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Abstract 

 
The increasing complexity of systems-on-a-chip with the accompanied increase in their test data size has 
made the need for test data reduction imperative.  In this work, we introduce a novel lossless compression 
technique for testing systems-on-a-chip based on geometric shapes.  The technique exploits reordering of 
test vectors to minimize the number of shapes needed to encode the test data.  After sorting the test vectors, 
the test set is partitioned into blocks and each block is encoded separately. For testing a chip, the 
compressed test data is transferred from the automatic test equipment to the chip where it gets 
decompressed.  Test data decompression is performed on chip and is performed either in hardware using a 
decoding circuitry or in software using an embedded processor on chip. In both cases, test decompression 
requires the availability of memory to store the decoded block. In this work, we have deomnstrated  both 
cases.  The effectiveness of the technique in achieving high compression ratio is demonstrated on the largest 
ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits. The proposed technique achieved 
significantly higher compression ratio in comparison to other test compression techniques. Frequency-
directed run-length (FDR) code is a variable-to-variable code based on encoding runs of 0’s.  In this work, 
we demonstrate that higher test data compression can be achieved based on encoding both runs of 0’s and 
1’s. We propose an extension to the FDR code (EFDR) and demonstrate by experimental results its 
effectiveness in achieving higher compression ratio. In the Geometric-Primitives-Based Compression 
technique, some of the blocks are encoded by storing the real test data because the encoded block size is 
larger than the actual test data block size. Reducing the number of these blocks could result in higher test 
data compression. In this work, we propose hybrid test data compression techniques that exploit the use of 
either FDR or EFDR codes to reduce the number of blocks that are encoded by storing the real test data.  
Based on experimental results, we demonstrate the effectiveness of the proposed hybrid compression 
techniques in increasing the test data compression ratios over those obtained by the Geometric-Primitives-
Based compression technique.   
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 ملخص البحث

 
ان زيادة التعقيد في الشرائح الحاوية لأنظمة متكاملة والذي يتطلب زيادة حجم بيانات الاختبارات الخاصة بهذه الشرائح يجعل الحاجة الى 

بحث، نقدم طريقة جديدة وفعالة لضغط بيانات اختبارات الشرائح الحاوية لأنظمة متكاملة في هذا ال. تقليل حجم هذه البيانات أمرا مهما
هذه الطريقة تعتمد على اعادة ترتيب متجهات الاختبار بهدف . بدون فقد أي معلومات باستخدام الأشكال الهندسية الأساسية ثنائية الأبعاد

ترتيب المتجهات، تقسم البيانات الى قوالب متساوية الحجم ويطبق خوارزم الترميز على وبعد . التقليل من الأشكال اللازمة لترميز البيانات
يمكن . انات مرمزة من جهاز الاختبار الى داخل الشريحة حيث يتم فك رموز البياناتيولاختبار شريحة ما، تنقل الب. القوالب كلا على حدة

تا الحلتين، يحتاج فك الرموز الى كمية من الذاكرة المؤقتة لتخزين قطعة من وفي كل. فك رموز البيانات باستخدام برنامج أو جهاز خاص
نتائج التجارب على الدوائر القياسية . في هذا البحث، تم تنفيذ كلتا الطريقتين السابقتين لفك رموز البيانات. القوالب التي تم فك رموزها
(ISACS85 & ISCAS89)لقد تمكنت هذه الطريقة المقترحة .صول على نسبة ضغط عالية جدا أظهرت فعالية الطريقة المقترحة في الح 

 )FDR( طول الجري  الموجّه بالتّكرار ان شفرة . ختبارلالضغط بيانات ا طرق أخرى مقارنة معمن الحصول على نتائج أفضل بكثير 
تبار أعلى يمكن أن يُحَقَّق على أساس تشفير نبيّن أن ضغط بيانات اخ, في هذا العمل  .٠ متغيّر لمتغيّر على أساس تشفير جري الشفرة

في  .و نبيّن بالنّتائج التّجريبيّة فاعليّتها في تحقيق نسبة انضغاط أعلى ) FDR  )EFDRى شفرة نقترح امتدادًا إل  .١ و ٠لاكلا الجريين 
 تُشَفَّر بتخزين بيانات الاختبار الحقيقيّة لأنّ البالقوبعض من , ستخدام الأشكال الهندسية الأساسية ثنائية الأبعاد المبني على اتكنيك الضّغط

في  .تقليل عدد هذه الكتل يمكن أن يتسبّب في ضغط بيانات اختبار أعلى .حجم الكتلة المشفّر أكبر من حجم كتلة بيانات الاختبار الفعليّ 
 لتقليل عدد الكتل التي تُشَفَّر EFDR أو FDRراتشف نقترح تكنيكات ضغط بيانات اختبار هجين التي تستغلّ الاستعمال لإمّا, هذا العمل

نبيّن فاعليّة تكنيكات ضغط الهجين المقترحة في زيادة نسب ضغط بيانات , تجريبيّةالنتائج ال  بناء على  .بتخزين بيانات الاختبار الحقيقيّة
 .الأساسية ثنائية الأبعاد ستخدام الأشكال الهندسية المبني على االاختبار على هؤلاء المحصولين بتكنيك الضّغط 

   



 1

 

1.  Introduction 
 

With today’s technology, it is possible to build complete systems containing millions of transistors on a 

single chip.  Systems-on-a-chip (SOC) are comprised of a collection of pre-designed and pre-verified cores 

and user defined logic (UDL). As the complexity of systems-on-a-chip continues to increase, the difficulty 

and cost of testing such chips is increasing rapidly [1], [2].  To test a certain chip, the entire set of test 

vectors, for all the cores and components inside the chip, has to be stored in the tester memory.  Then, 

during testing, the test data must be transferred to the chip under test and test responses collected from the 

chip to the tester as illustrated in Figure 1.  

Figure 1 Test data transfer between the tester and the circuit under test. 

 
One of the challenges in testing SOC is dealing with the large size of test data that must be stored in the 

tester and transferred between the tester and the chip.  The amount of time required to test a chip depends on 

the size of test data that has to be transferred from the tester to the chip and the channel capacity. 

The cost of automatic test equipment (ATE) increases significantly with the increase in their speed, 

channel capacity, and memory.  As testers have limited speed, channel bandwidth, and memory, the need for 

test data reduction becomes imperative. To achieve such reduction, several compaction and lossless 

compression schemes were proposed in the literature.  

The objective of test set compaction is to generate the minimum number of test vectors that achieve the 

desired fault coverage. There are two main types of compaction, static compaction and dynamic compaction. 

In static compaction, the number of test vectors is reduced after they have been generated. Examples of 
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static compaction algorithms include reverse order fault simulation [3], forced pair merging [4], N_by_M 

[5], and redundant vector elimination (RVE) [6]. In dynamic compaction, the number of test vectors is 

minimized during the automatic test pattern generation (ATPG) process. Examples of dynamic compaction 

algorithms include COMPACTEST [7], and bottleneck removal [8].  

In test data compression, the objective is to reduce the number of bits needed to represent the test data. 

For test data compression, it is essential that the compression is lossless. Run length coding, Huffman codes, 

Lempel-Ziv algorithms, and arithmetic codes are examples of lossless compression [9].  

Several test data compression/decompression techniques were proposed in the literature. These 

techniques can be classified into two categories; one is based on BIST and Pseudo-Random Generators 

(PRG) and the other is based on deterministic test compression. 

Examples of BIST-based compression techniques are test width compression [10], variable length 

reseeding [11], and Design For High Test Compression (DFHTC) [12].  

Deterministic test compression techniques take advantage of the high correlation between test vectors. 

One of these techniques is proposed in [13] and uses Burrows-wheeler (BW) transformation and a modified 

version of run-length coding to encode the test data. This technique has been improved in [14] by applying 

the GZIP compression scheme to strings that are not effectively compressed by run-length coding. Another 

technique proposed in [15] uses what is called variable-to-block run-length coding. In this technique, a 

codeword is used to encode a block of data based on the number of zeros followed by a one in that block. 

This technique is used for compressing fully-specified test data that feeds a cyclical scan chain. A cyclical 

scan chain is used to decompress this data and transfer it to the “test scan chain”. Golomb code is a variable-

to-variable run-length code that is used in [16] to enhance the scheme described above. It divides the runs 

into groups, each is of size m. The number of groups is determined by the length of the longest run, and the 

group size m is dependent on the distribution of test data. Another enhancement to the works done in [15] 

and [16] was proposed in [17]. It uses frequency-directed run-length (FDR) codes, which is another variable-

to-variable coding technique. FDR code outperforms Golomb code based on the observation that the 

frequency of runs decreases with the increase in their lengths. Hence, assigning smaller codewords to runs 

with small lengths and larger codewords to those with larger lengths will decrease the overall cost. In [18], 

statistical coding is used for encoding deterministic test data. The technique uses a modified version of 

Huffman coding as to minimize the bits needed for codewords. Although this technique has less 

compression ratio than Huffman coding, the hardware implementation of the decoder is simpler. Another 

technique was proposed in [19] which performs decompression of test data based on an embedded 

processor. The technique is based on storing the differing bits between two test vectors. It divides each test 

vector into blocks and stores those blocks that are different from the preceding vector. The use of variable 

length input Huffman codes for SOC test data compression has been proposed in [20]. Techniques for 
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resuing scan chains from other cores in a SOC to increase the test data bandwidth have been described in 

[21], and automatic test patern generation techniques for producing test cubes that are suitable for encoding 

using the above technique have been described in [22]. A fault-simulation-based technique to reduce the 

entropy of the test vector set by pattern transformation is described in [23]. Such transformations increase 

the amount of compression that can be achieved on the transformed test set using statistical coding. ATPG 

algorithms for producing test vectors that can more effectively be compressed using statistical codes have 

been described in [24]. Several dictionary-based compression compression methods have recently been 

proposed to reduce SOC test data volume. A dictionary with fixed-length indices is used to generate all the 

distinct output vectors in [25]. A test data compression technique based on LZ77 and LZW methods are 

proposed in [26] and [27], respectively. The former uses a dynamic dictionary and the latter uses a memory 

in the on-chip decoder. A compression technique using dictionary with fixed-length indices is proposed in 

[28]. Commercial test data compression tools that can provide high compression for industrial designs have 

been recently proposed in [29-31]. 

In this work, we introduce a novel compression scheme for deterministic testing of SOCs based on 

geometric shapes.  This scheme is designed based on test cubes to maximize the compression ratio.    Test 

vector decompression is performed on chip and  is implemented either in hardware or software.  For 

hardware decompression option, a decoding circuitry is placed on the chip to perform the decompression 

algorithm. However, for software decompression option, an embedded core is used to execute the 

decompression algorithm and decompress the test data, which is then applied to the circuit under test. The 

decompression algorithm can be stored in a ROM on the chip.  

The techniques in [15-17] are all based on encoding only runs of 0’s. This was motivated based on the idea 

that encoding the difference vectors instead of the actual test vectors may reduce the number of 1’s in the 

encoded data.  However, it was demonstrated in [17] that, in general, better test data compression results are 

achieved, based on both FDR and Golomb codes, by encoding the actual test vectors. Based on test data 

analysis, we have observed that the frequency of runs of 1’s is as significant as runs of 0’s, for many of the 

circuits.  This suggests that encoding both runs of 0’s and 1’s could result in higher test data compression.  

In this work, we propose an extension to the FDR code to encode the test data based on encoding both types 

of runs. Furthermore, we propose hybrid test data compression techniques that exploit the use of either FDR 

or EFDR codes to reduce the number of blocks that are not encoded by the geometric shapes and encoded by 

storing the real test data.  We demonstrate based on experimental results the effectiveness of the proposed 

hybrid compression technique in increasing the test data compression ratios over those obtained by the 

Geometric-Primitives-Based compression technique.   
 
 



 4

2. The Proposed Encoding Algorithm 
 
The proposed encoding algorithm is based on encoding the 0’s or the 1’s in a test set by geometric shapes.  

In this work, we limited those primitive shapes to the basic four, namely: point, line, triangle, and rectangle 

as shown in Table 1. These shapes are the most frequently encountered shapes in any test set. For  

rectangles, a point and two distances are needed to encode the shape which costs 4*log2 N, where N is the 

block dimension. However, lines and triangles can be represented by a point and a distance d and this 

reduces the number of bits needed to encode them by (log2 N)-2 in comparison to encoding them by two  

Table 1 The used primitive geometric shapes. 

points. Two bits are used to determine the type of line or the type of triangle encoded.  

Figure 2 shows the algorithm of the encoder, which consists of the following main steps: 

 

2.1 Test  Set  Sorting  

Sorting the   vectors in a test set is crucial and has a significant impact on the compression ratio.  In this 

step, we aim at generating clusters of either 0’s or 1’s in such a way that it may partially or totally be fitted 

in one or more of the geometric shapes shown in Table 1.  Several sorting scenarios have been considered 

and investigated. In this work, we used a simple correlation-based sorting technique. The sorting may be  
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Figure 2 Test vectors encoding algorithm. 

