
Test Set Compaction for Combinational and
Sequential Circuits based on Test Relaxation

Proposal Submitted to

SABIC � FAST TRACK
Research Grant Programs

by

Aiman El-Maleh and Sadiq M. Sait

Computer Engineering Department
College of Computer Science and Engineering

King Fahd of Petroleum & Minerals
Dhahran 31261, Saudi Arabia

Contents

1 Introduction 1

2 Static Compaction Algrithms for Sequential Circuits 2
2.1 Insertion, Omission and Selection 3
2.2 State Traversal . 5
2.3 Vector Restoration . 9
2.4 Hardware Reset Scheme . 12
2.5 Vector Replacement . 13
2.6 Sequence Re-Ordering . 15
2.7 Chronological Order Enumeration 17
2.8 Accelerated Restoration and Segment Pruning 17
2.9 SIFAR . 20
2.10 Reverse Order Restoration . 20

3 Proposed Techniques for Sequential Circuits 23
3.1 Reverse-Order Restoration with State Traversal using Relaxed

Test Set . 25
3.2 Merging of Subsequences . 26

4 Static Compaction Algorithms for Combinational Circuits 28
4.1 Overview . 28
4.2 Set Covering . 29
4.3 Test Vector Reordering . 30

4.3.1 TVR with Fault Dropping Simulation 30
4.3.2 TVR with Forward-Looking Fault Simulation 30
4.3.3 TVR with Fault Distribution 31
4.3.4 TVR with Double Detection Fault Simulation 32

4.4 Merging . 32
4.5 Test Vector Decomposition . 33

4.5.1 Graph Coloring . 34
4.5.2 Independent Fault Clustering 34
4.5.3 Class Based Clustering 36

4.6 Essential Fault Pruning . 37

5 Proposed Techniques for Combinational Circuits 38
5.1 Independent Fault Clustering 38
5.2 Class Based Clustering . 38

6 Project Objectives 40

i

7 Scheduling of Proposed Research 40

8 Utilization Plan 43

9 Detailed Budget 43

References 58

List of Figures

1 Criteria 1: Inert Subsequence Removal [18] 7
2 Criterion 3 illustrated [18] . 8
3 RSR Algorithm: Criterion 5 illustrated [18] 9
4 Faults Propagated and Detected [18] 12
5 Reverse-Order-Restoration illustrated [24] 22
6 Merging of Subsequences illustrated [26] 27
7 Taxonomy of static compaction algorithms for combinational

circuits. 29
8 Test vectors and their associated faults. 31
9 First test vector that detects every fault. 31

ii

Test Set Compaction for Combinational and
Sequential Circuits based on Test Relaxation

Aiman El-Maleh and Sadiq M. Sait
College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals
KFUPM # 1063, Dhahran-31261, Saudi Arabia

e-mail: {aimane,sadiq}@ccse.kfupm.edu.sa

Abstract

Testing System-on-Chips involves applying huge amounts of test data,
which is stored in the tester memory and then transferred to the cir-
cuit under test (CUT) during test application. Therefore, practical
techniques, such as test compression and compaction, are required to
reduce the amount of test data in order to reduce both the total test-
ing time and the memory requirements for the tester. In this work,
test set compaction for combinational and sequential circuits based on
test vector relaxation will be investigated.

1 Introduction

Advances in the semi-conductor process and design technology paved the way
for System-on-Chips (SoCs). Traditional IC design, in which every circuit is
designed from scratch and reuse is limited only to standard cell libraries, is
more and more replaced by the SoC design methodology. However, this new
design methodology has its own challenges. A major challenge, currently
faced by engineers, is how to reduce the increasing volume of test data.
Basically, there are two approaches: compression and compaction [47]. In
the first approach, test data is kept compressed while it is stored in the
tester memory and transferred to the SoC. Then, it is decompressed on the
chip under test. This reduces the memory and transfer time requirements.
In the second approach, however, the objective is to reduce the size of a test
set while maintaining the same fault coverage. This approach contributes
more to the reduction of test application time.

1

Test compaction techniques are classified into two categories [47]. The first
category includes algorithms that can be integrated into the test generation
process. Such algorithms are referred to as dynamic compaction algorithms.
On the other hand, the second category includes algorithms that are ap-
plied after the test sets have been generated. Such algorithms are referred
to as static compaction algorithms. There are many approaches to static
compaction of a given test set as will be shown in the subsequent sections.

Given a test set T with single stuck-at fault coverage FCT for a circuit (Com-
binational or Sequential), the static compaction problem can be formulated
as to find another test set, T ∗, for the same circuit such that FCT ∗ ≥ FCT

and |T ∗| < |T | [39]. It should be pointed out that in the above definition,
there is no constraint on the individual fault coverage of each test vector
and the proximity between the test vectors of T and T ∗. That is, the fault
coverage of each test vector needs not remain intact and T ∗ needs not be a
subset of T .

This work first reviews the Static Compaction techniques that have recently
been published in the literature for Sequential and Combinational Circuits.
Each review is followed by the proposed techniques for the thesis work.

2 Static Compaction Algrithms for Sequen-

tial Circuits

Compaction of Sequential Circuits is achieved by Dynamic and Static Com-
paction techniques. Dynamic Compaction techniques [1], [2] incorporate
heuristics aimed at producing short test sequences into the test generation
process. On the other hand Static Compaction procedure is applied as a
post-processing step to test generation process.

Static Compaction offers the following unique opportunities in sequential
circuits test generation.

• It may be applied to test vectors generated by any ATPG tool. Thus
it does not modify the test generation procedure.

• It may be applied after dynamic compaction to further reduce the test
size.

• It can be applied on test sequences generated by simulation based tech-
niques.

2

• The shortest test sequence for sequential circuits are generated by static
compaction techniques.

For the above reasons Static Compaction is more popular in sequential cir-
cuits than Dynamic Compaction.

The following section reviews some of the known techniques for static test
compaction for sequential circuits.

2.1 Insertion, Omission and Selection

Pomeranz et. al proposed three different techniques for Static Test Com-
paction in [3] and [4] respectively. The techniques are Insertion, Omission
and Selection.

Insertion reduces the test length by removing the states that repeat itself
while detecting a single fault. Thus removing such test vectors reduces the
test length without reducing the fault coverage. Insertion operation can be
better understood by the following example. Consider a fault f ∈ Fdet with
detection time udet(f) (faults having higher detection time are preferred).
Let uj and uk be two time units such that uj < uk ≤ udet(f) and such that

Sj/S
f
j = Sk/S

f
k (i.e., Sj = Sk and Sf

j = Sf
k). Since Sj/S

f
j = Sk/S

f
k , the time

unit from uj to uk−1 only serves to take the fault-free/faulty circuit back
to the states at time unit uj and the test set T detects the fault f even if
the subsequence is removed from T. The sequence obtained by omitting T[uj,
uk−1] from T is T[u0, uj−1] ◦ T[uk, uL−1], where uL is the time unit of the last
test vector in the test set and ◦ denotes the concatenation of subsequences.

Using this approach a new test sequence is defined where the fault f is
detected earlier, as follows: The subsequence T[uk, udet(f)] is duplicated and
inserted at time unit uj. As a result, the detection time of f is reduced from
udet(f) to udet(f)-(uk-uj). The remaining part of the sequence, T[uj, uL−1],
is pushed to the right. Therefore the new subsequence is as follows:

T ′ = T[u0, uj−1] ◦ T[uk,udet(f)] ◦ T[uj, uL−1]

The above operation is known as insertion operation. The insertion operation
increases the total length of the test sequence; however, it allows us to reduce
its effective length by reducing the highest detection times. The shorter
sequence T[u0, uLeff−1] is then used instead of T .

3

The above step is the basic insertion operation as applied to the fault having
the highest detection time. This operation is repeatedly applied to all the
faults in decreasing order of detection time, using the test sequence formed
by consecutive insertion operations. The algorithm applies the insertion op-
eration (repeatedly) until further compaction or increase in fault coverage is
possible. However, this is also bounded by an upper limit on the length of
test set.

Experiments show that insertion reduces the test size and because of con-
catenation of subsequences, improves the fault coverage. But the drawback
is the large number of fault simulations, which increase the execution time
of the algorithm.

Omission considers the removal of a test vector ti followed by fault simula-
tion (considering all the faults) of the new sequence formed by the omission
of vector ti. If fault simulation shows reduction in fault coverage, the algo-
rithm restores the test vector ti and moves to the next vector ti+1. Thus test
vectors whose removal does not affect the fault coverage are removed from
the sequence.

