the size of such
partial blocks can be deduced based on the vector length
and the block size, the number of bits used to encode the
coordinates of the primitives can be less than log N . The
decoder recognizes those special cases and decodes them
properly.

Step 3. Encoding process

As mentioned earlier, the encoding process will be
applied on each NxN block independently. The
procedure of encoding is as follows:
(I) Extraction of shapes: Let the type of the bit to be
encoded be b (b is either 0 or l), then for each bit b, the
largest shape covering bit b is extracted for each
primitive geometric shape type (shown in Table 1). For
example, in the sorted vectors in Table 2, extraction of
shapes covering the first 0 produces a line of type 1, a
line of type 2, a line of type 3, a rectangle of type 1, a
triangle of type 2, and a triangle of type 4.
(Ii) Covering problem: A covering problem is then
solved based on the extracted shapes in (I) to identify the
shapes covering all the bits to be encoded, with the
smallest number of bits.
(iii) Steps (i) and (ii) are performed once for covering
the zeros and another time for covering the ones. The
block is then encoded based on the one that produces
better results.

The format for encoding the shapes in a block is done
as illustrated in Figure 1. For each block, if the number
of bits needed to encode the shapes is larger than the
number of bits in the block, then such a block is not
encoded and the same test data is used. Otherwise, the
block is encoded. If the block can be encoded with one
rectangle covering all bits in the block, then such a block
is marked as a block that is filled with either Os or 1 s. In
this case, two bits are sufficient to encode the block
instead of encoding it as a rectangle. Otherwise, the
block is encoded with the geometric primitives. When
encoding a block that contains geometric shapes, the
number of shapes is encoded first followed by the
encoding for each shape.

For this scheme, the decoding process is simple and
straightforward. In this work, it is assumed that an
embedded processor on chip will implement the decoder.

Encode as:
Encode as:

f For each shape \

This case means all bits in this block are either zeros and Xs
(which will be encoded as 010) , or ones and Xs(which will

If shapes are used to encode zeros then 10 will be used otherwise
This indicates the direction of the triangle as shown in Table 1.

be encoded as 01 1) ,

Figure 1. Schematic diagram of the encoding format.

A framework illustrating the details of how the test
vectors can be transferred from the embedded processor
to the tested parts of the chip has been outlined in [9]. A
similar framework can be used for our decoding
algorithm.

3. Experimental Results

In order to demonstrate the effectiveness of our
scheme, we have performed experiments on a number of
the largest fdl-scanned versions of ISCAS89 benchmark
circuits. We have used the test cubes obtained using the
Mintest program [101 with dynamic compaction.

The test vectors were sorted to maximize the
compression. In this work, test vectors were sorted
greedily based on the zero-distance measure starting
with the test vector with the largest number of Os. The
test sets were partitioned into blocks of sizes 8x8, 16x16,
and 32x32 respectively. Then, the proposed encoding
algorithm was applied for each case separately as shown
in Table 3. The second column in the table shows the
scan size, which is basically the width of a test vector.
The compression ratio is computed as:

1563

Table 3. Compression results of the proposed
scheme.

~15850
~35932

Table 4. Comparison with Golomb codes [2].

68.96 23897 47.11 40718 41.31
77.85 6248 0.0 28208 77.85

Proposed Golomb [2]
Technique Reduction

Bits
I I I I I

s9234 I 54.51 I 17865 I 43.34 I 22252 19.72
~13207 I 84.86 I 25011 I 74.78 I 41664 I 42.37

~38417 1 60.55 1 64988 I 44.12 I 92055 1 29.40
s38584 I 64.17 I 71339 I 47.71 I 104111 I 31.48

#Original Bits - #Compressed Bits

Original Bits
Comp. Ratio = X I 0 0

As can be seen from the table, the best compression ratio
obtained is dependent on the block size used. However,
for most of the cases a block size of 8x8 produces the
best results (which are highlighted in the table). The
effectiveness of the proposed encoding algorithm is
clearly demonstrated as very high compression ratio was
obtained for all the circuits (over 54%). The encoding
algorithm is very fast as the CPU time for encoding
each test set, for the three block sizes, was less than a
minute. Since the encoding algorithm is fast and since
the size of the block that produces the best results is
dependent on the test set, encoding can be performed for
the three block sizes and the best result is chosen.
In Table 4, a comparison between our technique with the
one proposed in [2] is shown. The last column shows
the percentage reduction in the number of compressed
bits obtained by our technique relative to what is
obtained in [2]. As can be seen from the table, for all the
circuits, our technique achieves significantly higher
compression ratio. Our technique reduces the size of
compressed bits by 20%78% more than the size of
compressed bits in [2]. It is interesting to observe that
for the circuit ~35932, while the technique in [2]

achieved 0.0% compression, our technique achieved
77.85% compression.

4. Conclusions

In this paper, a new fast geometric-shapes based
compressioddecompression scheme has been presented.
In this scheme, the test data is first sorted so that we
generate the minimum number of geometric shapes to be
encoded in order to maximize the compression ratio.
Then, the sorted data is partitioned into blocks and each
block is encoded separately. The scheme exploits the
block size, the type of bits to be encoded, and whether or
not to encode the block. Based on experimental results,
the proposed technique achieved a very high
compression ratio. Compared to compression results
based on Golomb codes, our technique reduced the size
of compressed bits by 2@78% as shown in Table 4. In
this work, we assumed that the decompression algorithm
is implemented in software and will be executed by an
embedded processor on chip.

Acknowledgment

This work is supported by King Fahd University of
Petroleum & Minerals (KFUPM), Dhahran, Saudi
Arabia, under project #FT/2000-07.

References

[l] T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An
Efficient Method for Compressing Test Data,” Proc. Int. Test
Con$, pp. 191-199, 1997.
[2] A. Chandra and K. Chakrabarty, “Test Data Compression
for System-On-a-Chip using Golomb Codes,” Proc. of IEEE
VLSI Test Symp., pp. 113.120, 2000.
[3] A. Jas and N.A. Touba, “Test Vector Decompression via
Cyclical Scan Chains and its Application to Testing Core -Based
Designs,” Proc. oflnt. Test Con$, pp. 458.464, 1998.
[4] A. Jas, J.G. Dastidar and N.A. Touba, ‘Scan Vector
Compression/ Decompression Using Statistical Coding,” Proc.
oflnt. Test Con$, pp. 458-464, 1998.
[5] A. Jas, K. Mohanram, and N.A. Touba, “An Embedded
Core D.FT Scheme to Obtain Highly Compressed Test Sets,”
Proc. of IEEE Asian Test Symp., pp. 275-280, 1999.
[6] R. Chandramouli, and S. Pateras, “Tes ting Systems on a
Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.
[7] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing
Embedded-Core Based System Chips,” Proc. of Int. Test Con$,

[8] G. Gibson et-al, Digital Compression for Multimedia,
Morgan Kaufmann Publishers, Inc., 1998.
[9] A. Jas and N. Touba, ‘Using an Embedded Processor for
Efficient Deterministic Testing of Systems on a Chip”, IEEE
Int. Con$ On Computer Design, pp. 418-423, 1999.
[IO] I. Hamzaoglu and J. H. Patel, “Test Se Compaction
Algorithms for Combinational’, Proc. Int. Con$ Computer-
Aided Design, pp. 283-289, 1998.

pp. 130-143, 1998.

1564