 

with respect to 0’s (0-sorting), to 1’s (1-sorting) or to both 0’s and 1’s (0/1-sorting).  The technique is based 

on finding the distance D between two vectors A and B that maximizes the clusters of 0’s and 1’s.  

The distance D may be computed with respect to 0’s (0-distance), to 1’s (1-distance) or to 0’s and 1’s 

(0/1-distance) as follows: 

     D (A, B) = ∑
−

=
+++−

1k

0i
)1iB,i W(A)iB,i W(A)1iB,iW(A    

 

where k is the test vector length and  W(Ai ,Bi) is the weight between bits Ai and Bi. Table 2, Table 

3 and Table 4 specify the weights  used in computing the 0-distance, the 1-distance, and the 0/1-

distance between two vectors, respectively.  Note that for i = 0, W(Ai , Bi-1) = 0 and for i = k-1, 

W(Ai , Bi+1) = 0. 

The assignment of a 0.25 weight for an ‘x’ to each of its immediate neighbors be it an ‘x’ or the sorted bit 

(‘0’ for 0-sorting, ‘1’ for 1-sorting, and ‘0’ and ‘1’ for 0/1-sorting) is chosen due to the following reasons.  

First, this weight may help in completing or generating additional geometric shapes that can lead to a better 

Encoder (N) 
      Sort_Test_Set (); 
      Partition_Test_Set (N); 
      For i = 1 to # of segments 
          For j = 1 to # of blocks in i 
             Extract_Shapes (1, j); 
             α1 = Encode_Shapes (); 
             Extract_Shapes (0, j); 
             α0 = Encode_Shapes (); 
             B = # of bits in j + 2; 
             E = min (α0, α1,B);    
             Store_Encoded_Bits (); 
             E_total += E; 
End Encoder; 
 
Extract_Shapes(b, j)  
   For each bit x in block j { 
      If x = b Then { 
         Find the largest line of each type started at x 
         Find the largest triangle of each type such that x is the vertix of the right angle 
         Find the largest rectangle such tha x is its up-left corner 
      } 
   } 
    Solve a covering problem to find the best group of shapes covering all bits b in block j. 
End Extract_Shapes; 



 6

solution.   Second, this can help in generating blocks filled by ‘x’s which can be minimally encoded. 

Different weights have been experimented with, and a weight of 0.25 has been found to produce better 

results in most of the cases.   

Table 2 Weights for the 0-distance between two test vectors. 
 0 1 x 

0 1.0 0.0 0.25 
1 0.0 0.0 0.0 
x 0.25 0.0 0.25 

  

Table 3 Weights for the 1-distance between two test vectors. 

 0 1 x 
0 0.0 0.0 0.0 
1 0.0 1.0 0.25 
x 0.0 0.25 0.25 

   
Table 4 Weights for the 0/1-distance between two test vectors. 

 0 1 x 
0 1.0 0.0 0.25 
1 0.0 1.0 0.25 
x 0.25 0.25 0.25 

In Table 5, we show a simple example to illustrate the impact of sorting on test vector compression. As 

can be seen, sorting the vectors based on the 0-distance requires the encoding of two triangles to encode the 

0’s. However, sorting the vectors based on the 1-distance requires the encoding of one triangle and two lines 

to encode the 1’s. Thus, for this example sorting based on the 0-distance results in higher compression. 

The sorting algorithm requires O(VT2) time; where T is the number of vectors in the test set and V is the 

vector length.   

 

2.2 Test Set Partitioning 

 

A set of sorted test vectors, M, is represented in a matrix form, RxC, where R is the number of test 

vectors and C is the length of each test vector.  The test set is segmented into LxK blocks each of which is 

NxN bits, where L is equal to  NR /  and K is equal to  NC / . A segment consists of K blocks. In other 

words, the test set is segmented into L segments each contains K blocks.  For test vectors whose columns 

and/or rows are not divisible by the predetermined block dimension N, a partial block will be produced at 

the right end columns and/or the bottom rows of the test data.  Since the size of such partial blocks can be 

deduced based on the number of vectors, the vector length, and the block dimension, the number of bits used 
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to encode the coordinates of the geometric shapes can be less than log2 N.  The decoder recognizes those 

special cases and decodes them properly. The partitioning step requires constant time; i.e. it runs in O(1) 

time. 
  

Table 5 An example of test vector sorting. 

v1 0 0 1 X 1 0 X X
v2 0 X 1 1 0 0 0 1Original 

Vectors 
v3 1 1 X 1 1 X 0 1
v2 0 X 1 1 0 0 0 1
v1 0 0 1 X 1 0 X X

Sorted 
Vectors 
(0-dist.) v3 1 1 X 1 1 X 0 1

v3 1 1 X 1 1 X 0 1
v2 0 X 1 1 0 0 0 1

Sorted 
Vectors 
(1-dist.) v1 0 0 1 X 1 0 X X

 

2.3 Encoding process 

 

As mentioned earlier, the encoding process will be applied on each block independently.  The procedure 

Extract_Shapes(b) will find the best group of shapes that cover the bits that are equal to b as shown in the 

algorithm. Encode_Shapes determines the number of bits, α, needed to encode this group of shapes. There 

are two cases that may occur: 

(a) The block contains only 0’s and x’s or only 1’s and x’s. In this case, the block can be encoded as a 

rectangle. However, instead of this, it is encoded as “01” (indicating that the block can be filled by 0’s or 

1’s) followed by the bit that fills the block. Hence, the number of bits to encode the block α = 3. We call 

such blocks filled blocks. 

(b) The block needs to be encoded by a number of shapes. We call such a block encoded block. In this 

case, we need the following: 

• 2 bits to indicate the existence of shapes and the type of bit encoded. If the encoded bit is 0, then the 

code is 10, otherwise it is 11.  

• P = (2*Log2 N – 3) bits to encode the number of shapes, S. If the number of shapes exceeds 2P, then 

the number of bits needed to encode the shapes is certainly greater than the total number of bits in the 

block. In this case, the block is not encoded and the real data is stored. Therefore, selecting    N = 4 or 

less is not effective in our technique because the maximum possible number of shapes in this case = 2P 

= 22*2-3 = 21 = 2 shapes.  Hence, we have experimented with 8x8, 16x16, and 32x32 block sizes. 

• ∑
=

S

i
iL

1
bits; where Li is computed as follows 

- If shape i is a point, Li = 2 + 2*log2 N (shape type + 2 coordinates). 
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- If shape i is a line or a triangle, Li = 2 + 2 + 3*log2 N (shape type + type of line or triangle + 2 

coordinates + distance). 

- If shape i is a rectangle, Li = 2 + 4*log2 N (shape type + 2 coordinates + 2 distances) 

        Therefore, α = 2 + P + ∑
=

S

i
iL

1
 

For partial blocks, the encoder will output the needed bits and the decoder will take care of that. If  α0 

(number of bits needed to encode shapes with 0) and α1 (number of bits needed to encode shapes with 1) are 

greater than B which equals (N*N+2), then it is better not to encode the block. Instead, the real data is stored 

after a 2-bit code (00). We call such blocks real-data blocks.  The procedure Store_Encoded_Bits will 

decide which case is the best (encoding 0’s, encoding 1’s, or storing the real data) based on E, which is the 

minimum of α0, α1, and B. 

There are N2 bits in a block; where N is the dimension of the block. Extracting each type of shape 

covering a bit requires O(N2) time at most (for example, the rectangle). Since we have constant number of 

shapes, the time complexity of extracting all shapes for each block is O(N4). Then, a covering step is 

performed to select the best group of shapes. The maximum number of shapes for any block (before 

selecting) is 10*N2; where 10 is the number of shape types. Therefore, this step requires O(N2). Hence, the 

encoding algorithm for each block requires O(N4) time. There are L*K blocks; where L = 






N
T  and K = 







N
V . Therefore, the total time complexity of the encoding algorithm is O (LKN4) = O (TVN2). Since the 

maximum value of N in our algorithm is 32, then N2 = 1024 at most, which means that N2 is constant. 

Hence, the time complexity of the algorithm is O(TV), which means that the algorithm runs in linear time 

with respect to the size of the test set. The (N2) term gives an indication that the time needed by the encoding 

algorithm increases with the increase in the block size. 

 

3. Decoding Process 

 

One of the main issues when designing a compression scheme for testing data is the implementation of 

the decompressor (or the decoder). The decoder of any compression scheme must be simple enough to 

achieve two requirements, minimizing the time needed for decompression and minimizing hardware 

overhead. Decoders of the compression schemes described in the literature can be classified into three main 

categories:  

1. The scan chains available in the SOC are exploited to implement the decoder with possibly some 

additional logic. 
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2. An FSM is used to decompress the test data. Sometimes, additional hardware is needed. 

3. If there exists an embedded processor in the SOC, a microcode is loaded to this processor and used 

to decode the compressed data. 

In our work, we have implemented the decoder using both the second category, called the hardware 

decoder, and the third category, called the software decoder.  

 

3.1 Software Decoder 

 

Most of the SOC’s have embedded processors and some amount of memory inside the chip. In this case, the 

decoder can be implemented as a microcode executed by the processor to output the original test vectors. In 

our scheme, some amount of temporary memory is needed to store the blocks one after the other until a 

whole segment is decoded. Then, the test vectors of that segment are applied to the scan chains in order. 

Figure 3 shows the pseudo-code of the decoding algorithm. It first reads the arguments given by the 

encoder and computes the parameters needed for the decoding process. These parameters include the 

number of segments, the number of blocks in a segment and the dimensions of the partial blocks. In order to 

reconstruct the vectors, each segment has to be stored before sending its vectors to the circuit under test. For 

each segment, its blocks are decoded one at a time. The first two bits indicate the status of the block as 

follows: 

• 00: the block is not encoded and the following N*N bits are the real test data. 

• 01: fill the whole block with 0’s or 1’s depending on the following bit. 

• 10: There are shapes that are filled with 0’s. 

• 11: There are shapes that are filled with 1’s. 

 

For those blocks that have shapes, the procedure Decode_Shapes is responsible for decoding these shapes. It 

reads the number of shapes in the block and then for each shape it reads its type and based on this it reads its 

parameters and fills it accordingly. 

Based on the arguments read first, the decoder can determine the number of bits needed for each variable 

(e.g. the coordinates and the distances). These are used for the partial blocks when only one block of each 

segment remains and when the last segment is being decoded.  

After all the blocks in a segment  have been decoded, the segment is output to the circuit under test, 

vector by vector.  

Similar to the complexity analysis for the encoding algorithm, we can conclude that the time required by 

the software decoder is O(VT). This means that it runs in linear time with respect to the test set size. It 

should be noted here that this algorithm is much simpler than the encoding algorithm because it does not  
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Figure 3 Test vectors decoding algorithm. 

 

require extracting shapes; i.e. the (N2) term found in the analysis of the encoding algorithm does not exist 

here. 

 
 

Decoder () 
    Read (N, # of segments (L), # of blocks  per segment (K), 
row remainder (R), column remainder (C) ); 
     For i = 1 to # of segments { 
       For j = 1 to # of blocks in i { 
          b1b0 = Read_Bits (2); 
          Case b1b0  
               00 : Read_Bits (N* N); 
               01 : b_type = Read_Bits (1); 
         Fill_Block (j, b_type); 
 10 : Decode_Shapes (0); 
 11 : Decode_Shapes (1); 
          End Case; 
       } 
      Output_Segment (); 
   } 
End Decoder; 
 
Decode_Shapes (b) 
    Num_Shapes = Read_Bits (2log2 N -3); 
    For j = 1 to Num_Shapes 
        Shape_type = Read_Bits (2); 
        Case Shape_type 
              00 : c = Get_Coordinate (); 
        Fill_Point (b,c); 
 01 : t = Get_Type (); 

       c = Get_Coordinate (); 
        d = Get_Distance (); 
        Fill_Line(b,t,c,d); 
 10 :  t = Get_Type (); 
                      c = Get_Coordinate (); 
        d = Get_Distance (); 
        Fill_Triangle(b, t, c,d); 
 11 : c = Get_Coordinate (); 

       d1 = Get_Distance (); 
       d2 = Get_Distance (); 

         Fill_Rectangle (b,c1,d1,d2); 
End Decode_Shapes; 
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3.2 Hardware Decoder 

 

If there exists no embedded processor on chip, some additional hardware is needed for decoding the test 

data. The hardware decoder is implemented using an FSM controlling the data path which consists of some 

counters, registers and some basic gates.  The hardware decoder has been designed and then modeled and 

verified using VHDL [32] . 

 

3.2.1 Data Path Implementation 
 

The data path is shown in Figure 4 and consists mainly of some registers and counters. The registers are: 

• A shift register I is used to hold the input data before loading it to the corresponding register or counter. 