The algorithm considers test vectors in original order (as generated by ATPG)
of their appearance for removal. It achieves highest level of compaction in
comparison to Insertion and Selection. Omission checks each and every vec-
tor for its possible removal which requires prohibitively large number of fault
simulations (equal to the number of vectors in the test set), making the
algorithm expensive in terms of execution time.

In [3], binary search technique is proposed to reduce the number of fault simu-
lations, the algorithm quickly traces an inert subsequence (inert subsequence
is one whose removal does not reduce the fault coverage). Binary search
technique is applied to locate a removable test vector and checks the removal
of inert subsequence (found by each step of binary search) thus reducing the
number of fault simulations.

Selection begins by fault simulating the whole circuit without fault drop-
ping, it then locates those subsequences that detect maximum number of
faults. It then uses a covering procedure to determine the minimum number
of test vectors that detect all the faults in the circuit. The best subsequence
is one that detects maximum number of faults with minimum number of test
vectors.

4

The algorithms finds the starting and ending point of each fault by simulating
the circuit L-1 times without fault dropping, where L is the length of test
sequence. Thus each time unit is used as the starting point of fault simulation
without fault dropping. The algorithm then solves a covering problem to
return the smallest possible test set size.

Selection uses fault simulation without fault dropping which is a very expen-
sive step in terms of storage requirement. A large number of fault simulations
makes it slow as well.

Experiments conducted on the three algorithms show that Omission gives
the highest level of compaction followed by Selection and then Insertion.
The execution time is not reported, but as discussed, all the algorithms
rely heavily on fault simulations making the procedures slow and therefore
infeasible for large industrial circuits.

2.2 State Traversal

The idea of Insertion is extended by Hsiao et. al. in [18] and [19]. The author
has criticized the techniques in [3] and [4] as they require large number of fault
simulations and therefore are impractical for large circuits. The proposed
static compaction technique relies on the fact that a test set generated by
ATPG goes through a small number of states, and some states are frequently
revisited.

The number of states visited by a test set are small in comparison to the total
number of test vectors for most circuits. The authors concluded that many
subsequences that start and end on same states exist within these test sets.
Test sets generated by various test generators exhibit similar phenomena.
The subsequences that start and end on the same state may be removed
from a test set if certain conditions are met. The algorithm is not effective
for circuits having few repeated states. The technique is fast as it only
requires two fault simulation passes through the test set for compaction.

Some of the important definitions stated in the work include the following:

• A State-Recurrence Subsequence Trec is a subsequence of vectors T[vi,
vi+1,...,vj] such that the fault free states reached at the end of vectors
vi−1 and vj are identical.

• An Inert Subsequence, Tinert is a state-recurrence subsequence Trec[vi,

5

vi+1,...,vj] such that no additional faults are detected within the subse-
quence Trec.

• Given a fault-free state S, the error vector Ef for a particular fault f
is equal to S ⊕ Sf , where Sf is the corresponding faulty state for the
same time frame.

• Given two identical fault-free states S, the error vector Ef for a fault f
covers another error vector E ′

f for the same fault and state if Ef

⋃
E ′

f

=Ef .

A number of criterion considered by the algorithm Inert Subsequence Re-
moval, ISR to reduce the test set size are mentioned, which are as follows:

1. For an inert subsequence T[vi, vi+1,...,vj], if faulty state Si−1
f at the end

of time frame i-1 and faulty state Sj
f at the end of time frame j are

identical for every undetected fault f which is activated at time frames
i-1 and j, Tinert can be removed. The point is illustrated by figure 1.

2. For an inert subsequence Tinert[vi, vi+1,...,vj], if error vector Ej
f at the

end of time frame j covers Ei−1
f at the end of time frame i - 1 for every

activated fault f and the additional fault effects propagated at time
frame j do not lead to detection, Tinert can be removed.

3. For an inert subsequence Tinert[vi, vi+1,...,vj], if error vector Ei−1
f at the

end of time frame i-1 covers Ej
f at the end of time frame j for every

activated fault f, Tinert can be removed if the additional fault effects
propagated at time frame i-1 do not cause fault masking in time frames
starting at frame j+1 as shown in figure 2.

4. For an inert subsequence Tinert[vi, vi+1,...,vj], if neither error vectors
Ei−1

f and Ej
f cover the other, conditions imposed on activated faults in

both criteria 2 and 3 (mentioned above) need to be satisfied in order
for the inert subsequence Tinert to be removed.

Authors have identified easy faults as ones which have multiple detection
times, and require few constraints on value of input and memory elements.
Since these faults are detected multiple times, subsequences exclusively de-
tecting such faults (after being detected once) can be safely removed. The
algorithm Recurrence Subsequence Removal, RSR proposed to remove
such subsequences first fault simulates without fault dropping (to know ex-
actly the number of times each fault is detected) and then checks for the
following four constraints:

6

(b)

Figure 1: Criteria 1: Inert Subsequence Removal [18]

1. All faults within Trec have detection subsequences that do not overlap
with Trec.

2. For each fault active at the end of time frame j, if error vector Ej
f at the

end of time frame j covers error vector Ei−1
f at the end of time frame

i-1, and the additional fault effects propagated at time frame j do not
lead to detection.

3. For each fault active at the end of time frame i-1, if error vector Ei−1
f

at the end of time frame i-1 covers the error vector Ej
f at the end of

time frame j, the additional fault effects propagated at time frame i-1
do not cause fault-masking in time frames starting at time frame j+1.

4. For each fault active at the end of time frame i-1 and j, if neither error
vector Ei−1

f nor error vector Ej
f covers the other, conditions imposed

on activated faults in 2 and 3 (mentioned above) are satisfied.

The last three conditions are not necessary conditions, since faults which
violate these conditions may be detected multiple times.

7

Figure 2: Criterion 3 illustrated [18]

The results of algorithms ISR, RSR and their combination CSR shows that
the compaction achieved is marginal as compared to Omission and other
algorithms known for producing compact sequences, but the run time is
far less than those algorithms. Amongst the three algorithms CSR mostly
produced more compact test sequences consuming marginally higher time.

The above idea is extended in [20] by Hsiao et. al. This algorithm takes into
account the fact that State Relaxation gives even more opportunity of finding
inert and recurrent subsequences. State relaxation refers to relaxing the flip
flops of the circuits without reducing the fault coverage. The procedures in
[18] are applied after getting the relaxed state of the circuit, which allows for
even more compaction.

Experimental results show significant improvement in compaction achieved
by the algorithm as compared to that in [18] for most of the circuits. The
runtime of the algorithm is marginally higher than those in [18].

8

Figure 3: RSR Algorithm: Criterion 5 illustrated [18]

2.3 Vector Restoration

Vector Restoration based procedure is proposed by Pomeranz et. al. [6], [7],
[8] which has given a new direction to static compaction of test vectors for
sequential circuits. Lots of techniques are developed using the idea proposed
by the authors in this work.

The main motivation behind this work came from the vector omission tech-
nique. For many test sequences it was observed that the test length after
compaction was less than half of the original test length. This suggested that
it might be faster to decide which test vectors must be retained in the test
sequence in order to maintain the fault coverage, instead of deciding on the
test vectors that might be omitted. This technique in principle first omits all
the test vectors and then restores only those necessary to maintain the fault
coverage.

Restoration of test vectors refers to the fact that all test vectors are first
removed from the list and then are restored considering each fault one after
the other, until the fault under consideration is detected.

The algorithm (procedure 1) proceeds as follows:

• The algorithm first fault simulates the circuit and marks the detection
time of each fault together with the fault being detected.

9

• It then keeps the initial vectors that completely specify the state of the
circuit and omits the rest, this is also called Synchronizing Sequence.
Thus the initial vectors ensure that the circuit states are fully specified.
This sequence is used to restore test vectors for every fault, since faults
are not considered in a specific order, therefore the states of the flip
flops for each subsequence is specified by the synchronizing sequence.

• It then omits all the test vectors from the list of compacted test vectors.

• The algorithm then restores as many test vectors as required to detect
the targeted fault. Different measures to select a fault for restoration
are considered, for e.g. it could be selected: randomly, faults detected in
decreasing order of detection time; procedure 1 uses the second criteria
(also referred as Reverse Order Restoration (ROR)). The algorithm
restores consecutive vectors near the test vector that detects the fault
until the fault(s) under consideration is detected.