So, the size of this register is the maximum size of all registers and counters, which is 12 bits. A shift-left 

signal (SHL I) is used to shift a bit from the input data to the LSB of I and a clear signal (CLR I) is used 

to reset the register. 

• Another shift register (code) is used to save the type of the shape that is currently decoded (point, line, 

…etc) and the type of that shape if it is line or triangle. The size of this register is 4 bits. Only one signal 

is needed to control this register which is (SHL code) that shifts a bit from the input data to the LSB of 

code. 

• A 1-bit register (B) to save the bit with which the current block is filled. This FF can be loaded from 

either the input data or from I0. So, a MUX is needed to select between these two inputs. The signals 

needed here are Load B and the select signal. 

• A 2-bit register (N) is used to save the block dimension (8, 16 or 32). We need to get the actual size N 

from two bits given by the encoder as follows: 

- 00  N = 8 = 00111 (we start counting from 0). 

- 01  N = 16 = 01111. 

- 11  N = 32 = 11111. 

 

Let the two bits given by the encoder be I1 and I0 and the needed 5 bits be N4N3N2N1N0. Then, we find 

that N4 = I1, N3 = I0, and  N2 = N1 = N0 = 1. The last three bits can be stored as wires connected to VDD. 

Therefore, the only hardware added here is a two-bit register connected directly to the least significant 

two bits of the input shift register I as shown in Figure 4. For this register, only a Load signal is required. 

• Another two 5-bit registers are used to save the row remainder R and the column remainder C. These two 

registers will be loaded directly from the input register I. For these two registers, only a Load signal is 

required. 
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Figure 4 Data path implementation of the decoder. 

 

• In order to know how many bits are to be read for each dimension (for the coordinates and the distances), 

log2 of the current dimension (N, R, or C) is required. In addition, we need to know how many bits are 
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needed to store the number of shapes. This number (P) depends on the dimension of the block N such 

that P = 2*log2 N – 3. All these can be obtained from the N, R and C registers using some combinational 

logic. We illustrate this as follows: 

   First, we want to get log2 N (LN) as follows: 

- N = 00111  LN = 011 (log2 8 = 3). 

- N = 01111  LN = 100 (log2 16 = 4). 

- N = 11111  LN = 101 (log2 32 = 5). 

We can notice that LN2 = N3, LN1 = 3N  and LN0 = N4 XNOR N3. 

We can get the value of P from N as follows: 

- 00111 (N = 8)    011 (2*log2 8 –3 = 3). 

- 01111 (N = 16)  101 (2*log2 16 – 3 = 5). 

-  11111 (N = 32)  111 (2*log2 32 – 3 =7). 

Notice that P2 = N3, P1 = N4 XNOR N3 and P0 = 1. 

For the partial blocks, the dimensions range between 1 and 31. We need to get log2 of these dimensions to 

know how many bits need to be read for the coordinates and distances in these blocks. Let the input (the 

dimension given by the encoder) be A4A3A2A1A0 and the output (the bits needed) be B2B1B0, then the 

following truth table is obtained: 

 

A4 A3 A2 A1 A0 B2B1B0  

1    x   x    x   x 1  0  1 5 bits needed for 16 to 31 

0    1   x    x   x 1  0  0 4 bits needed for 8 to 15 

0    0   1    x   x 0  1  1 3 bits needed for 4 to 7 

0    0   0    1   x 0  1  0 2 bits needed for 2 and 3 

0    0   0    0   1 0  0  1 1 bit needed for 1 

 

Using K-map technique, we get the following equations for B2, B1, and B0: 

- B2 = A4 + A3.  

- B1 = 34 A . A  . (A2 + A1). 

   -    B0 = A4 + 3A  . (A2 + 1A ). 

• The last register needed in the data path is K which holds the number of blocks in a segment. In our 

implementation, we assume that the maximum vector length is 8K. Therefore, the maximum number of 

blocks in a segment is 1K blocks (when the dimension of a block = 8) and hence K is a 10-bit register. 

Now, let us discuss the counters used in the data path: 
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(1) The first counter needed is L which is initially loaded with the number of segments in the test set. We 

assume that the maximum number of vectors in a test set is 32K vectors. Therefore, the maximum 

number of segments = 32K / 8 = 4K. So, the size of L = 12 bits. Whenever a segment is decoded, it is 

sent to the scan chains and L is decremented. When L = 0, the process is terminated. This condition can 

be checked by NORing all bits of L. Another condition that has to be checked is when L = 1 whereby 

the last segment is to be decoded. This can be checked also by NORing all bits of L with inverting L0. 

The signals that we need here are Load and Dec (Decrement).  

(2)  Another counter (BCNT) is required to keep track of the block number within the current segment. The 

size of this counter equals the size of register K which is 10 bits. This counter must start counting from 

0 because it is used for addressing the memory (as will be explained shortly). Therefore, we did not use 

this counter as in the case of the number of segments L. Instead, we added some comparators to check 

for the last block and to check if all blocks in a segment have been decoded. For each segment, BCNT is 

cleared first and then incremented for every block decoded until it equals K, which means that all 

blocks in the current segment have been decoded. This condition can be checked by XNORing every bit 

of BCNT with the corresponding bit of K then ANDing the results. To know when the last block of the 

current segment is to be decoded, BCNT is compared with K-1, which is obtained by decrementing the 

content of K and XNORing the result with BCNT. The signals needed to control BCNT are CLR (Clear) 

and Inc (Increment).   

(3)  In each block, there may be some shapes encoded. To know how many shapes are in the block, a 

counter S is used. The size of this counter = 7 bits (2*log2 32 – 3) which is the maximum possible for all 

block sizes. For each block that has shapes, S is loaded with the number of shapes. Whenever a shape is 

decoded, S is decremented until it reaches 0. Also here we need to check for 0 (similar to L). The 

signals needed are Load and Dec. 

(4)  Four 5-bit counters are used for decoding shapes and writing them to memory. These are RCNT, 

CCNT, Rdist and Cdist. RCNT and CCNT are used to address the bit to be written within the current 

block in the form (row, column), respectively. They are loaded with the coordinate of a shape and then 

incremented or decremented according to the direction of writing. Rdist and Cdist are used for the 

length of writing in each direction. They are loaded with the distance and then decremented until they 

reach 0. Hence, a check for 0 is needed for each. The loading can be from N, R, or I for Rdist and from 

N, C, I or Rdist for Cdist. This depends on the block number, on whether a full block is to be filled or 

only a portion of it and on the type of the shape (line, triangle, or rectangle). For RCNT and CCNT, the 

signals needed are Load, CLR, Inc and Dec. For Rdist and Cdist, the signals are Load, Dec and the 

select signals.  
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(5)  The last counter is a temporary counter (temp) that is used mainly to decide the number of bits to be 

read from input data. Since there are many cases, the value that is loaded to temp must be selected 

depending on the parameter to be read. The values LN|LR, LN|LC, and Minimum are used to select 

between full blocks and partial blocks. Note that Minimum is used to determine the minimum number 

of bits needed to encode a coordinate or a distance. This is used in the case of a partial block. Each 

value is selected in a certain case as shown in Figure 5. For reusing resources, temp is used as a 

temporary register in the case of decoding a triangle. In this case, it is loaded from Cdist. In all cases, 

we need to know when temp = 0 to stop reading data. So, a check for 0 is required. The signals required 

to control temp are Load, Dec and the select signals. 

For hardware implementation as well as for software implementation, some amount of memory is 

required to store a segment before applying its vectors to the CUT. The size of this memory is equal to the 

size of the scan chain times the number of vectors per segment, which is in our case equal to 32 as 

maximum. For the hardware decoder to be simple and fast, we need to address this memory bit-wise. This 

can be achieved by dividing the address into three fields: 

1) Block #: this specifies the block to be decoded among the blocks of the current segment. The size of 

this field =  Klog 2 ; where K = the number of blocks per segment.  

2) Row #: this indicates the row of the current block. The size of this field = log2N = 5 as maximum 

(when N=32). 

3) Column #: this indicates the column of the current block. The size of this field = log2 N  = 5 as 

maximum (when N=32). 

The three counters BCNT, RCNT, and CCNT are used to decide the address of the bit to be written.  

As we mentioned before, the maximum vector length is assumed to be 8K. Therefore, the maximum 

memory size required = 32*8K =  256 Kbit. This needs an address of 18 bits. Since we have 5+5+10 = 20 

bits in the three counters, we need to select the bits to represent the address in each case (N=8, 16, or 32) 

using multiplexers. The outputs of the multiplexers are connected directly to the memory address bus. 

 

3.2.2 Implementation of the FSM 
 

The FSM controlling the decoding process is shown in Figure 5. It consists of 62 states, which means that 

6 FFs plus some combinational logic are enough to implement it. This FSM is designed to decode the whole 

test set, not only one segment or one block. The FSM can be summarized in the following: 

• The decoding process is activated at state S0 when a starting signal start = 1. 
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Figure 5 The FSM of the decoder. 
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• From S1 to S11, the five parameters (block dimension (N), # of segments (L), # of blocks per segment 

(K), row remainder (R), and column remainder (C)) are read and loaded to the appropriate counters and 

registers. Then, the counters used for addressing the memory are initialized in states S12 and S13 and this is 

done for each block. 

• In S14, there are two possibilities: 

(i) There are no shapes to be decoded: in this case the whole block will be filled with either 1 bit (0 

or 1) or filled with real data. In the former case, S15 is visited only once to initialize the bit with 

which the block is filled and then the process goes through states S16, S17 and S18. In the latter 

case, S15 is visited for each bit read. 

(ii) There are shapes to be decoded: in this case the process goes to state S21. 

• States S21 to S24 initialize the block with the complement of the bit with which all shapes are encoded. 

This is important to make sure that all bits in the block have the correct values. When the shapes are 

decoded, the corresponding bits will be overwritten. 

• The number of shapes is read in states S25 to S27. 
 

For each shape, S28 is visited to read the first bit in that shape. 

• The type of the shape is determined in S29. If it is a point or a rectangle, the process continues in S30. 

Otherwise, it goes to S42. 

• States S30 to S33 read the coordinate  of the point and the rectangle shapes. If the shape is a point, it  is 

written in S34. If, on the other hand, it is a rectangle, the process goes to states S36 to S39 to initialize the 

counters and then goes through S34, S40 and S41 until the whole rectangle is written. 

• If the shape is a line or a triangle, the process goes through states S42 to S51 to initialize the counters and 

determine the type of the shape. Then according to the type of the shape and the status of the counters, 

the process goes to one of the states S53 to S60. Then, the process repeats until the shape is written. 

• After every shape is decoded, the number of shapes is decremented in S35. If there are other shapes, the 

process goes back to S28. Otherwise, it goes to S19 in which the number of blocks (BCNT) is 

incremented. If there are still other blocks, the process goes to S13; otherwise it goes to S20 if all blocks 

of the current segment have been decoded. 

• In S20, the segment just decoded is sent to the scan chains and the process waits for an acknowledgment 

to proceed. If there are other segments, the process goes to S12. Otherwise, the process is terminated and 

goes back to the initial state. This is the only case where a mealy output is required. Therefore, we can 

say that our FSM is almost Moore. 
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3.3 Decoder Interface 

 

In this section, we outline the interface between the decoder and the tester and between the decoder and the 

scan chains. First, we discuss the interface of the software decoder and then we discuss the interface of the 

hardware decoder.  

 

3.3.1 Interface of the software decoder 
 

Figure 6 shows the interface between the software decoder and the tester. The decoding program is stored in 

a ROM on chip. When the tester starts sending the encoded data to the processor, the processor reads the 

instructions from the ROM and executes them in order to decode the test data. Then, it writes the decoded 

data to the memory. After a whole segment is decoded, the processor will send a signal to the controller to 

start applying the test vectors to the scan chains. It should be stated here that there must be some 

synchronization mechanism between the processor and the tester in order to avoid overflow. 

 

Figure 6 Interface of the software decoder. 
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Figure 7 Interface of the hardware decoder. 
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is a variable-to-variable coding technique based on encoding runs of 0’s. In FDR code, the prefix and the 

tail of any codeword are of equal size. In any group Ai, the prefix is of size i bits. The prefix of a group is 

the binary representation of the run length of the first member of that group. When moving from group Ai 

to group Ai+1, the length of the code words increases by two bits, one for the prefix and one for the tail. 

Tester

Memory

 Hardware
decoder

Controller
Scan chain 1

Scan chain 2

Scan chain n



 20

Runs of length i are mapped to group Aj, where ( )  13log2 −+= ij . The size of the i’th group is equal to 2i, 

i.e., group Ai contains 2i members. The FDR code for the first three groups is shown in Table 6. 

Table 6 FDR code. 

 

 

 

 

 

 

 

 

 

 

 

4.1 Test Data Analysis   

Based on test data analysis, it has been observed that test sets contain a large number of runs of 1’s in 

addition to runs of 0’s. By considering both types of runs, the total number of runs will decrease, which 

could result in higher test data compression.  