• Once test vectors for all the faults are obtained, fault simulation is
performed to ensure that all faults are detected.

• If there are faults that were originally detected but are not detected
by the compacted sequence, then additional test vectors are restored to
detect them. It is possible that faults detected earlier by the compacted
sequence may become undetected at later stage. This is because of
sub-sequence concatenation necessary to create the final test set; the
subsequence looses the synchronizing sequence that was initially used
to restore the subsequence after it is concatenated to other test vectors
in the final test set.

• Once all the faults are detected by the compacted test set, the algorithm
physically omits all the test vectors which are no longer needed for
detection of any fault in the circuit.

Authors have made modifications to the above procedure by introducing
algorithms 1E and 1R. Procedure 1E is same as the above procedure, however
it does not use the synchronizing sequence. Procedure 1R, on the other hand
selects faults (for vector restoration) in random order, however it uses the
synchronizing sequence introduced in procedure 1 (described above).

The fact that some earlier detected faults by the compacted sequence may
become undetectable is the motivation of procedure 2. Procedure 2 considers
a constant number of faults in one pass and restores test vectors for them.
If any of the fault is undetected later, additional vectors are restored right

10

away before considering next group of faults. The author has used a group
of five faults and synchronizing sequence is used with the procedure.

Experimental results show that Procedure 1R gives the highest level of com-
paction amongst procedure 1, 1E, 1R and 2, but has the highest execution
time, however 1E has the smallest execution time. Procedure 2 gives more
compaction than procedure 1 in many cases but the time is larger than 1 and
1E.

Authors have proposed two schemes to speed up the restoration process. In
these procedures several faults having same detection time are considered in
parallel using parallel fault simulator HOPE [9].

Two schemes are proposed REST-RO64 and REST-SO64. The first considers
64 faults in random order while the second considers 64 faults in sorted order
of decreasing time for restoration.

Experimental results show that the level of compaction is highest, even higher
than omission-based compaction. The time to execute, however, is not re-
ported. It is shown that the combination of REST-RO64 and REST-SO64
gives the best level of compaction.

Some of the advantages of restoration are:

• It is faster than vector omission technique, and some derivatives of
restoration even achieve higher level of compaction than omission.

• An undetected fault is considered and vectors are restored to detect this
fault only, which is cheaper than omission where a vector is removed
and then fault simulation is carried out considering all the faults.

• The restoration of vectors considering faults in decreasing order of their
detection time, depicts covering problem thus vectors for hard-to-detect
faults (hard-to-detect faults tend to have higher detection time) take
easy-to-detect faults into account. Therefore easy-to-detect faults have
a good probability of being detected during restoration of test vectors
for hard-to-detect faults.

• Concatenation of vectors may allow detection of faults which were not
detected originally by the ATPG.

11

2.4 Hardware Reset Scheme

Hardware reset scheme is proposed by Higami et. al. [5] for sequential test
set compaction. The authors have defined reset state by moving 0 to all flip
flops in the circuit. Two schemes are proposed i.e. High-Cost and Low-Cost
approach. The first approach does fault simulation without fault dropping
while the second approach drop faults during fault simulation.

Both approaches categorize test vectors as removable and un-removable test
vectors. In the High-Cost approach the number of removable vectors found
are higher than the Low-Cost approach. A subset of removable vectors are
then replaced by a reset state by logic simulation followed by fault simulation.
The level of compaction achieved by the high-cost approach is consequently
higher than the low-cost approach.

The two approaches classify the test vectors as First Fault Detecting vector
(FFD: the first test vector that propagates the fault to some output of the
circuit) and Fault Propagating vector (FP: the test vector that either excites
the fault or propagates it to another FP or FFD vector). The authors then
define either FP or FFD as un-removable while the rest as removable vectors.
The figure illustrates the differences between FP and FFD.

Figure 4: Faults Propagated and Detected [18]

Once the set of removable and un-removable vectors are obtained, the remov-
able vectors are replaced by Reset State and logic simulation is done to check
the state of un-removable vectors. The replacement is accepted only if the
state of un-removable vectors is not changed by the replacement of removable

12

vectors with the reset state. Thus logic simulation helps replacing removable
vectors which do not affect the current state of un-removable vector. The
removable test vectors which affect the current state of un-removable vectors
are checked by fault simulation to ensure whether they are essential or not.
Fault simulation also helps validating the fault coverage and thus attesting
the removal of test vectors after logic simulation.

In the case of high-cost approach a detection matrix is made using fault
detecting vectors and a covering problem is solved using a greedy algorithm
to get a minimum number of test vectors detecting all the faults. Since fault
simulation with out fault dropping is an expensive procedure, the authors
have used a threshold value to detect a fault a certain number of times, thus
the fault is dropped after the threshold value.

The compaction results are compared with Reverse Order Restoration (ROR)
technique. The compaction achieved by the low-cost approach is comparable
to ROR for most of the circuits, but with an overhead of introducing reset
states. On the other hand compaction achieved by the high-cost approach
is significantly better than ROR with an expense of introducing reset states
and fault simulation without fault dropping. The run time of the high-cost
approach is more than double to that of the low-cost approach.

2.5 Vector Replacement

Pomeranz et. al. have proposed a number of schemes in [10], [11] to take a
compaction procedure out of saturation. Any static compaction procedure
applied to a circuit is said to be saturated when its consecutive passes do
not result in any further compaction. This procedure can be applied with
any static compaction procedure to help overcoming saturation thus allowing
higher level of compaction.

Two main schemes VERSE-C and VERSE-H are presented in this paper,
each scheme comprises of a number of sub-schemes. VERSE-C (VERSE-
Combined) replaces a vector in compacted test set TC with another vector
(from a set C) generated by the scheme proposed in [12]. The vectors gen-
erated by [12] give a wider domain of vectors together with states that may
be used to replace certain test vectors in TC .

The vectors in TC have a specific state Si on its memory elements and simi-
larly the vectors in C have states Csj for each test vector.

13

The algorithm first compares and determines the distance D between the
states Si of input vectors of the set TC to that of states Csj of vectors of set
C. For example, suppose that the state and input vector of test vector from
TC is Si = (01x) and ti = (01), and Csj = (000) and Cj = (00) are the states
and input vector respectively from C, then the distance D will be 2, as the
states differ from each other in two places.

The value of D has an upper limit called DMAX which is the maximum
number of states the algorithm allows to differ in between vectors from the
two sets.

VERSE-C has many different versions, which are explained as:

• The first procedure replaces test vectors in compacted set in order one
after the other and tries to replace with vectors from C, using the value
of DMAX in increasing order, from zero onwards, ensuring that ti �= Cj.
The two vectors together with the states are replaced.

• This is followed by fault simulation and a vector is restored whenever
the replacement reduces the fault coverage.

• This step is followed by the application of compaction algorithm (which
has to be taken out of saturation) and then higher values of D are also
tried.

• The second version of VERSE-C is same as first, but vectors are applied
in reverse order of their appearance. The test vectors towards the end,
usually detect hard-to-detect faults and thus replacing them allows
detecting easy-to-detect faults and therefore more compaction.

• The third version replaces those test vectors at which the fault is de-
tected i.e. propagated to one of its outputs. This reduces the number
of replacements and thus fault simulations.

• The fourth version is identical to third but the faults are considered in
reverse order.

Pomeranz et. al. experimented with various procedures and various values of
D indicate that procedure 2 is effective during the first few iterations since it
achieved relatively low test lengths at relatively lower run times during these
iterations. Procedure 1 or 3 is typically preferred for the later iterations.
Based on these conclusions, procedures 1, 2 and 3 are combined. Procedure
4 did not have any advantage over the other procedures and is not used. The

14

main algorithm of VERSE-C combines the three algorithms and applies in
order, procedure 2, 1, and then 3.

VERSE-H (VERSE-Holding) on the other hand does not make use of any
test set produced by another algorithm for replacement of test vectors but it
uses the same compacted set. VERSE-H also has two versions, which are as
follows:

• The first version replaces a vector ti by ti−1 for every i ∈ the given test
set. The algorithm then restores the test vector whose replacement
reduces the fault coverage. For example the sequence (00,01,10,11) will
be changed into (00,00,10,11) and then into (00,00,00,11).

• The second version of VERSE-H replaces the vectors starting from
the end of the sequence. Therefore the sequence (00,01,10,11) will be
changed into (00,01,11,11) and then into (00,11,11,11).

The main algorithm of VERSE-H combines the two approaches and starts
with the second version and then switches to the first (in this way keeps
switching between the two algorithms). This is done until the compaction
algorithm can not further reduce the test sequence in allowable number of
passes, after which the algorithm terminates.

Results show that VERSE-C has performed better than VERSE-H in most
of the cases. However, there are few circuits for which the opposite is true.

The authors propose the use of VERSE-C and VERSE-H together, by ap-
plying one after the other.

These schemes use a large number of fault simulations and should be used
only when the level of compaction is highly desirable and time to reach the
solution may be sacrificed.

2.6 Sequence Re-Ordering

Sequence Re-ordering is proposed by Pomeranz et. al. in [13] as another
static compaction technique. The scheme can be applied alone or as a pre-
processing step applied before some other compaction algorithm. This can
also be used to take an algorithm out of saturation and therefore a continu-
ation of the work proposed in [10] and [11].

15

The procedure reorders the test vectors with the aim of achieving higher level
of compaction while maintaining the fault coverage of the test set generated
by the ATPG.

The procedure consists of two phases, the first phase, called Sequence Re-
ordering, divides the vector set into equal sized partitions called subse-
quences. The optimal number of partitions, found by experiments is 7.

The partitions are then used to fault simulate the circuit starting from un-
known initial states. The faults detected by each subsequence is recorded.

These subsequences are then concatenated, subsequences in consecutive order
are concatenated together, to detect remaining faults which require larger
number of test vectors for detection. This step requires fault simulation
without dropping, to know which faults are detected by concatenating a
unique pair of consecutive subsequence.

The above step reduces the number of sub-sequences in comparison to the
original number, generated by the initial vector partitioning step.

The second phase of algorithm called Subsequence Reordering takes the sub-
sequences from the previous step and then permutes them. The optimal
permutation is one which detects all the faults using minimum number of
test vectors.

For example, phase 1 of the algorithm gave 3 self-initialized sub-sequences.
The second phase would permute, therefore giving 3! combinations of sub-
sequences of test vectors. It would then find the optimal arrangement such
that all the faults are detected using minimum number of test vectors. Thus
compacting the test sequence.

The procedure applied alone gives little compaction. However, it gave better
results when applied as a preprocessing step before Sequence Counting [15]
and Restoration [6] based approach.

As mentioned above, the technique applied alone does not give good results
and therefore should be applied as preprocessing step or to take an algorithm
out of saturation. The run time of compaction when two or more algorithms
are applied together increase tremendously and therefore is neither shown
in the paper nor is the objective of the scheme proposed. Therefore, the
algorithm is only preferred when the level of compaction is the only objective.

16

2.7 Chronological Order Enumeration

An improvement on the level of compaction achieved by vector omission
technique is shown by Pomeranz et. al. in [14], [15]. In this paper, authors
have experimented with reordering of test vectors to achieve better level of
compaction.

This approach, referred to as Chronological Order Enumeration in [14] and
Sequence Counting in [15], omits test vectors from the test sequence and
reintroduces them at a later time. Reintroduction of vectors helps reduce
the compacted test sequence length beyond the length that can be achieved
if vectors are omitted permanently.

The algorithm follows the following sequence of steps:

• The basic step of the proposed procedure consist of replacing a vector
ti at time unit i by a vector tj, where j > i. The selection of tj is
random.

• If the above step reduces the fault coverage of the test, then the original
sequence is restored, otherwise the change is accepted.

• Another variation proposed in the same paper is Sequence Reduction.
The main motivation came from the fact that replacing a vector with
only higher indexed vector gives very little opportunity for replacing
test vectors existing towards the end of the set. In this algorithm, the
vectors in compacted test set are replaced by lower indexed vectors
from the same test set; lower indexed vectors have higher probability
to be replaced by higher indexed vectors from the original test set.
Therefore, replacing a vector with a lower indexed vector contributes
to more shuffling and therefore provides more chances of compaction.

• The above procedures are called a number of times, thus if the test
length is not reduced during a pre-selected constant, the algorithm
terminates.

Results show improved level of compaction as compared to Omission and
Restoration but the time to execute is higher than both of them.

2.8 Accelerated Restoration and Segment Pruning

A number of algorithms are proposed on the concept of Restoration [6].
Segment Reordering and accelerated restoration is discussed in [16]. The

17

authors have divided restoration in two phases i.e. Segment Validation
and Segment Refinement, which are as:

1. The algorithm begins with the initial fault simulation of the circuit and
records the states and time units whenever a fault is detected.

2. In the validation phase, a target fault is selected and the algorithm tries
to locate a near-accurate starting point of the subsequence detecting
the fault. The algorithm initially starts locating the starting point of
the fault either from last fault’s starting vector (in case there exists a
detected fault before the current target fault) or it simply starts from
the last test vector in the test set (if the fault under consideration is
the first target fault).

3. The algorithm then jumps back by subtracting 2i, where i = 0,1,2,...,
from the starting point until it detects the target fault.

4. It keeps track of the point where it last made the unsuccessful (kept as
min) and successful (kept as max) attempt while fault simulating for
the target fault.

5. The Validation is followed by Refinement phase, where the algorithm
exactly locates the starting point of subsequence detecting the fault.

6. The variables min and max are used by refinement phase to fine tune
its search. The algorithm keeps moving to the middle of the two values
until the exact starting point is obtained. This is why the second
phase is called Refinement (the algorithm refines the starting point of
the subsequence detecting the fault).

7. This scheme, also known as 2-φ (two-phase) restoration, therefore gets
the self-initializing subsequences of each fault, which are concatenated
to get the compacted test set. Thereby accelerating the restoration
process considerably.

The idea is extended by the same group of authors in [17]. This paper extends
the idea of two-phase restoration to Overlapped Restoration which is followed
by Segment Pruning procedures.

Overlapped Restoration comprises of overlapped validation and overlapped
refinement. The idea of overlapped validation is simply to target faults to-
gether, that have overlapping subsequences. Therefore, two faults f2 being

18

detected by subsequence v3 to v12 and f3 being detected by subsequence
v2 to v5, have overlapping subsequences and they may be targeted together
in the validation phase of the algorithm. Thus the target fault list is kept
flexible and additional faults are added to the list if they have overlapping
subsequences.

The target faults and the segments found in the previous phase are passed on
to the overlapped refinement phase (second phase of restoration). It again
tries to optimize the segment size (size of subsequence detecting the target
faults) considering the target faults. However, during the refinement phase
the algorithm fine tunes the detection time of the segment, thus considering
all the target faults, by similar method as described in [16].

The overlapped restoration is followed by segment pruning procedures. Two
segment pruning procedures are defined by the authors, which are described
as:

• Basic Segment Pruning algorithm which takes a subsequence/segment
detecting a fault(s) and starts removing/clipping vectors from the be-
ginning of the segment. The algorithm keeps removing vectors until all
faults are detected.

• The second algorithm Advanced Pruning however, drops vectors from
the segment rather than removing them only from the boundaries. For
each iteration, simulation is done starting from a known initial state,
to check the detection of fault if certain vectors are removed from the
segment. This can be understood as application of Omission technique
inside each segment; this gives more compact test segments.

• Advanced Pruning results in self-initializing segments that detect a
number of target faults. Therefore, segments considered afterwards are
independent of previous segments and thus need not to be considered
during subsequent fault simulation passes. This reduces the overall
number of fault simulations.

Experiments are conducted to compare the algorithms presented in [16] and
[17] called SECO, to that of Restoration [6]. The following conclusion can
be drawn based on the results presented by the author:

• In comparison of Overlapped Restoration with Restoration, Overlapped
Restoration has produced similar results in terms of the level of com-
paction but the execution time is significantly smaller.

19

• Restoration was applied to large industrial circuits and could not pro-
duce results in 2 CPU days while SECO produced results in reasonable
amount of CPU time.

• SECO is 5 to 30 times faster than Restoration on ISCAS circuits while
for large industrial circuits it is 20 to 50 times faster than restoration.

2.9 SIFAR

SIngle FAult Restoration (SIFAR) is proposed by Lin et. al. in [46]. It uses
the basic idea of restoration of test vectors (subsequences) to detect the fault,
which are then concatenated to the compacted test set.