To support this observation, we have analyzed test data for the largest ISCAS 85 and full-scanned 

versions of ISCAS 89 circuits. We have used the test sets generated by MinTest [6], using both static and 

dynamic compaction. Test sets generated by dynamic compaction option have the letter d appended in their 

name. All the test sets used achieve 100% fault coverage of the detectable faults in each circuit.  Test sets 

generated based on static compaction were relaxed, as this has the advantage of keeping unnecessary 

assignments as X’s, which enables higher compression.   

Given a relaxed test set, techniques based on encoding only runs of 0’s fill all the X’s by 0’s to reduce the 

number of runs that need to be encoded. However, to encode both runs of 0’s and 1’s in a test set, X’s are 

filled by 1’s if they are bounded by 1’s from both sides, otherwise they are filled by 0’s. This results in a 

reduction in the total number of runs that need to be encoded.  

Table 7 shows the analysis of the number of runs on the used test sets. The first column indicates the 

circuit name. The second column shows the number of runs of 0’s in the test set assuming that only runs of 

0’s will be encoded. The third, fourth, and fifth columns indicate the number of runs of 0’s, runs of 1’s, and 

the total number of runs, respectively, assuming that both types of runs will be encoded.  As can be seen 

from the table, for most of the circuits, the number of runs of 1’s is as significant as the number of runs of 

0’s.  For all the circuits, the total number of runs decreases and for some circuits the reduction is significant.  

Group Run 
Length Group Prefix Tail Code Word

0 0 00 A1 
 1 

0 
1 01 

2 00 1000 
3 01 1001 
4 10 1010 

A2 

5 

10 

11 1011 
6 000 110000 
7 001 110001 
8 010 110010 
9 011 110011 

10 100 110100 
11 101 110101 
12 110 110110 

A3 

13 

110 

111 110111 
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Table 7 Analysis of number of runs in test data. 
  Encoding

 0 Runs 
Encoding  

0 and 1 Runs 
Circuit Original 

Bits 
0 Runs 0 Runs 1 Runs Total 

 Runs 
c2670 10252 1677 505 414 919 
c5315 6586 1628 561 454 1015 
c7552 15111 2695 652 1111 1763 
s13207 163100 4804 2615 1157 3772 
s15850 57434 4635 2514 1106 3620 
s35932 21156 7554 1236 1071 2307 
s38417 113152 20970 5331 3761 9092 
s5378 20758 2915 1072 806 1878 
s9234 25939 3843 1770 980 2750 

s13207d 165200 5021 2581 1210 3791 
s15850d 76986 5329 2644 1202 3846 
s35932d 28208 10018 235 346 581 
s38417d 164736 29473 5773 4834 10607 
s38584d 199104 16814 7585 4074 11659 
s5378d 23754 3537 1237 1001 2238 
s9234d 39273 4816 2347 1212 3559 

 

 

Figures 8, 9, and 10 show the frequency of both runs of 0’s and runs of 1’s for test sets of the circuits: 

s15850, s9234, and s35932d, respectively. As can be seen from the figures, the frequency of runs of 1’s 

follow a similar shape to that of runs of 0’s, although with a smaller magnitude. For the circuit in Figure 8, it 

can be observed that there are more runs of 1’s than 0’s for run length < 5, but for  run length > 5 there are 

more runs of 0’s. For the circuit in Figure 9, we can see that  runs of 0’s with any length are on the average 

more that the runs of 1’s with the same length. For the circuit in Figure 10,  it can be observed that runs of  

1’s of small and large run length are more than those of 0’s. But for middle run length ranges,  the number of 

both 0 and 1 runs is comparable. 
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Figure 8 Distribution of runs of 0’s and 1’s for circuit s15850. 
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Figure 9 Distribution of runs of 0’s and 1’s for circuit s35932d. 
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Figure 10 Distribution of runs of 0’s and 1’s for circuit s9234. 

 
 

5. Extended  FDR (EFDR) Code 

To encode both runs of 0’s and 1’s, we extend the FDR code based on adding an extra bit to the 

beginning of a code word to indicate the type of run.  If the bit is 0, this indicates that the code word is 

encoding a run of type 0, otherwise it encodes a run of type 1. This code, called Extended FDR (EFDR), is 

shown in Table 8. It should be observed that this code is a direct extention to the FDR code shown in Table 

6. However, in this code we do not have run length of size 0. This is because we are encoding both runs of 

0’s and runs of 1’s. Note that runs of 0’s are strings of 0’s followed by a 1, while runs of 1’s are strings of 

1’s followed by a 0, i.e.  runs of 1’s of length i are the complement of runs of 0’s of the same length, and 

vice versa. As with FDR code, in this code when moving from group Ai to group Ai+1, the length of code 

words increases by two bits, one for the prefix and one for the tail. Runs of length i are mapped to group Aj, 

where ( )  12log2 −+= ij . The size of the i’th group is equal to 2i+1, i.e., group Ai contains 2i+1 members. 

 



 23

Table 8 Extended FDR (EFDR) code. 

 

 

 

 

 

 

 

 

 

 

To illustrate the use of this code, let us consider an example. Consider the test 

T={0110001111111000000001}, of size 22 bits.   The number of 0 runs in this test is 10. However, the 

number of both 0 and 1 runs is 5. Encoding this test using FDR code results in the encoded test TFDR={01 00 

1001 00 00 00 00 00 00 110010} of size 26 bits. Thus, for this example the number of bits needed to encode 

the test data using FDR code is more than the actual size of the original test data. However, encoding this 

test using EFDR code, we obtain the encoded test TEFDR={000 100 001 11011 0110000}, of size 21 bits.  

Obviously, for this example EFDR code outperforms FDR code. Note that FDR code suffers whenever we 

have runs of 1’s, as each 1 bit will be encoded by a separate 0 run of length 0.  

 

6. Hybrid Test Compression Scheme  
 

   As it was mentioned before, in the Geometric-Primitives-Based compression technique there are some 

blocks which are encoded by storing the real test data. This is because the size of these blocks  when they 

are encoded is larger than thier original size. So, no compression is achieved for such blocks. In order to 

reduce the number of these blocks, we propose to combine  the Geometric-Primitives-Based compression 

technique with either the FDR or the EFDR compression techniques. In this case, the FDR or EFDR 

techniques are applied to encode a block. The block is encoded with these techniques if its encoding size is 

less than the encoding size with geometric shapes. The block encoding format for the hybrid technique 

combining the geometric and FDR compression techniques, called GFDR, is shown in Table 9. Note that the 

difference between this encoding scheme and the Geometric encoding scheme is in the header code starting 

with 00. So, blocks that will still be encoded with real test data will have an extra bit in the header. The other 

blocks have exactly the same format. The block encoding format for the hybrid technique combining the  

Group Run 
Length 

Group 
Prefix

Tail
 

Code Word 
Runs of 0’s

Code Word 
Runs of 1’s

1 0 000 100 A1 
 2 

0 
1 001 101 

3 00 01000 11000 
4 01 01001 11001 
5 10 01010 11010 

A2 

6 

10 

11 01011 11011 
7 000 0110000 1110000 
8 001 0110001 1110001 
9 010 0110010 1110010 

10 011 0110011 1110011 
11 100 0110100 1110100 
12 101 0110101 1110101 
13 110 0110110 1110110 

A3 

14 

110 

111 0110111 1110111 
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Table 9 Geometric-FDR (GFDR)  & Geometric-EFDR (GEFDR) compression block encoding format. 

 
 

 

 

 

 

 

 

geometric and EFDR compression techniques, called GEFDR, is similar to GFDR with the difference of 

using EFDR instead of FDR. 

Test data decompression will be done on chip and the decoded test will then be applied to the chip under 

test. The decoders for the proposed hybrid techniques are a direct combination of the decoders for the 

Geometric, FDR[17], and EFDR techniques. 

 

6. Experimental Results 

 

In order to demonstrate the effectiveness of our scheme, we have performed experiments on a number of 

the largest ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits. The experiments were run 

on a Pentium II processor with a speed of 350 MHz and a 32 Mbyte RAM. We have used the  test sets 

generated by MinTest [6], which are highly compacted test sets, that achieve 100% fault coverage of the 

detectable faults in each circuit.  Test cubes were generated from each test set as this has the advantage of  

keeping unnecessary assignments as x’s, which enables higher compression. Then, the test vectors were 

sorted to maximize the compression. In this work, test vectors were sorted based on a greedy algorithm. Test 

vectors sorting based on the 0-distance, the 1-distance, and the 0/1-distance was performed. For both the 0- 

distance and 0/1-distance sorting, the test vector with more 0’s was selected as the first vector. However, for 

the 1-distance sorting, the vector with more 1’s was selected as the first vector. Table 10 shows the 

compression ratio of the three sorting criteria on the 8x8 block size. As shown in the table, the 0/1 sorting 

gives the best results most of the  time. Therefore, we used this sorting criterion for our experiments.  

The compression ratio is computed as:  
 

100
 #

 #  #
 . X

BitsOriginal
BitsCompressedBitsOriginal

RatioComp
−

=  

Header 
Code 

Encode Block 

000 with real test data 
001 with FDR (EFDR) codes 
010 as filled  with 0’s 
011 as filled with 1’s 
10 with geometric shapes covering 0’s 
11 with geometric shapes covering 1’s 
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Table 10 Compression results of the proposed scheme for different sorting criteria. 

Circuit 1-sorting 0-sorting 0/1-sorting
s13207 84.952 84.724 85.561 
s15850 69.646 69.782 70.188 
s35932 65.177 65.889 62.231 
s38417 61.84 61.677 62.226 
s38584 65.203 65.186 65.594 
s5378 55.805 55.658 57.94 
s9234 54.989 55.921 57.22 

 

Table 11 Compression results of the proposed scheme for various block sizes. 

Circuit Scan 
Size 

No.
Vec 8x8 16x16 32x32 CPU 

(sec) 
s13207 700 236 85.561 86.628 85.316 29 
s15850 611 126 70.188 69.253 65.776 10 
s35932 1763 16 62.231 74.688 78.123 5 
s38417 1664 99 62.226 59.304 54.245 54 
s38584 1464 136 65.594 65.085 61.13 33 
s5378 214 111 57.94 52.854 48.657 4 
s9234 247 159 57.22 55.789 52.148 14 

 

The test sets were partitioned into blocks of sizes 8x8,  16x16,  and 32x32 respectively. Then, the 

proposed encoding algorithm was applied for each case separately as shown in Table 11.   The second 

column in the table shows the scan size, which is basically the width of a test vector. The third column 

indicates the number of test vectors in the test set.  As can be seen, the effectiveness of the proposed 

encoding algorithm is clearly demonstrated as high compression ratio was obtained for all the circuits.  A 

block size of 8x8 achieves the best results for most of the circuits. The last column in Table 11 shows the 

total CPU time used for compressing the test vectors based on the three block sizes, i.e. the total CPU time  

used to produce the best result, which is highlighted in the table. Based on the compression results in Table 

11, our technique achieves an average compression ratio of around 68% based on highly compacted tests.  

In order to demonstrate the effectiveness of our technique, we compare it with the techniques proposed in 

[16] and [17]. The comparison is performed based on the test sets generated using the dynamic compaction 

option of MinTest [6].  Table 12 shows the comparison among the three techniques.  As can be seen from 

the table, for all the compared circuits, our technique achieves significantly higher compression ratio than 

the other techniques.  

Next, we compare the compression ratio obtained for two test sets with different sizes. The two test sets 

shown in Table 13 have different sizes. The first set test is generated using the dynamic compaction option   
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Table 12 Comparison with the techniques of  [17] (FDR) and of [16] (Golomb). 

 
Circuit Geometric FDR Golomb 
s5378f 57.94 48.02 37.11 
s9234f 57.22 43.59 45.25 

s13207f 86.628 81.3 79.74 
s15850f 70.188 66.23 62.82 
s35932f 78.123 19.37 0 
s38417f 62.226 43.26 28.37 
s38584f 65.594 60.91 57.17 
average 68.27414 51.81143 44.35143

 

Table 13 Compression results of the proposed scheme for different test sizes. 

 Test set 1 Test set 2 

Circuit Original 
Bits 

Comp. 
Ratio 

Comp. 
Bits 

Original 
Bits 

Comp. 
Ratio 

Comp. 
Bits 

s5378 23754 57.94 9991 20758 51.551 10057 
s9234 39273 57.22 16801 25935 43.451 14666 

s13207 165200 86.628 22091 163100 85.012 24445 
s15850 76986 70.188 22952 57434 60.32 22790 
s35932 28208 78.123 6171 21156 25.78 15702 
s38417 164736 62.226 62228 113152 46.497 60540 
s38584 199104 65.594 68504 161040 65.944 54844 

 

of MinTest [6] while the second is generated using the static compaction option of MinTest [6]. The first set 

is larger in size than the second. The effect of the test set size cannot be shown if we consider only the 

compression ratio. However, if we look at the number of bits after compression, we can see that some of the 

circuits ended up with a smaller number of bits although the size of the original test set is larger. These 

circuits are shaded in Table 13. From this observation, we can conclude that adding some redundancy to the 

test set may help in achieving higher compression. 