SIFAR considers a single target fault (in decreasing order of their detection
time) and restores test vectors for each fault until the fault is detected. If
there is more than one fault detected by the original test sequence at a single
simulation time, then only one of them is considered as a target fault. Test
vectors that detect the target fault are restored and concatenated to the
compacted test set. SIFAR may not restore test vectors for all the faults in
a single pass i.e., some of the faults may remain un-detected. Such faults
are considered in the subsequent passes of SIFAR. The algorithm is iterated
as many times as required to restore test vectors for all the faults, i.e., to
restore the fault coverage. Since most of the faults are detected at more than
one instant so most of the benchmarks required only two passes to restore
the fault coverage.

Experimental results show that SIFAR produces more compact test sets than
SECO in almost all the cases with a considerable reduction in CPU time.
SIFAR when compared with REST-SO64 gave better level of compaction
and CPU time. However, it gave better level compaction as compared to
ROR for most of the circuits, but its CPU time exceeded to that of ROR in
most of the cases.

2.10 Reverse Order Restoration

Reverse-Order-Restoration (ROR) is one of the most effective techniques
known, proposed by Guo et. al. in [24] by extending the ideas in [21], [22]
and [23]. The main difference between earlier work on Restoration proposed
in [6] and the one discussed here include the following:

• Restoration is done in reverse order, i.e. in decreasing detection time

20

of each fault and restored subsequences create a new test set having
vectors in reverse order of their inclusion as in the original test set.

• This helps save simulation efforts as more subsequences are restored,
fault simulation is done on the restored subsequences only, as subse-
quences are self-initialized and are concatenated to the compacted test
set towards the end.

• The algorithm includes a prefix that completely specifies the fault-free
circuit.

The algorithm specifies k which selects integer time units that are to be
restored i.e., all the faults in that time unit are targeted in single restoration
phase. Different values of k are used, however when k=1, the algorithm is
called Linear Reverse Order Restoration. The following paragraph together
with the illustration shown in figure 5 explains the algorithm.

• The algorithm begins with a fault simulation to store the detection
time of each fault.

• It then restores as many vectors as necessary to completely specify the
circuit i.e., initialize all the flip flops. In figure 5 it is shown by vector
1 in the beginning. Generally a prefix leads to a faster compaction
process.

• Fault simulation is done to check the detected faults (by the prefix) and
the states of the circuit are stored, and plugged in subsequent vector
restoration.

• The algorithm targets a number of faults depending on the value of k,
to restore subsequences necessary for their restoration. The targeted
faults are selected in decreasing order of their detection time. This
produces a covering effect as hard-to-detect faults are usually towards
the end of the test set and large number of vectors are required to
detect such faults thus easy-to-detect faults (requiring few necessary
states and inputs) have high probability of detection. In the figure, f6,
f7 & f8 are targeted for selection using k=2.

• Vectors are restored for detecting the targeted faults; vectors closer to
the time of detection are restored first, followed by fault simulation. If
the fault is not detected, additional vectors are restored until all the
target faults are detected.

21

In the figure vectors at time unit 10 and 12 are restored first, which
are followed by restoration of 8, 9, 10, 11, and 12 until the faults are
detected. The example also shows the covering effect as f2 & f4 are
also detected while restoring sequence for the target faults, thus demon-
strating the covering effect.

• The algorithm proceeds until all the faults that were originally detected
by the test set generated by the ATPG are detected.

The figure illustrates the placement of vectors which are in reverse order
to that generated by the ATPG tool.

Figure 5: Reverse-Order-Restoration illustrated [24]

The experiments show that the highest level of compaction is achieved with
k=1 as compared to other values of k and Restoration procedure in [6]. The
algorithm is also compared with SECO [16] & [17] and showed higher level
of compaction.

The algorithm’s execution time is not tabulated but is reported to be high.
To speed-up the restoration process another algorithm Radix Reverse-Order-
Restoration (RROR) is also proposed.

22

The algorithm has proposed Radix Search which is based on binary search
technique i.e. ri−1, where 1�r�2. Radix-ROR selects a target fault, restores
the vector that detects it, and then depending on the value of r it jumps to
the vector located by the values of i, where i=1,2,3,... until the target fault
is detected thus reducing the number of fault simulations and optimizing the
execution time of the algorithm.

The algorithm is compared with LROR in the paper. Results show that
compaction achieved is highest using r=1 or LROR technique, however the
execution time is reduced using higher radix values.

Mixed-Mode Algorithm is also discussed in the paper. The algorithm applies
Omission after obtaining a subsequence using ROR and before appending it
to the test set (compact set). Thus trying to achieve further compaction by
removing un-necessary vectors from each subsequence.

Experiments to compare various algorithms show that the highest level of
compaction is achieved by MISC-ITE i.e. Mixed Mode algorithm applied
iteratively, followed by LROR-ITE which achieves comparable compaction
at significantly less time, about 1/4th of MISC-ITE.

3 Proposed Techniques for Sequential Circuits

In the light of techniques studied in the literature survey, a plan is sketched
to contribute to this branch of knowledge. The objectives are:

• To further increase the level of compaction achieved by known Static
Compaction algorithms.

• To further reduce the execution time.

Therefore, targeting a scheme that may give higher level of compaction at
lower execution time.

To achieve the above objectives, the following two schemes will be studied,
implemented and optimized:

1. The first scheme is Reverse-Order Restoration with State Traversal us-
ing Relaxed Test Set

23

2. The second scheme uses the already compacted test set generated by
the first objective and applies Merging of Subsequences to achieve fur-
ther compaction of the test set.

Some of the important attributes of a test set generated by any ATPG are
summarized next, these are crucial in understanding the behavior of sequen-
tial circuits and therefore contribute to efficient compaction.

• Hard-to-Detect faults are those that require a large number of necessary
states, therefore a larger time frame, in which the subsequence detecting
it generates those necessary assignments on the flip-flops of the circuit.
Such faults are distributed usually towards the end of the time frames
generated by the test set.

• Easy-to-Detect faults, on the other hand require relatively few neces-
sary assignments, therefore can be detected by a relatively small sub-
sequence. Such faults are detected a number of times during the test
generation process and are evenly distributed on the time frames gen-
erated by the test set.

• The distribution of faults points to an important fact, that the subse-
quence for hard-to-detect faults produces a covering effect thus giving
a high probability of detecting easy-to-detect faults. Therefore subse-
quences detecting easy-to-detect faults may be removed.

• A subsequence detecting a single fault having relaxed state assignments
can be further reduced by an inexpensive State Traversal step, as dis-
cussed in [20].

• A set of relaxed input vectors may help reduce the test size.

• Concatenation of subsequences improves the fault coverage.

The two algorithms proposed for the thesis work (discussed in the next sec-
tion), capitalize on an efficient test relaxation technique for sequential circuits
[25]. The relaxation algorithm returns the relaxed assignment on inputs as
well as on the flip flops of the circuit, considering k faults as target. The re-
laxation technique has the advantage of CPU time saving on simulation based
techniques, when it comes to restoring the self-initializing subsequences. As
observed in all the algorithms, the self-initializing subsequence requires a
good number of fault simulations and therefore consumes a high percentage
of the overall execution time of the algorithm. The proposed techniques capi-
talize on relaxed state assignments (produced by the algorithm in [25]) which

24

can give the self-initializing subsequence by simply locating the time frame
having all un-specified states. Thus large percentage of CPU time which
is otherwise consumed on producing the self-initializing subsequences (using
fault simulations) is reduced.

These attributes of a test set and the relaxation technique, has never been
integrated in any single static compaction algorithm and this is the motiva-
tion of our work and philosophy behind the two algorithms discussed in the
next section.

3.1 Reverse-Order Restoration with State Traversal
using Relaxed Test Set

The algorithm comprises of the following steps:

1. Fault Simulate the circuit using the given un-compacted test set. Col-
lect the detection time of each fault, and the fault number.

2. Relax the test set and states of the circuit, using technique discussed
in [25].

3. Target the fault in decreasing order of detection time (which is un-
detected by the compacted test) and locate the time frame close to the
detection time, where all the states are relaxed (i.e. states are don’t
care values rather than some specific binary value). This gives the self-
initialized subsequence of the target fault very quickly without doing
any fault simulation.

4. The subsequence obtained may have certain unnecessary vectors that
may be removed. The removal is done by state traversal that finds
redundant time frames in each subsequence. Since all the states are
relaxed by the relaxation algorithm, there is a good chance of further
pruning the subsequence using the state traversal technique. Therefore
any redundant time frame will be removed, thereby further compacting
the subsequence.

5. The compacted subsequence is concatenated with the previous subse-
quence, as shown in figure 5.

6. Fault Simulate the last subsequence restored, and drop all the faults
being detected. This steps creates the covering effect, and test vectors
for easy-to-detect faults are automatically removed from the target list,
thus removing their subsequences.

25

7. If there are un-detected faults which were originally detected by the
test set i.e.Ftarget �=0, go to step 3.

8. Proceed until all the faults are detected, and fault coverage is at least
maintained.

This algorithm considers all the attributes of sequential circuit test set that
are discussed in the previous section except merging of test vectors, which is
discussed in the next algorithm.

3.2 Merging of Subsequences

This algorithm will be applied after applying Reverse-Order Restoration with
State Traversal using Relaxed Test Set, to further compact the test size. It
uses merging of subsequences to compact the test set. The main idea behind
merging of subsequences is described next.

In [26], three algorithms are given to merge self-initializing test sequences.
The first algorithm merges aligned test sequences as shown in Figure 6 (a). If
aligning two sequences will result in a conflict between one or more vectors, a
second algorithm is used to merge two sequences with a skew as shown in Fig-
ure 6 (b). The third algorithm improves the compatibility of test sequences
using stretching. A sequence is stretched if some of its vectors are repeated
several times without changing their order. For example the sequence (101x,
1x01, 111x) can be replaced by (101x, 1x01, 1x01, 111x). This will add one
more degree of freedom to the process of compaction as shown in Figure 6
(c). Merging two test sequences using the last two algorithms may affect
the fault coverage. Therefore, a fault simulation step is performed after the
merging process.

The algorithm Merging of Subsequences is as follows:

1. Obtain the self-initializing subsequences for k faults having relaxed
inputs and state assignments (by using the relaxation algorithm from
[25]).

2. Merge the subsequences [26], to get the maximum compaction as dis-
cussed in the previous section.

The merging scheme completes all the attributes essentially found in a test
set generated for a sequential circuit.

26

I
x1x
x00
101 =

(a) Merging of aligned test sequences

010
xx0
10x
1xx

010
x00
101
1xx

I
x1x
x00
101

010
xx0
10x
1xx

conflict

I x0x
x00
101

=
010
x00
100
101

010
xx0
10x
1xx

skew = 1

(b) Merging of two sequences with a skew

x0x
x00
101
100

010
xx0
10x
1xx
000

conflict

skew = 1 010
xx0
10x
1xx
1xx
000

x0x
x00
101
100

I

stretch

skew = 1

=
010
x00
100
101
100
000

(c) Merging of two sequences with a stretch

I

Figure 6: Merging of Subsequences illustrated [26]

These two schemes are expected to give better results than known compaction
algorithms for sequential circuits, thus attempting to achieve High Speed
Compaction.

27

4 Static Compaction Algorithms for Combi-

national Circuits

In this section, we propose a taxonomy of static compaction algorithms for
combinational circuits. First, an overview of the taxonomy is given. Second,
every class in the taxonomy is illustrated with examples from the literature.

4.1 Overview

Static compaction algorithms for combinational circuits can be divided into
three broad categories: (1) Redundant Vector Elimination, (2) Test Vector
Modification, and (3) Test Vector Addition and Removal. Figure 7 shows
our proposed taxonomy. In the first category, compaction is performed by
dropping redundant test vectors. A redundant test vector is a vector whose
faults are all detectable by other test vectors. Static compaction algorithms
falling under this category can be further classified into two classes. The
first class contains algorithms based on set covering in which faults are to be
covered using the minimum possible number of test vectors. On the other
hand, the second class contains algorithms based on test vector reordering
in which fault simulation, fault distribution, and double detection are used
to identify redundant test vectors and then drop them.

In the second category, compaction is performed by modifying test vectors.
Algorithms belonging to this category can be further classified into three
classes. The first class contains algorithms based on merging of compatible
test cubes. A test cube is a test vector that is partially specified. A test vector
is made partially specified by unspecifying the unnecessary primary inputs.
This process is referred to as relaxation. Relaxation can be performed using
an ATPG or a stand-alone algorithm [27], [28]. In addition to relaxation,
raising can be used to enhance the compatibility among relaxed test vectors.
If two relaxed test vectors conflict at one or more bit positions, they can be
made compatible by raising one of them at the conflicting bit positions.

The second class contains algorithms that employ essential fault pruning to
make some test vectors redundant. A test vector is redundant if it detects no
essential faults. A fault is essential if it is detected only by a single test vector.
Essential faults of a test vector can be pruned, i.e., made detected by some
other test vectors, by re-assigning values to those bits that are originally
unspecified and have been randomly assigned values to detect additional
faults.

28

Static Compaction Algorithms for Combinational Circuits

Set Covering

Redundant Vector
Elimination

Test Vector
Addition &
Removal

Test Vector
Reordering

Test Vector
Modification

Merging

Based on
Raising

Based on
Relaxation

Essential Fault
Pruning

Based on
ATPG

Essential fault
Pruning

Based on ATPG
Test Vector

Decomposition

Class-based
Clustering

Graph Coloring
Independent

Fault Clustering

Figure 7: Taxonomy of static compaction algorithms for combinational cir-
cuits.

The third class contains algorithms that are based on test vector decomposi-
tion. Test vector decomposition is the process of decomposing a test vector
into its atomic components. An atomic component is a child test vector that
is generated by relaxing its parent test vector for a single fault f. In this the-
sis, we propose test vector decomposition as a new class of static compaction
algorithms that modify test vectors to perform compaction.

Finally, the third category of static compaction algorithms consists of com-
paction algorithms that add new test vectors to a given test set in order
to remove some of the already existing test vectors. The number of the
newly added test vectors must be less than the number of test vectors to be
removed. An ATPG is used to generate the new test vectors.

4.2 Set Covering

Test compaction for combinational circuits can be modeled as a set covering
problem. The set cover is set up as follows. Each column of the detection
matrix corresponds to a test vector and each row corresponds to a fault. If a
test vector j detects fault i, then the entry (i, j) is one; otherwise, it is zero.
In this setup, the total amount of memory required for building the detection
matrix is O(nf), where n is the number of test vectors and f is the number
of faults.

29

Static compaction procedures based on set covering were described in [29],
[30] and [31]. It should be pointed out that this approach has not been used
much in the literature due to the huge memory and CPU time requirements.

4.3 Test Vector Reordering

Identification of redundant test vectors in a test set is an order dependent
process. Given any order, redundant test vectors can be identified using
fault simulation, fault distribution, or double detection. Hence, there are
four variations of Test Vector Reordering (TVR) based static compaction
algorithms.

4.3.1 TVR with Fault Dropping Simulation

Fault simulation of a test set in an order different from the order of generation
is used as a fast and effective method to drop redundant test vectors. Under
Reverse-Order Fault simulation (ROF) [32], [33], a test set is fault simulated
with fault dropping in reverse order of generation. That is, a test vector that
was generated later is fault simulated earlier. A test vector that does not
detect any new faults, when it is simulated, is removed from the test set.

The intuitive reason for this phenomenon is simply that test vectors that are
further down the list detect faults that are most difficult to detect. Therefore,
if we first fault simulate a test vector that is at the end of the list, it not only
detects a hard fault right away, it also detects many others by pure chance.
This way hard faults are out of the way early.

4.3.2 TVR with Forward-Looking Fault Simulation

The forward-looking fault simulation is an improved version of ROF [33]. It
is based on the idea that information about the first test vector that detects
every fault can be used to drop test vectors that would not be dropped
by ROF. That is, the yet-undetected faults have lower indexed test vectors
that detect them. So, some test vectors are skipped over and consequently
dropped from the test set.

Let us consider the following example. Let the test set T be {t1, t2, t3} and
the fault set F be {f1, f2, f3, f4}. Figure 8 shows the test vectors with their
associated faults and Figure 9 shows the first test vector that detects every
fault. Conventional ROF first simulates t3. This test will be retained in the
test set to detect f2 and f3. Next, t2 is simulated. Since it detects the new

30

Test Faults
t1 f1,f4

t2 f2,f4

t3 f2,f3

Figure 8: Test vectors and their associated faults.

Fault Test
f1 t1
f2 t2
f3 t3
f4 t1

Figure 9: First test vector that detects every fault.

fault f4, it is retained in the test set. Finally, t1 is simulated and retained in
the test set since it detects a new fault, f1. No tests are dropped by ROF in
this case.