We next show some statistics on the type of block encoding. As explained before, there are three 

possibilities for encoding a block. The first is to encode the block as filled by either 0’s or 1’s. The second is 

to encode the block using geometric shapes. The third is to store the real data if the number of bits needed to 

encode the block is greater than the actual number of bits in that block.  We call the first type of blocks filled 

blocks, the second type of blocks encoded blocks and the last type of blocks real-data blocks. The cost of 

each filled block is only 3 bits, while the cost of each real-data block is the size of the block + 2. The cost of 

an encoded block depends on the shapes in that block.  

Table 14, Table 15, and Table 16 show the percentage of these types of blocks for the benchmark circuits 

used for block size 8x8, 16x16, and 32x32, respectively. From these tables, we can notice the following: 
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Table 14 Statistics on block encoding (8x8 blocks). 

 8x8 

circuit total # of 
blocks 

# of real 
blocks % # of filled 

blocks % # of encoded 
blocks % 

s13207f 2640 68 2.5758 2041 77.31061 531 20.113636 
s15850f 1232 82 6.6558 614 49.83766 536 43.506494 
s35932f 442 2 0.4525 56 12.66968 384 86.877828 
s38417f 2704 189 6.9896 1068 39.49704 1447 53.513314 
s38584f 3111 347 11.154 1180 37.92993 1584 50.916104 
s5378f 378 78 20.635 143 37.83069 157 41.534392 
s9234f 620 60 9.6774 150 24.19355 410 66.129032 
average    8.3057   39.89559   51.798686 

 

Table 15 Statistics on block encoding (16x16 blocks). 

 16x16 

circuit total # of 
blocks 

# of real 
blocks % # of filled 

blocks % # of encoded 
blocks % 

s13207f 660 22 3.3333 356 53.93939 282 42.727273 
s15850f 312 27 8.6538 75 24.03846 210 67.307692 
s35932f 111 1 0.9009 0 0 110 99.099099 
s38417f 728 41 5.6319 162 22.25275 525 72.115385 
s38584f 828 98 11.836 145 17.51208 585 70.652174 
s5378f 98 17 17.347 13 13.26531 68 69.387755 
s9234f 160 17 10.625 7 4.375 136 85 
average     8.3325   19.34043   72.327054 

 

Table 16 Statistics on block encoding (32x32 blocks). 

 32x32 

circuit total # of 
blocks 

# of real 
blocks % # of filled 

blocks % # of encoded 
blocks % 

s13207f 176 0 0 44 25 132 75 
s15850f 80 6 7.5 3 3.75 71 88.75 
s35932f 56 1 1.7857 0 0 55 98.214286 
s38417f 208 2 0.9615 31 14.90385 175 84.134615 
s38584f 230 44 19.13 21 9.130435 165 71.73913 
s5378f 28 5 17.857 2 7.142857 21 75 
s9234f 40 7 17.5 0 0 33 82.5 
average     9.2478   8.56102   82.191147 

 

 

1) The percentage of filled blocks decreases with the increase in block size while the percentage of 

real-data blocks does not change much. This shows why the 8x8 block size gives the best 
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results most of the time followed by the 16x16 block size. From this point, we can notice the 

advantage of partitioning the test set into blocks. 

2) Some of the circuits have high percentage of real-data blocks. This shows that there is a room 

for improvement if these blocks are encoded using another compression scheme. 
 

All the compressed test sets were decoded and verified by fault simulation. The decoding algorithm is 

very fast and the decoding time for each test set was in fractions of a second. We have modeled the hardware 

decoder using VHDL and based on simulation counted the clock cycles needed to complete decoding each 

circuit. If we assume a certain clock rate, then we can find the time required by the decoder by dividing the 

number of clock cycles by the clock rate. Table 17 shows the results for a clock rate of 500 MHz and for 

different block sizes. The time given in the table is in µ seconds. We should indicate here that this timing is 

for the decoding process only and does not include the test application time. 

Table 17 Timing performance of the hardware decoder. 

 8x8 16x16 32x32 
circuit clock cycles time (µs) clock cycles time (µs) clock cycles time (µs) 

s13207f 366506 733.012 373039 746.078 406249 812.498 
s15850f 191193 382.386 200540 401.08 220739 441.478 
s35932f 83120 166.24 80880 161.76 77967 155.934 
s38417f 438157 876.314 464892 929.784 516920 1033.84 
s38584f 509046 1018.092 542300 1084.6 562884 1125.768 
s5378f 61748 123.496 67458 134.916 72380 144.76 
s9234f 107482 214.964 113818 227.636 118152 236.304 
average 251036 502.072 263275.286 526.55057 282184.4286 564.36886 

 

Based on the results given in  Table 17 and Table 11, we can notice that the number of clock cycles 

needed to decode a test set increases with the decrease in the compression ratio. The only exception in this 

trend is in the case of circuit s13207f, where the highest compression ratio is for the 16x16 block size while 

the smallest number of clock cycles is for the 8x8 block size. The reason for this is that the compression 

ratios for the two block sizes are very close to each other while the percentage of real-data blocks is higher  

for the case of 16x16 block size. Since the real-data blocks need more time for decoding (because they 

require more reading cycles), the number of clock cycles increases with the increase in the percentage of 

real-data blocks.  

Table 18 compares the compression results using the FDR and EFDR code. The first column shows the 

circuit name and the second column shows the size of the test set in bits. The third and fourth columns show 

the number of compressed bits using FDR and EFDR codes, respectively.  The last two columns indicate the 

respective compression ratios. As can be seen from the table, significant improvements in the compression  
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Table 18 Compression results of FDR & EFDR. 
Circuit Original 

Bits 
FDR  
Bits 

EFDR 
Bits 

FDR 
CR 

EFDR 
CR 

c2670 10252 5760 4807 43.82 53.11 
c5315 6586 5238 4700 20.47 28.64 
c7552 15111 9500 8843 37.13 41.48 

s13207 163100 34608 33637 78.78 79.38 
s15850 57434 24992 25105 56.49 56.29 
s35932 21156 20312 11502 3.99 45.63 
s38417 113152 70536 53914 37.66 52.35 
s5378 20758 11032 10210 46.85 50.81 
s9234 25939 16912 16127 34.80 37.83 

s13207d 165200 30880 29992 81.31 81.85 
s15850d 76986 26016 24643 66.21 67.99 

 s35932d 28208 22746 5554 19.36 80.31 
s38417d 164736 93452 64962 43.27 60.57 
s38584d 199104 77798 73853 60.93 62.91 
s5378d 23754 12356 11419 47.98 51.93 
s9234d 39273 22148 21250 43.61 45.89 

 

ratio are obtained for some of the circuits. Consider for example the circuit s35932. For the first test set of 

this circuit, the compression ratio improves from 3.99% using FDR to 45.63% using EFDR code.  For the 

second test set of the same circuit, the compression ratio  increases from 19.36% using FDR to 80.31% using 

EFDR code. This result is not surprising as based on the statistics for this circuit given in Table 7, the total 

number of runs reduces significantly when both types of runs are used versus using only 0 runs. Similarly, 

significant increase in the compression ratio is obtained for the test sets c2670, c5315, s38417, and s38417d.  

For all the test sets except one, using EFDR code achieves higher compression ratio.  

For test data decompression based on EFDR code, the decoder design follows a direct extention of the FDR 

decoder proposed in [17]. 

Table 19 shows the compresion ratios obtained for five compression schemes namely, geometric, FDR, 

EFDR, GFDR, and GEFDR, respectively. The best result from the three block sizes (8x8, 16x116, 32x32) is 

reported for each case.  

As can be seen from the table, the two hybrid compression techniques, GFDR and GEFDR, both improved 

the compression ratio over the Geometric compression technique for all the circuits. However, the GEFDR 

compression scheme achieved better results and improved the compression ratio on average from 59.06% to 

62.13%.  Among the five compared compression schemes, the GEFDR compression scheme achieved the 

best results in 9 out of 14 test sets. However, the GFDR compression scheme achieved the best results in 3 

out of the 14 test sets. The best compression ratio for the remaining test sets is achived by the EFDR 

compression technique. 

Table 20 shows a detailed analysis of the number blocks encoded by the different encoding formats for the 

Geometric, GFDR, and GEFDR compression schems. This analysis is shown for an 8x8 block size. The  
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Table 19 Compression results of Geometric, FDR, EFDR, GFDR, and GEFDR techiques. 

Circuit Test Set Size Geometric CR FDR CR EFDR CR GFDR CR GEFDR CR 
c2670 10252 51.85 43.82 53.11 54.14 54.56 
c5315 6586 27.88 20.47 28.64 29.03 29.21 
s13207 163100 85.01 78.78 79.38 85.48 85.40 
s15850 57434 60.32 56.49 56.29 61.70 61.43 
s35932 21156 25.78 3.99 45.63 26.27 44.93 
s38417 113152 46.50 37.66 52.35 48.37 51.45 
s5378 20758 51.55 46.85 50.81 53.12 53.18 

s13207d 165200 86.63 81.31 81.85 87.60 87.74 
s15850d 76986 70.19 66.21 67.99 71.21 71.42 
s35932d 28208 78.12 19.36 80.31 78.12 81.71 
s38417d 164736 62.23 43.27 60.57 63.09 65.23 
s38584d 199104 65.59 60.93 62.91 66.30 67.03 
s5378d 23754 57.94 47.98 51.93 58.32 58.62 
s9234d 39273 57.22 43.61 45.89 58.39 57.87 
AVG  59.06 46.48 58.40 60.08 62.13 

 

Table 20 Detailed analysis of block encodings for Geometric, GFDR, and GEFDR compression. 

Geometric GFDR GEFDR Circuit 
#Blocks #Filled  #Shapes 

Encoded 
#Real #Shapes 

Encoded 
#FDR 

Encoded 
#Real #Shapes 

Encoded 
#EFDR 
Encoded 

#Real

c2670 180 56 99 25 70 33 21 68 40 16  
c5315 115 8 61 46 52 22 33 51 23 33 
s13207 2640 1671 963 6 895 72 0 906 62 1 
s15850 924 127 787 10 677 120 0 698 97 2 
s35932 442 76 191 175 182 54 130 129 196 41 
s38417 1872 252 1484 136 1214 348 58 1059 534 27 
s5378 351 73 220 58 193 46 39 185 63 30 

s13207d 2640 2041 531 68 487 76 36 487 87 25 
s15850d 1232 614 536 82 470 110 38 481 112 25 
s35932d 442 56 384 2 384 0 2 334 50 2 
s38417d 2704 1068 1447 189 1290 220 126 1129 453 54 
s38584d 3111 1180 1584 347 1413 284 234 1442 332 157 
s5378d 378 143 157 78 142 24 69 134 43 58 
s9234d 620 150 410 60 367 71 32 375 60 35 

AVG(%)  28.97 55.87 15.16 48.78 12.23 10.02 46.16 17.50 7.37 
 

second column shows the total number of encoded blocks. The third column shows the number of blocks 

encoded as a block filled with either 0 or 1. The fourth and fifth columns show the number of blocks 

encoded by geometric shapes and those encoded by the real test data, respectively for the Geometric 

compression scheme. The sixth, seventh and eightth columns show the number of blocks encoded by 

geometric shapes, those encoded by FDR codes, and those encoded by the real test data, respectively for the 

GFDR compression scheme. Similarly, the last three columns show  the number of blocks encoded by 

geometric shapes, those encoded by EFDR codes, and those encoded by the real test data, respectively for 

the GEFDR compression scheme. As can be seen from the table, both the GFDR and GEFDR compression 

schemes reduce the number of blocks encoded by the real test data and hence improve the compression ratio. 

For the circuits considered, the average number of real blocks is 15.16% for the Geometric compression 

scheme, 10.02% for the GFDR compresion scheme, and 7.37% for the GEFDR technique. Thus, the GEFDR 
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compression technique reduces the number of real blocks by more than 50%. As indicated by the results, 

there is still a percentage of blocks that achieve no compression and are encoded by storing the real test data.   

The average number of blocks encoded by FDR codes in the GFDR technique is 12.23%  and the average 

number of blocks encoded by EFDR codes in the GEFDR technique is 17.5%. This indicates that these 

blocks achieve better compression if encoded by these codes rather than by geometric shapes, which adds to 

the benefit of the proposed hybrid compression schemes. 

 

 

7. Conclusions 

 

In this work, a novel compression/ decompression scheme for testing systems-on-a-chip has been 

presented. The technique is based on encoding the test data by geometric shapes. The test data is partitioned 

into blocks and then each block is encoded separately.  To increase the compression ratio, the scheme 

exploits test vectors reordering, the block size, the type of bit to be encoded, and whether or not to encode 

the block. Experimental results on ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits have 

demonstrated the effectiveness of the technique in achieving high compression ratio.  In comparison to other 

test compression techniques, our technique achieves significantly higher compression ratio. We have 

demonstrated that starting with a test set with a larger size could result in higher test data compression. Thus, 

adding some redundancy to the test set may help in achieving higher compression. Based on statistics on the 

type of block encoding, we have demonstrated that some of the circuits have high percentage of real-data 

blocks. This shows that there is a room for improvement if these blocks are encoded using another 

compression scheme. 

Test data decompression can be performed in software by an embedded processor or in hardware. In this 

work, we have demonstrated both options.  

In this work, we have also proposed an extension to the recently proposed FDR code, namely Extended 

FDR (EFDR) code. The proposed technique is based on encoding both runs of 0’s and 1’s as opposed to 

encoding only runs of 0’s. Based on experimental results on ISCAS benchmark circuits, it has been 

demonstrated that the proposed EFDR code outperformed FDR code and resulted in significant increase  in 

test data compression ratio for several circuits, improving the compression ratio from 19.36% to 80.31%  for 

one of the benchmark circuits.  Furthermore, we have proposed two hybrid compression schemes that 

combine the Geometric and FDR compression schemes (GFDR), and the Geometric and EFDR compression 

schemes (GEFDR). The objective of these schemes is to reduce the number of blocks in the Geometric 

compression scheme that are encoded with the actual test data.  Based on experimental results on ISCAS 

benchmark circuits, it has been demonstrated that the proposed hybrid compression schemes improved the 
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test data compression ratio for all the circuits over those obtained by the Geometric compression scheme. 

The GEFDR technique achieved the best results and improved the compression ratio on average from 

59.06% to 62.13% over the Geometric compression scheme. 

 
 

8. Project Objectives vs. Accomplishments 

 
The principle objectives of this work as submitted in the proposal are as follows: 

 

1. Study and examine the existing lossless test vectors compression/decompression schemes. 

2. Propose a new compression/decompression scheme that is two-dimensional and geometric-

primitives-based capable of compressing test vectors with higher compression ratio and that is 

simple to implement. 

3. Implement the proposed scheme and conduct experiments on benchmark circuits to determine 

the quality of the proposed scheme and compare it with existing schemes. 

4. Investigate a hardware implementation of the decoding algorithm of the proposed scheme. 

5. Publish the results of this research in refereed international conference on testing and a 

refereed journal. 

 

All the mentioned above objectives have been achieved. A summary of the accomplished work is given 

below: 

1. Literature Survey: We have performed extensive literature survey of all compression and 

compaction techniques for combinational and sequential circuits. Detailed information about the 

conducted survey is not included in the report to make the report more concise. 

2. Generating compacted test vectors for benchmark circuits: we have used the automatic test 

pattern generation tool (HITEC) and the fault simulators (HOPE & PROOFS) to generate and 

compact the generated test sets before compressing them. Test compaction was achieved by 

implementing the reverse order fault simulation algorithm. These test sets were used in the initial 

phase of the project but later we used the test sets generated by Mintest for comaprison purposes 

with published results. 

3. Implementing test relaxation algorithm: In order to have effective test data compression, it is 

important to identify those bits whose value is an X.  We have implemented test relxation based 

on a brute force method by changing every bit to an X and doing fault simulation to see whether 

the relaxation is possible or not. 
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4. Test Vector Reordering: We have developed several test vector ordering algorithms and 

implemented them. The algorithms were based on a gready ordering and near-optimal ordering. 

Several weight functions were experimented with and the one that gave the best results was 

chosen. 

5. Developing & Implementing the encoding algorithm: we have developed the encdoding 

algorithm and implemented it. Many improvements in the encoding algoithm were made based 

on analysis of experimenta results. 

6. Developing & Implementing the decoding algorithm in software: we have developed and 

implmented the decoding algorithm in software to be run utilizing on-chip processor. The results 

of the decoding algorithm were verified by fault simulation. 

7. Comparison with Published Results: We have compared our results with two recently 

published and found that our technique achieves the best compression ratios. We have 

experimented with our technique on different test sets and we demonsrated its effectiveness. 

8. Design of the decoding algorithm in hardware: This step is necessary in case the chip does not 

have a processor and the decoding circuitry has to be inserted. We have designed the decoding 

circuitry in hardware and modeled it in VHDL and verified its correctness. 

9. Improved FDR Compression teschnique: Recently an effective test compression technique has 

been proposed with the advantage of simple decoding circuitry. Based on test data analysis, we 

found that we could improve the compression effectiveness of this technique without increasing 

the decoder complexity. We have extended this technique and called it EFDR and implemented 

it.  The technique has resulted in significant improvement in test compression. 

10. Hybrid compression technique: We have proposed hybrid compression techniques that 

combine the Geometric compression technique with either FDR or EFDR techniques and 

demonstrated improvement in the compression ratio. 

11. Publications:  we have published four conference papers and submitted one paper for journal 

publication. 

 

It should be noted here that the accomplished work in 9 and 10 was more than was planned in the 

proposal. 
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 ملخّص نتائج المشروع

 
ل اطريقة جديدة وفعالة لضغط بيانات اختبارات الشرائح الحاوية لأنظمة متكاملة بدون فقد أي معلومات باستخدام الأشك اقتراح .١

 .الهندسية الأساسية ثنائية الأبعاد
 .باستخدام الأشكال الهندسية الأساسية ثنائية الأبعاد المضغوطة بيانات اختبارات الشرائحئرة كهربائية لفك ظغط تصميم دا .٢
يبيّة فاعليّتها في ن بالنّتائج التّجرييّبت و١ و ٠لاعلى أساس تشفير كلا الجريين )إي إف دي آر(  إلى شفرة إف دي آرامتداد اقتراح .٣

 .انضغاط أعلىتحقيق نسبة 
شفرات إف دي آر أو إي إف دي آر لتقليل عدد الكتل التي  تكنيكات ضغط بيانات اختبار هجين التي تستغلّ الاستعمال لإمّا احاقتر .٤

 .استخدام الأشكال الهندسية الأساسية ثنائية الأبعاد باستخدام طريقة الضغطالمبنية على تُشَفَّر بتخزين بيانات الاختبار الحقيقيّة
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Abstract I Tester I 
The increasing complexity of systems-on-a-chip with 

the accompanied increase in their test data size has 
made the need for  test data reduction imperative. In this 
paper, we introduce a novel and very efJicient lossless 
compression technique for testing systems-on-a-chip 
based on geometric shapes. The technique exploits 
reordering of test vectors to minimize the number of 
shapes needed to encode the test data. The effectiveness 
of the technique in achieving high compression ratio is 
demonstrated on the largest ISCAS85 and full-scanned 
versions of ISCAS89 benchmark circuits. In this paper, it 
is assumed that an embedded core will be used to 
execute the decompression algorithm and decompress 
the test data. 

1. Introduction 

With today's technology, it is possible to build 
complete systems containing millions of transistors on a 
single chip. Systems-on-a-chip (SOC) are comprised of 
a collection of pre-designed and pre-verified cores and 
user defined logic (UDL). As the complexity of systems- 
on-a-chip continues to increase, the difficulty and cost of 
testing such chips is increasing rapidly [ l l ] ,  [12]. To 
test a certain chip, the entire set of test vectors, for all the 
cores and components inside the chip, has to be stored in 
the tester memory. Then, during testing, the test data 
must be transferred to the chip under test and test 
responses collected from the chip to the tester as 
illustrated in Figure 1. 

One of the challenges in testing SOC is dealing with 
the large size of test data that must be stored in the tester 
and transferred between the tester and the chip. The 
amount of time required to test a chip depends on the 
size of test data that has to be transferred from the tester 
to the chip and the channel capacity. 
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System-on-a-Chip 
Figure 1 .  Test data transfer between the tester and 
the circuit under test. 

The cost of automatic test equipment (ATE) increases 
significantly with the increase in their speed, channel 
capacity, and memory. As testers have limited speed, 
channel bandwidth, and memory, the need for test data 
reduction becomes imperative. To achieve such 
reduction, several compaction and lossless compression 
schemes were proposed in the literature. 

The objective of test set compaction is to generate the 
minimum number of test vectors that achieve the desired 
fault coverage. There are two main types of compaction, 
static compaction and dynamic compaction. In static 
compaction, the number of test vectors is reduced after 
they have been generated. Examples of static 
compaction algorithms include reverse order fault 
simulation [ 151, forced pair merging [ 161, N-by-M [ 181, 
and redundant vector elimination (RVE) [14]. In 
dynamic compaction, the number of vectors is 
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minimized during the automatic test pattern generation 
(ATPG) process. Examples of dynamic compaction 
algorithms include COMPACTEST [ 171, and bottleneck 
removal [6]. 

In test data compression, the objective is to reduce the 
number of bits needed to represent the test data. For test 
data compression, it is essential that the compression is 
lossless. Run length coding, Huffman codes, Lempel-Ziv 
algorithms, and arithmetic codes are examples of 
lossless compression [ 131. 

Several test data compressioddecompression 
techniques were proposed in the literature. These 
techniques can be classifies into two categories; one is 
based on BIST and Pseudo-Random Generators (PRG) 
and the other is based on deterministic compression. 

Examples of BIST-based compression techniques are 
test width compression [2], variable length reseeding [5], 
and Design For High Test Compression (DFHTC) [IO]. 

Deterministic compression techniques take advantage 
of the high correlation between test vectors. One of these 
techniques is proposed in [ 13 and uses Burrows-wheeler 
(BW) transformation and a modified version of run- 
length coding to encode the test data. This technique has 
been improved in [3] by applying the GZIP compression 
scheme to strings that are not effectively compressed by 
run-length coding. Another technique proposed in [8] 
uses what is called variable-to-block run-length coding. 
In this technique, a codeword is used to encode a block 
of data based on the number of zeros followed by a one 
in that block. This technique is used for compressing 
fully-specified test data that feeds a cyclical scan chain. 
A cyclical scan chain is used to decompress this data and 
transfer it to the “test scan chain”. Golomb code is a 
variable-to-variable run-length code that is used in [4] to 
enhance the scheme described above. It divides the runs 
into groups, each is of size m. The number of groups is 
determined by the length of the longest run, and the 
group size m is dependent on the distribution of test data. 
In [9], statistical coding is used for encoding 
deterministic test data. The technique uses a modified 
version of Huffman coding as to minimize the bits 
needed for codewords. Although this technique has less 
compression ratio than Huffman coding, the hardware 
implementation of the decoder is simpler. Another 
technique was proposed in [7] which performs 
decompression of test data based on an embedded 
processor. The technique is based on storing the 
differing bits between two test vectors. It divides each 
test vector into blocks and stores those blocks that are 
different from the preceding vector. 

In this paper, we introduce a novel and very efficient 
compression scheme for deterministic testing of SOCs 
based on geometric shapes. This scheme is designed 
based on test cubes to maximize the compression ratio. 
Test vector decompression is performed on chip and is 
implemented either in hardware or software. For 

Table 1. The used primitive geometric shapes. 

hardware decompression option, a decoding circuitry is 
placed on the chip to perform the decompression 
algorithm. However, for software decompression option, 
an embedded core is used to execute the decompression 
algorithm and decompress the test data, which is then 
applied to the circuit under test. The decompression 
algorithm can be stored in a ROM on the chip. 

2. The Proposed Encoding Algorithm 

The proposed encoding algorithm is based on 
encoding the 0’s or the 1’s in a test set by geometric 
shapes. In this work, we limited those primitive shapes 
to the basic four, namely: point, line, triangle, and 
rectangle as shown in Table 1. These shapes are the most 
frequently encountered shapes in any test set. For the 
rectangles, two points are needed to encode the shape 
and each point costs 2*10g2 N, where N is the block 
dimension. However, lines and triangles can be 
represented by a point and a distance d and this reduces 
the number of bits needed to encode them by (log? N)-2 
in comparison to encoding them by two points. Two bits 
are used to determine the type of line or the type of 
triangle encoded. 

Figure 2 shows the algorithm of the encoder, which 
consists of the following main steps: 

(i) Test Set Sorting 
vectors in a test set is crucial and has a 

significant impact on the compression ratio. In this step, 
we aim at generating clusters of either 0’s or 1’s in such 
a way that it  may partially or totally be fitted in one or 
more of the geometric shapes shown in Table 1.  Several 
sorting scenarios have been considered and investigated. 
In this work, we used a simple correlation-based sorting 
technique. The sorting may be with respect to 0’s (0- 

Sorting the 
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Encoder ( N )  
Sort-Test-Set (); 
Partition-Test-Set (N); 
For i = I to # of segments 

For j = I to # of blocks in i 
Extract-Shapes ( I ,  j ) ;  
a, = Encode-Shapes (); 
Extract-Shapes (0, j ) ;  
ai, = Encode-Shapes (); 
B = # of bits in j + 2; 
E = min (a a,,B); 
Store-Encoded-Bits (); 
E-total += E; 

End Encoder: 

0 
1 

Extract-Shapes(b, j )  
For each bit x in block j { 

I f x  = b Then { 
Find the largest line of each type started at x 
Find the largest triangle of each type such that 

Find the largest rectangle such tha x is its up- 
x is the vertix of the right angle 

left corner 
I 

I 
Solve a covering problem to find the best group of 
shapes covering all bits b in block j .  