Now, let us start ROF again taking into account the information given in
Figure 9. ROF starts by simulating t3. This test is retained in the test set to
detect f2 and f3. Next, t2 is simulated. t2 detects the new fault f4. However,
f4 is first detected by t1. Therefore, we conclude that t2 is not necessary
for the detection of any yet-undetected fault and we drop it from the test
set. Finally, when t1 is simulated, the remaining undetected faults f1 and f4

become detected and the detection process completes. In this case, one test
vector is dropped from the test set.

4.3.3 TVR with Fault Distribution

In TVR with fault distribution, a test vector is fault simulated without fault
dropping. Faults detected by every test vector are recorded. Besides, the
number of test vectors that detect every fault is recorded. Then, given any
order, a test vector whose number of essential faults is zero, i.e., the faults it
detects can be distributed among other test vectors, is considered redundant
and thus can be dropped. After a test vector is dropped, the number of test
vectors that detect every one of its faults is reduced by one.

In [34], compaction based on fault distribution was used to compact test
sets as a part of a dynamic compaction algorithm. The motive behind the
proposed algorithm is the fact that ROF cannot identify a redundant test
vector if some of the faults detected by it are only detected by the test vectors

31

generated earlier. ROF can only identify a redundant test vector if all the
faults detected by it are also detected by the test vectors generated later.

4.3.4 TVR with Double Detection Fault Simulation

Double Detection (DD) was first proposed in [35] as a dynamic compaction
algorithm. Basically, when generating a new test vector, a yet undetected
fault called a primary target fault is selected and a test vector ti is generated
to detect it. Next, other faults called secondary target faults are selected
one at a time and the unspecified values in ti are specified appropriately
to detect the secondary target faults until no unspecified values remain in
ti or no additional secondary target faults can be detected. In choosing
the secondary target faults, faults that are not detected are first considered
and then faults detected at most once by earlier generated test vectors are
considered. Faults are dropped from the list of target faults when they are
detected twice. Test vectors that detect faults that are detected only once,
i.e., essential test vectors, are marked. After the test generation is complete
(when all the faults are detected at least once or aborted or proved to be
untestable), the following static compaction procedure is used to reduce the
test set size. The generated test vectors are simulated with fault dropping
in the following order. First, all the essential test vectors are simulated in
the order they were generated. The essential test vectors are followed by the
non-essential test vectors in the order opposite to the order in which they
were generated. During the fault simulation process, a test vector that does
not detect any new fault is dropped. It should be pointed out that essential
test vectors cannot be dropped and thus simulating them first maximizes the
ability to drop other test vectors.

DD can be used in static compaction procedures [36]. However, since most
test generators do not attempt to target faults for a second detection and do
not use non-fault dropping simulation, they do not collect all the informa-
tion necessary for static compaction based on DD. Therefore, the necessary
information must be collected in a pre-processing step.

4.4 Merging

Static compaction algorithms in this class can be divided into two groups.
The first group contains algorithms based on the very simple and efficient ap-
proach of merging compatible test cubes. A test cube is a relaxed test vector.
A test vector is relaxed by unspecifying the unnecessary primary inputs. A
test vector can be relaxed using an ATPG or a stand-alone algorithm [27] and

32

[28]. A merging procedure employing relaxation proceeds as follows. Given
a test set T , test vectors in T are all relaxed. Then, an iterative search is
performed for pairs of compatible test vectors. Two test vectors ti and tj are
compatible if they do not specify complementary values in any bit position.
If any two vectors, say ti and tj, are compatible, they are replaced by the
vector ti ◦ tj, where ◦ represents the merging operation (see the definition in
Table 1). The new test vector ti ◦ tj has all the binary values of both ti and
tj. Hence, by a repetitive application of the above compaction operation,
many test vectors (two or more) can be combined into fewer test vectors. As
a result the total number of test vectors that need to be applied with the
same fault detection capabilities is reduced. Examples of this approach can
be found in [27], [37] and [38] .

In the second group, algorithms employ in addition to the relaxation opera-
tion a raising operation. For a test vector t, the raising operation raise(t, i)
tries to set the ith bit of t to x while preserving the coverage of the essential
faults of t. The raising operation was proposed in [39]. Raising is used to
enhance compatibility among relaxed test vectors. For example, if two re-
laxed test vectors, say ti and tj, conflict at one or more bit positions, they
can be made compatible by raising one of them at the conflicting bit posi-
tions. Typically, raising is used to resolve conflicts when a test set contains
no compatible test vectors.

4.5 Test Vector Decomposition

Test Vector Decomposition (TVD) is the process of decomposing a test vec-
tor into its atomic components. An atomic component is a child test vector
that is generated by relaxing its parent test vector for a single fault f . That
is, the child test vector contains the assignments necessary for the detection
of f . Besides, the child test vector may detect other faults in addition to
f . For example, consider the test vector tp = 010110 that detects the set of
faults Fp = {f1,f2,f3}. Using the relaxation algorithm in [27], tp can be de-
composed into three atomic components, which are (f1,01xxxx), (f2,0x01xx),
and (f3,x1xx10). Every atomic component detects the fault associated with
it and may accidentally detect other faults. An atomic component cannot
be decomposed any further because it contains the assignments necessary for
detecting its fault.

Static compaction based on merging (see Section 4.4) is a very simple and ef-
ficient technique. However, it has the following problems. First, for a highly
incompatible test set, merging achieves little reduction. Second, raising is a

33

Table 1: Definition of the merging operation.

◦ 0 1 x
0 0 φ 0
1 φ 1 1
x 0 1 x

costly operation. Third, a test vector must be processed as a whole. There-
fore, we propose that a test vector be decomposed into its atomic components
before it is processed. In this way, a test vector that is originally incompat-
ible with all other test vectors in a given test set can be eliminated if its
components can be merged with other test vectors.

By decomposing a test vector into its atomic components, a merging based
compaction algorithm will have a more degree of freedom. This is because of
the fact that the number of unspecified bits in an atomic component is much
larger than that in a parent test vector. Thus, the probability of merging a
component is higher than that of merging its parent test vector.

4.5.1 Graph Coloring

The problem of static compaction based on TVD can be modeled as a graph
coloring problem. Basically, given a test set T with single stuck-at fault
coverage FCT , the set of atomic components CT is first obtained. Then, a
graph G is built. In G, every node corresponds to a component and an edge
exists between two nodes if their corresponding components are incompatible.
Our objective is to partition CT into k subsets such that k is as small as
possible and no adjacent nodes belong to the same subset. The fault coverage
of the new test set T ∗ whose size is k should be greater than or equal to FCT .

It is well known that graph coloring is an NP-hard problem [40]. Thus, ef-
forts of researchers are devoted to heuristic methods, rather than exact ones.
Heuristic methods are simple schemes in which nodes are colored sequentially
according to some criteria.

4.5.2 Independent Fault Clustering

In [44], two compaction algorithms i.e., Independent Fault Clustering (which
is based on Independent Fault Sets) and Class Based Clustering are explored.

Some important definitions are given next followed by the description of the

34

two algorithms i.e., IFC followed by CBC.

Independent faults were defined in [45]. Basically, given a combinational
circuit, let Ti be the set of all possible test vectors that detect fi and Tj be
the set of all possible test vectors that detect fj. Then, two faults fi and fj

are independent if and only if Ti ∩ Tj = φ. Independence among faults can
also be defined with respect to a test set T . Let T ′

i be the set of test vectors
in T that detect fi and T ′

j be the set of test vectors in T that detect fj. Then,
two faults fi and fj are independent with respect to T if and only if T ′

i ∩ T ′
j

= φ. In [44], the term independent faults is used to mean independent faults
with respect to a test set.

Similarly a component of a test vector, is defined as the essential input as-
signment to detect a certain fault. For example, a test vector Ti = 1001,
detects the fault fj. Ti is then relaxed while still detecting fj by changing
the maximum number of input assignments to ’don’t care’, thereby making
the component of fj as 1xx1.

In Independent Fault Clustering (IFC), IFSs (Independent Fault Sets) are
first derived. Then, a fault matching procedure is used to find sets of com-
patible faults, i.e., faults that can be detected by a single test vector. In the
IFS derivation phase, independent faults are identified with respect to a test
set. In the fault matching phase, compatible components, corresponding to
compatible faults, are mapped to the same compatibility set. Whenever a
component is mapped to a compatibility set, it is merged with the partial
test vector of that compatibility set. At the end, every compatibility set
represents a single test vector.