End Extract-Shapes; 

0 1 X 
1 .o 0.0 0.25 
0.0 0.0 0.0 

Figure 2. Test vectors encoding algorithm. 

sorting), to 1’s (I-sorting) or to both 0’s and 1’s (0/1- 
sorting). The technique is based on finding the distance 
D between two vectors A and B that maximizes the 
clusters of 0 ’ s  and 1’s.  

The distance D may be computed with respect to 0’s 
(0-distance), to 1’s (I-distance) or to 0’s and 1’s (WI-  
distance) as follows: 

D = Yw(A,,B,-~)  +w(A,,B,) + w ( 4  ,B,+,) 
!=a 

where k is the test vector length and W(A, ,BJ IS the 
weight between bits A, and B,. Table 2, Table 3 and 
Table 4 specify the weights used in computing the 0- 
distance, the I-distance, and the Oll-distance between 
two vectors, respectively. Note that for i = 0, 
W(A,,  Bi.l) = 0 and for i  = k-1, W(A, ,  B,+,) = 0. 

The assignment of a 0.25 weight for an ‘x’ to each of 
its immediate neighbors be it an ‘x’ or the sorted bit (‘0’ 
for 0-sorting, ‘1’ for 1-sorting and ‘0’ and ‘1’ for 0/1- 
sorting) is chosen due to the following reasons. First, 
this weight may help in completing, integrating, or 
generating additional geometric shapes that can lead to a 
better solution. Second, this can help in generating 
blocks filled by ‘x’s which can be minimally encoded. 
Different weights have been experimented with, and a 

Table 2. Weights for the 0-distance between 
two test vectors. 

1 i 0.25 i 0.0 i 0.25 1 
Table 3. Weights for the 1-distance between 
two test vectors. 

1 0 1  I l x  
0 1  0.0 I 0.0 I 0.0 
1 1  0.0 I 1.0 I 0.25 
x I 0.0 I 0.25 I 0.25 

Table 4. Weights for the O/l-distance between 
two test vectors. 

I l o l l l x l  

0.25 0.25 0.25 

Table 5. An example of test vector sorting. 

weight of 0.25 has been found to produce better results 
in most of the cases. 

In Table 5, we show a simple example to illustrate the 
impact of sorting on test vector compression. As can be 
seen, sorting the vectors based on the 0-distance requires 
the encoding of two triangles to encode the 0’s. 
However, sorting the vectors based on the I-distance 
requires the encoding of one triangle and two lines to 
encode the 1’s. Thus, for this example sorting based on 
the 0-distance results in higher compression. 

(ii) Test Set Purtihbning 
A set of sorted test vectors, M, is represented in a 

matrix form, RxC, where R is the number of test vectors 
and C is the length of each test vector. The test set is 
segmented into LxK blocks each of which is NxN bits, 
where L is equal to r R / N l  and K is equal to r C I N 1 .  A 
segment consists of K blocks. In other words, the test set 
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is segmented into L segments each contains K blocks. 
For test vectors whose columns and/or rows are not 
divisible by the predetermined block dimension N, a 
partial block will be produced at the right end columns 
and/or the bottom rows of the test data. Since the size of 
such partial blocks can be deduced based on the number 
of vectors, the vector length, and the block dimension, 
the number of bits used to encode the coordinates of the 
geometric shapes can be less than log, N. The decoder 
recognizes those special cases and decodes them 
properly. 

(iii) Encoding process 
As mentioned earlier, the encoding process will be 

applied on each block independently. The procedure 
Extract-Shapes(b) will find the best group of shapes that 
cover the bits that are equal to b as shown in the 
algorithm. Encode-Shapes determines the number of 
bits, a, needed to encode this group of shapes. There are 
two cases that may occur: 

(a) The block contains only 0’s and x’s or 1’s 
and x’s. In this case, the block can be encoded as a 
rectangle. However, instead of this it is encoded by 
the code 01 followed by the bit that fills the block. 
Hence, the number of bits to encode the block CI = 
3. 
(b) The block needs to be encoded by a number 
of shapes. In this case, we need the following: 

2 bits to indicate the existence of shapes and 
the type of bit encoded. If the encoded bit is 0, 
then the code is IO, otherwise it is 11. 

P = (2*L0g2 N - 3) bits to encode the number 
of shapes, S .  If the number of shapes exceeds 2‘, 
then the number of bits needed to encode the 
shapes is certainly greater than the total number of 
bits in the block. In this case, the block is not 
encoded and the real data is stored. 

2 I!,, ; where L, is computed as follows 
,=I 

- If shape i is a point, L, = 2 + 2*log2 N 
(shape type, coordinates). 
- If shape i is a line or a triangle, L, = 4 
+ 3*10g2 N (shape type, type of line or 
triangle, point and distance) 
- If shape i is a rectangle, L, = 2 + 
4*log2 N (shape type, 2 points) 

S 

Therefore, a = 2 + P + L, 
r=l 

If Q and rx, are greater than B (N*N+2), then it is 
better not to encode the block. Instead, the real data is 
stored after a 2-bit code (00). The procedure 
Store-Encoded-Bits will decide which case is the best 
(encoding O’s, encoding l’s, or storing the real data) 
based on E, the minimum of &, al, and B .  

Decoder () 
Read (# of Vectors (R), Vector-Length (C), N); 
Compute-Parameters (); 
For i = I to # of segments { 

blbo = Read-Bits (2); 
Case blbo 

For j = I to # of blocks in i { 

00 : Read-Bits (N* N): 
01 : b-type = Read-Bits ( I ) ;  

10 : DecodeShapes (0): 
I1 : Decode-Shapes ( I ) ;  

Fill-Block (j, b-type); 

End Case; 
1 

Output-Segment (); 
I 

End Decoder; 

DecodeShapes (b) 
Num-Shapes = Read-Bits (2 *logz N -3); 
For j = 1 to Num-Shapes 

Shape-type = Read-Bits (2); 
Case Shape-type 

00 : c = Get-Coordinate (); 
Fill-Point (b,c); 

01 : t = Get-Type (); 
c = Get-Coordinate (); 
d = Get-Distance (); 
Fill-Line(b, t, c,d); 

c = Get-Coordinate 0; 
d = Get-Distance (); 
Fill-Triangle(b, t, c,d); 

I I : cI = Get-Coordinate (); 
c2 = Get-Coordinate (); 
Fill-Rectangle (b,cr,c2); 

10 : t = Get-Type 0; 

End Decode-Shapes; 

Figure 3. Test vectors decoding algorithm. 

3. Decoding Process 

The decoding process is simple and straightforward. 
In this work, we assume that an embedded processor on 
a chip will implement the decoding algorithm. A 
framework illustrating the details of how the test vectors 
can be transferred from the embedded processor to the 
tested parts of the chip has been outlined in [7]. A 
similar framework can be used for our decoding 
algorithm. 

Figure 3 shows the algorithm of the decoder. It first 
reads the arguments given by the encoder and computes 
the parameters needed for the decoding process. These 
parameters include the number of segments, the number 
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Table 6. Compression results of the proposed scheme for various block sizes. 

Table 7. Comparison with the techniques by Jas and Touba [7] and Chandra and Chakrabarty [4]. 

of blocks in a segment and the dimensions of the partial 
blocks. In order to reconstruct the vectors, each segment 
has to be stored before sending its vectors to the circuit 
under test. For each segment, its blocks are decoded one 
at a time. The first two bits indicate the status of the 
block as follows: 

00: the block is not encoded and the following 
N*N bits are the real data. 

01: fill the whole block with 0’s or 1’s 
depending on the following bit. 

10: There are shapes that are filled with 0’s. 
11: There are shapes that are filled with 1’s. 

For those blocks that have shapes, the procedure 
Decode-Shapes is responsible for decoding these 
shapes. It reads the number of shapes in the block and 
then for each shape it reads its type and based on this it 
reads its parameters and fills it accordingly. 

After all the blocks in a segment have been decoded, 
the segment is output to the circuit under test vector by 
vector. 

4. Experimental Results 

In order to demonstrate the effectiveness of our 
scheme, we have performed experiments on a number of 
the largest ISCAS85 and full-scanned versions of 
ISCAS89 benchmark circuits. The experiments were run 

on a Pentium I1 processor with a speed of 350 MHz and 
a 32 Mbyte RAM. We have used the test sets generated 
by MinTest [14], which are highly compacted test sets, 
that achieve 100% fault coverage of the detectable faults 
in each circuit. Test cubes were generated from each 
test set as this has the advantage of keeping unnecessary 
assignments as x’s, which enables higher compression. 
Then, the test vectors were sorted to maximize the 
compression. In this work, test vectors were sorted based 
on a greedy algorithm. Test vectors sorting based on the 
0-distance, the 1-distance, and the O/l-distance was 
performed. For both the 0-distance and 011 -distance 
sorting, the test vector with more 0’s was selected as the 
first vector. However, for the 1-distance sorting, the 
vector with more 1’s was selected as the first vector. 

The test sets were partitioned into blocks of sizes 8x8 
and 16x16, respectively. Then, the proposed encoding 
algorithm was applied for each case separately as shown 
in Table 6. The second column in the table shows the 
scan size, which is basically the width of a test vector. 
The third column indicates the number of test vectors in 
the test set. The compression ratio is computed as: 

#Original Bits - #Compressed Bits 

#Original Bits 
Comp. Ratio = - XI00 
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As can be seen, the effectiveness of the proposed 
encoding algorithm is clearly demonstrated as high 
compression ratio was obtained for all the circuits. For 
most of the circuits, sorting based on the Oll-distance on 
an 8x8 block size produced the best results. 

The last column in Table 6 shows the total CPU time 
used for compressing the test vectors based on the two 
block sizes and based on the three types of distance 
sorting, i.e. the total CPU time used to produce the best 
result, which is highlighted in the table. 

Based on the compression results in Table 6, our 
technique achieves an average compression ratio of 
around 54% based on highly compacted tests. In Table 
7, we compare the compression ratio obtained by our 
technique with that obtained by the techniques proposed 
in [7] and [4]. It is important to point out that although 
the test sets used in our work are different from those 
used in [7] and [4], they are considerably smaller. As can 
be seen from the table, for all the compared circuits, our 
technique achieves significantly higher compression 
ratio than the technique in [4]. Furthermore, in four of 
the circuits, out of seven, our technique achieves higher 
compression ratio than the technique in [7]. It should be 
observed here that for the three circuits where the 
technique in [7] achieves higher compression ratio, their 
original test sets are significantly larger, i.e. they contain 
much more redundancy, which leads to higher 
compression ratio. For example, the original test set used 
in [7] for the circuit c7552 is more than four times larger 
than the original test set we used. 

All the compressed test sets were decoded and 
verified by fault simulation. The decoding algorithm is 
very fast and the decoding time for each test set was in 
fractions of a second. 

5. Conclusions 

In this paper, a fast and very efficient compression/ 
decompression scheme for testing systems-on-a-chip has 
been presented. The technique is based on encoding the 
test data by geometric shapes. The test data is partitioned 
into blocks and then each block is encoded separately. 
To increase the compression ratio, the scheme exploits 
test vectors reordering, the block size, the type of bit to 
be encoded, and whether or not to encode the block. 
Experimental results on ISCAS85 and full-scanned 
versions of ISCAS89 benchmark circuits demonstrate 
the effectiveness of the technique in achieving high 
compression ratio. An average of 54% compression 
ratio is achieved on highly compacted test sets. In this 
work, we assumed that the decompression of test data is 
performed in software by an embedded processor. 
Hardware implementation of the decompression 
algorithm will be investigated in future work. 
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Abstract 

One of the prime challenges of testing a system -on-a- 
chip (SOC) is to reduce the required test data size. 
In this paper, we introduce a novel geometric shapes 
based compression / decompression scheme that 
substantially reduces the amount of test data and hence 
reduces test time. The proposed scheme is based on 
reordering the test vectors in such a way that enables the 
generation of geometric shapes that can be highly 
compressed via perfect lossless compression. 
Experimental results on ISCAS benchmark circuits 
demonstrate the effectiveness of the proposed technique 
in achieving very high compression ratio. Compared to 
published results, our technique achieves signijkantly 
higher compression ratio. 

1. Introduction 

Due to the rapid advancement in VLSI technology, it 
is possible to build very large systems containing 
millions of gates on a single integrated circuit. This has 
resulted in a new paradigm for the design of integrated 
circuits where a system-on-a-chip (SOC) is constructed 
based on pre-designed and pre-verified cores and user 
defined logic (UDL). As the complexity of systemson- 
a-chip continues to increase, the difficulty and cost of 
testing such chips is increasing rapidly [6], [7]. 

One of the challenges in testing SOC is dealing with 
the large amount of test data that must be transferred 
between the tester and the chip. The amount of time 
required to test a chip depends on the size of test data 
and the channel speed of data transfer. The cost of 
automatic test equipment increases significantly with the 
increase in their speed, channel capacity, and memory. 
Thus, reducing test storage and test time is one of the 
challenges for testing SOCs. 

Applying lossless compression techniques can reduce 
test storage and test time, which is the objective of this 
work. Lossless compression techniques provide for the 
exact reconstruction of the original data from its 
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compressed version. Run length coding, Huffman 
codes, Lempel-Ziv algorithms, and arithmetic codes are 
examples of lossless compression [8]. Several 
compression/decompression techniques are proposed in 
the literature to reduce test memory requirements and 
test time. All the proposed compression techniques are 
lossless and most of them attempt at utilizing either 
Huffman coding, run-length coding, or variations of 
these methods. Some sort of vector sorting to facilitate 
higher compression ratio precedes the implementation of 
these techniques. In [I], Burrows-Wheelers (BW) 
transformation is applied on the test data to produce 
longer and fewer runs, and then run length coding is 
applied to compress the transformed data. In [4], a 
statistical compression scheme is proposed that is based 
on variable length codewords to encode fixed length 
blocks of bits in test data. In [3], a compression scheme 
is proposed that uses careful ordering of the test data and 
formations of cyclical scan chains to achieve 
compression with run-length codes. In this scheme, a 
codeword is used to encode a block of data based on the 
number of zeros followed by a one in that block. 
Golomb code is used in [2], which is a variable-to- 
variable run-length code, to enhance the scheme 
described above. It divides the runs into groups, each is 
of size m. The number of groups is determined by the 
length of the longest run, and the group size m is 
dependent on the distribution of test data. In [9], a 
compression scheme using an embedded processor on a 
SOC is proposed. This scheme is based on generating 
the next test vector from the previous one by storing 
only the information about how the vectors differ. In 
[SI, a different approach is proposed to design a core that 
can be tested with fewer number of test vectors. 

In this paper, we introduce a novel and very efficient 
compression scheme for deterministic testing of SOCs 
based on geometric shapes. This scheme is designed 
based on test cubes to maximize the compression ratio. 
Test vector decompression is performed on chip and is 
implemented either in hardware or software. For 
hardware decompression option, a decoding circuitry is 
placed on the chip to perform the decompression 
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algorithm. However, for software decompression option, 
the compressed data is loaded into an embedded core. 
The embedded core will then execute the decompression 
algorithm and decompress the test data, which is then 
applied to the circuit under test. The decompression 
algorithm can be stored in a ROM on chip. This 
approach ,can reduce both the amount of test data that 
must be stored on the tester and the test time. 

2. The Proposed Encoding/Decoding Algorithm 

The proposed encodingldecoding algorithm is based 
on geometric shapes. In this work, we limited those. 
shapes to the basic four namely: point, line, triangle, and 
rectangle as shown in Table 1. The choice of those 
shapes is made based on the following: (i) those shapes 
are bounded by a maximum of two point coordinates 
that can be encoded with a small number of bits; (ii) they 
are the most frequently encountered shapes in the test 
sets. 

The following steps summarize the encoding process 
of the proposed algorithm: 

Step 1. Test vectors sorting: 

This step is crucial and has a significant impact on the 
compression ratio as inappropriate sorting may cause 
lower compression ratio. In this step, we aim at 
generating clusters of either zeros or ones in such a way 
that it may partially or totally be fitted in one or more of 
the geometric primitives shown in Table 1. Several 
sorting scenarios have been considered and investigated. 
In this work, we used a simple correlation-based sorting 
technique. This technique works as follows: At first, we 
chose the vector with the maximum number of zeros to 
become the first vector in the sorted vector set. 
Although this choice may not produce the optimal 
sorting of vectors, it was found to be a good heuristic 
based on experimentation. To determine the second 
vector, the “distance”of each of the remaining vectors to 
this vector is calculated and the vector that generates the 
maximum distance, i.e., most correlated, is chosen to be 
the second vector in the sorted set and so on. The 
“distance” between two vectors can be computed based 
on either the OS, referred to as the zero -distance, or the 
l S ,  referre d to as the one-distance. For example, to 
compute the zero-distance between two vectors, VI and 
v2, we do the following. For each O’in VI,  we assign a 
weight of 1.0 to each of its immediate (vertical and 
diagonal) O’neighbor, 0.25 to each of its imme diate X ’  
neighbor, and 0.0 to each of the immediate ‘1 ’neighbor 
in v2. 
weight of 0.25 to each of its immediate 0’ or X ’  
neighbor, and 0.0 to each of the immediate ‘l’neighbor 
in v2. A weight of 0.0 is given for all other cases. The 
assignment of a 0.25 weight for an X ’  to each of its 

Furthermore, for each X ’  in VI,  we assign a 

Table 1. The primitive geometric shapes. 

Lines I Triangles I Rectangle 

I I I I I 

immediate neighbor be it an X’or a O’is chosen due to 
the following reasons. First, this weight may help in 
completing or generating additional geometric shapes 
that can lead to a better solution. Second, this can help 
in generating blocks filled by X S  which can be 
minimally encoded. Different weights have been 
experimented with, and a weight of 0.25 has been found 
to produce better results in most of the cases. The one- 
distance can be calculated similarly. 

Since the first vector chosen is the one with the 
largest number of zeros, we performed sorting based on 
the zero-distance. In Table 2, we show a simple example 
to illustrate this sorting procedure. Let VI,  v2, and v3 be 
three test vectors to be sorted using the zero-distance 
approach. Then, zero-distance(vl,v2) = (0.0 + 0.25) + 
(0.0 + 0.25 + 0.25) + (0.25 + 0.25 + 0.25) + (0.25 + 
0.25 + 1) + (0.25 + 1) = 4.25, and zero-distance 
(vl,v3)= (1.0 + 1.0) + (0.25 + 0.25 + 0.0) + (1.0 + 0.0 + 
1.0) + (0.0 + 1.0 + 0.25) + (1.0 + 0.25) = 7.0. Based 
on the calculated distances, the sorting scheme will 
choose the order (VI, v3, v2), as shown in Table 2. Note 
that this sorting produces geometric shapes that can be 
encoded efficiently, as shown in the table. However, if 
the vectors are sorted using the order (VI, v2, v3), more 
shapes would have been needed to cover the same 
number of Os. This sorting scheme produced good 
results in most cases compared to other scenarios. 

Table 2. An example of test vector sorting. 
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Step 2. Test Data partitioning 

A set of sorted test vectors, M, is represented in a 
matrix form, RxC, where R is the number of test vectors 
and C is the length of each test vector. The test data is 
segmented into LxK blocks each of which is NxN bits, 
where L is equal to [ R / N ~  and K is equal to rC/N1. 
For test vectors whose columns and/or rows are not 
divisible by the predetermined size of block N, a partial 
block will be produced at the right end columns andor 
the bottom rows of the test data. Since the size of such 
partial blocks can be deduced based on the vector length 
and the block size, the number of bits used to encode the 
coordinates of the primitives can be less than log N .  The 
decoder recognizes those special cases and decodes them 
properly. 

Step 3. Encoding process 

As mentioned earlier, the encoding process will be 
applied on each NxN block independently. The 
procedure of encoding is as follows: 
(I) Extraction of shapes: Let the type of the bit to be 
encoded be b ( b  is either 0 or l), then for each bit b, the 
largest shape covering bit b is extracted for each 
primitive geometric shape type (shown in Table 1). For 
example, in the sorted vectors in Table 2, extraction of 
shapes covering the first 0 produces a line of type 1, a 
line of type 2, a line of type 3, a rectangle of type 1, a 
triangle of type 2, and a triangle of type 4. 
(Ii) Covering problem: A covering problem is then 
solved based on the extracted shapes in (I) to identify the 
shapes covering all the bits to be encoded, with the 
smallest number of bits. 
(iii) Steps (i) and (ii) are performed once for covering 
the zeros and another time for covering the ones. The 
block is then encoded based on the one that produces 
better results. 

The format for encoding the shapes in a block is done 
as illustrated in Figure 1. For each block, if the number 
of bits needed to encode the shapes is larger than the 
number of bits in the block, then such a block is not 
encoded and the same test data is used. Otherwise, the 
block is encoded. If the block can be encoded with one 
rectangle covering all bits in the block, then such a block 
is marked as a block that is filled with either Os or 1 s. In 
this case, two bits are sufficient to encode the block 
instead of encoding it as a rectangle. Otherwise, the 
block is encoded with the geometric primitives. When 
encoding a block that contains geometric shapes, the 
number of shapes is encoded first followed by the 
encoding for each shape. 

For this scheme, the decoding process is simple and 
straightforward. In this work, it is assumed that an 
embedded processor on chip will implement the decoder. 

Encode as: 
Encode as: 

f For each shape \ 

This case means all bits in this block are either zeros and Xs 
(which will be encoded as 010) , or ones and Xs(which will 

If shapes are used to encode zeros then 10 will be used otherwise 
This indicates the direction of the triangle as shown in Table 1. 

be encoded as 01 1) , 

Figure 1. Schematic diagram of the encoding format. 

A framework illustrating the details of how the test 
vectors can be transferred from the embedded processor 
to the tested parts of the chip has been outlined in [9]. A 
similar framework can be used for our decoding 
algorithm. 

3. Experimental Results 

In order to demonstrate the effectiveness of our 
scheme, we have performed experiments on a number of 
the largest fdl-scanned versions of ISCAS89 benchmark 
circuits. We have used the test cubes obtained using the 
Mintest program [ 101 with dynamic compaction. 

The test vectors were sorted to maximize the 
compression. In this work, test vectors were sorted 
greedily based on the zero-distance measure starting 
with the test vector with the largest number of Os. The 
test sets were partitioned into blocks of sizes 8x8, 16x16, 
and 32x32 respectively. Then, the proposed encoding 
algorithm was applied for each case separately as shown 
in Table 3. The second column in the table shows the 
scan size, which is basically the width of a test vector. 
The compression ratio is computed as: 
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Table 3. Compression results of the proposed 
scheme. 

~15850 
~35932 

Table 4. Comparison with Golomb codes [2]. 

68.96 23897 47.11 40718 41.31 
77.85 6248 0.0 28208 77.85 

Proposed Golomb [2] 
Technique Reduction 

Bits 
I I I I I 

s9234 I 54.51 I 17865 I 43.34 I 22252 19.72 
~13207 I 84.86 I 25011 I 74.78 I 41664 I 42.37 

~38417 1 60.55 1 64988 I 44.12 I 92055 1 29.40 
s38584 I 64.17 I 71339 I 47.71 I 104111 I 31.48 

#Original Bits - #Compressed Bits 

# Original Bits 
Comp. Ratio = X I 0 0  

As can be seen from the table, the best compression ratio 
obtained is dependent on the block size used. However, 
for most of the cases a block size of 8x8 produces the 
best results (which are highlighted in the table). The 
effectiveness of the proposed encoding algorithm is 
clearly demonstrated as very high compression ratio was 
obtained for all the circuits (over 54%). The encoding 
algorithm is very fast as the CPU time for encoding 
each test set, for the three block sizes, was less than a 
minute. Since the encoding algorithm is fast and since 
the size of the block that produces the best results is 
dependent on the test set, encoding can be performed for 
the three block sizes and the best result is chosen. 
In Table 4, a comparison between our technique with the 
one proposed in [2] is shown. The last column shows 
the percentage reduction in the number of compressed 
bits obtained by our technique relative to what is 
obtained in [2]. As can be seen from the table, for all the 
circuits, our technique achieves significantly higher 
compression ratio. Our technique reduces the size of 
compressed bits by 20%78% more than the size of 
compressed bits in [2]. It is interesting to observe that 
for the circuit ~35932, while the technique in [2] 

achieved 0.0% compression, our technique achieved 
77.85% compression. 

4. Conclusions 

In this paper, a new fast geometric-shapes based 
compressioddecompression scheme has been presented. 
In this scheme, the test data is first sorted so that we 
generate the minimum number of geometric shapes to be 
encoded in order to maximize the compression ratio. 
Then, the sorted data is partitioned into blocks and each 
block is encoded separately. The scheme exploits the 
block size, the type of bits to be encoded, and whether or 
not to encode the block. Based on experimental results, 
the proposed technique achieved a very high 
compression ratio. Compared to compression results 
based on Golomb codes, our technique reduced the size 
of compressed bits by 2@78% as shown in Table 4. In 
this work, we assumed that the decompression algorithm 
is implemented in software and will be executed by an 
embedded processor on chip. 
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