IFC’s results lead to an important observation that the formation of IFS
consumes a good fraction of total CPU time and gives an upper bond on the
possible size of final test set after compaction. However, the compatibility
set (formed by matching the essential and non-essential faults to a set) gets
more realistic and closer to final test set size. Therefore one may exclude the
IFS formation step to get better CPU time using the compatibility set based
on essential and non-essential faults matching. This is infect the motivation
of one of the two algorithms proposed in the thesis work. The algorithm is
optimized to give better results both in terms of compaction and CPU time,
as will be explained in the next section.

35

4.5.3 Class Based Clustering

The Class Based Clustering (CBC) algorithm [44], is based on the idea of
dividing test vectors into classes and then heuristically processing test vectors
of every class. A test vector is eliminated if its components can be all moved
to other test vectors. Eventually, in the final test set, every test vector
represents a cluster whose components originally belong to test vectors in
different classes. This is why the technique is called Class Based Clustering.

The test vectors are first classified to different classes based on the number
of components that can’t be moved to other test vectors. For example, a test
vector Ti detecting three faults and having three components that can all be
moved to different test vectors in the test set, belongs to Class 0. Similarly
a test vector Tj having total three components but only one of them can not
be moved to any other test vector is called a class 1 test vector.

The algorithm first processes class 0 test vectors in a certain order, by mov-
ing all its components to different test vectors and thereby eliminating the
vector from the test set. The processing of class 0 test vector follows the
computation of blockage value of that test vector, which computes the num-
ber of test vector (belonging to class 0) that will be blocked by moving the
vector to a particular test vector. The components of the test vectors are
moved to those test vector that result in minimum blockage value.

The algorithm then processes class 1 test vectors. Class 1 test vectors are
processed by moving the conflicting component to one of the candidate test
vectors, whose conflicting component can be moved to some other test vector.
Thereby removing the component that conflicts with the conflicting compo-
nent of the test vector. This step is followed by eliminating class 1 test
vector, whose all components are moved to other vectors. Similar procedure
is executed for class 2 test vectors.

Experimental results show that the two algorithms give comparable level of
compaction, however the computation time of CBC is higher than IFC. In
CBC, an important observation is that, most of the compaction is achieved
by processing class 0 test vectors and only marginal compaction is observed
by processing test vectors belonging to higher classes. Another important ob-
servation in CBC is that the major portion of CPU time is used in calculating
the blockage values and processing class 0 test vectors.

36

4.6 Essential Fault Pruning

Generally speaking, pruning a fault of a test vector decreases the number
of its faults by one. A test vector becomes redundant if all of its faults are
pruned. Fault Pruning (FP) is implemented as follows. Given a test vector
t, an attempt is made to detect each of its faults by modifying the other test
vectors in the test set. A fault of t is said to be pruned if it becomes detected
by another test vector after the modification. If all the faults of t are pruned,
then t can be removed from the test set.

The above operation of modifying a test vector, say t
′
, to further detect an

additional fault f of another test vector t is basically achieved by generating
a new test vector t

′′
such that DET(t

′′
) = DET(t

′
) ∪ f , where DET(t) is the

set of faults detected by t. Multiple Target Faults Test Generation (MTFTG)
is used for this purpose. In MTFTG, a test vector is to be found for a set
of target faults. MTFTG will fail if there exists at least two independent
faults in the set of target faults. Two faults are independent if they cannot
be detected by a single test vector.

The runtime of an FP-based static compaction procedure can be greatly
improved by considering only essential faults. A fault is defined to be an
essential fault of a test vector t if it is detected only by t. The set of essential
faults of t is denoted by ESS(t). It should be pointed out that whenever
a test vector t is eliminated, for every fault belonging to the set DET(t) -
ESS(t), the number of test vector detecting it is reduced by one.

Few FP-based static compaction algorithms have been reported in the liter-
ature. Generally, they fall into two categories. In the first category, a test
vector is modified such that it detects the new additional faults. The test
vector already detects its essential faults. Therefore, the test generation time
for the essential faults is eliminated. Examples of such static compaction al-
gorithms can be found in [34], [39], [41] and [42]. On the other hand, in the
second category, a set of N test vectors is replaced by a set of M < N new
test vectors. The basic idea is to determine the faults that are detected only
by one or more test vectors among the N test vectors to be replaced and find
M < N test vectors that detect all theses faults. Examples of such static
compaction algorithms can be found in [35] and [43].

37

5 Proposed Techniques for Combinational Cir-

cuits

The proposed plan for compaction of combinational circuits is to improve
the two algorithms described in [44] i.e., Independent Fault Clustering (IFC)
and Class Based Clustering (CBC). The proposed work for improving IFC
and CBC are discussed in the following sub-section.

5.1 Independent Fault Clustering

The algorithm to improve IFC, is as follows:

1. Fault Simulate without fault-dropping

2. Sort the faults in increasing order of the number of test vectors detect-
ing the fault.

3. For each fault do: Sort the test vectors that detect the fault in decreas-
ing order of the number of faults they detect.

4. For each fault do:

(a) For every test vector that detects f

i. Extract atomic component Cf from t.

ii. IF the number of compatibility sets is zero, create a new com-
patibility set, map Cf to it, and then go to step 4.

iii. Map Cf to an existing compatibility set, if possible and go to
step 4.

(b) Create a new compatibility set and map Cf to it.

5. Return T ∗

5.2 Class Based Clustering

The following issues will be investigated to improve the performance of CBC
algorithm:

38

1. Increase the size of Class 0 test vectors by attempting to eliminate
the conflicting components of a fault and by generating alternative
components from other test vectors detecting the fault.

2. Improve the efficiency of blockage value computation for class 0 pro-
cessing.

3. Explore more efficient heurestics for processing class 0.

39

6 Project Objectives

The proposed work focuses on developing efficient static compaction tech-
niques for combinational and sequential circuits. Our aim is to develop al-
gorithms that provide high quality compaction with lesser execution time.
In this research, we will build on our recent work on efficient test relaxation
techniques for combinational and sequential circuits in [44] and [25] respec-
tively.

The main objectives of the proposed work is as follows:

1. Propose and implement an efficient Reverse-Order Test Vector Restora-
tion Technique that achieves comparable level of compaction to existing
test vector restoration techniques with faster execution time.

2. Propose and implement an efficient test sequence compaction technique
based on reverse order test vector restoration and test sequence merg-
ing.

3. Explore the possibility of combining the two techniques proposed in (1)
& (2) in developing an efficient static test compaction algorithm that
provides higher level of compaction than any of the techniques alone.

4. Propose and implement an efficient test compaction technique for com-
binational circuits based on test vector clustering according to the fre-
quency of fault detection that achieve comparable level of compaction
to IFC [44] based test compaction with faster execution time.

5. Improve the quality of compaction of the CBC test compaction tech-
nique by exploring alternative test vectors for conflicting components
and improve its execution time by exploring other heuristics.

7 Scheduling of Proposed Research

The details of the major tasks to be carried out during the project work can
be enumerated as follows:

Task 1: Modify the test relaxation algorithm for extracting a self-
initializing test sequence for a set of faults.

Task 2: Develop the Reverse-Order test vector restoration algorithm
based on the self-initializing test extraction technique im-
plemented in (Task 1).

40

Task 3: Explore the possibility of reducing the size of the extracted
self-initializing test sequences by considering the removal of
the possibly redundant initializing sequence due to sequence
concatenation.

Task 4: Explore reducing the size of the extracted self-initializing
test sequences by state traversal technique, based on inert
and recurrent sub-sequence removal.

Task 5: Develop the test sequence compaction technique based on
Reverse-Order restoration of faults and subsequence merg-
ing.

Task 6: Experiment with the developed techniques to explore the
possibility of developing an algorithm that achieves the best
compaction level than any of the techniques separately.

Task 7: Implement the proposed test vector clustering technique
based on the frequency of fault detection and compare it
to IFC.

Task 8: Increase the size of Class 0 test vectors by attempting to
eliminate the conflicting components of a fault and by gen-
erating alternative components from other test vectors de-
tecting the fault.

Task 9: Improve the efficiency of blockage value computation for
Class 0 processing.

Task 10: Explore more efficient heurestics for processing of class 0
test set.

Task 11: Document the developed software.

Task 12: Generate periodical project reports and author publications
for conferences/journals.

(Months)
01-03 04-06 07-09 10-12 13-15 16-18

Task 01
Task 02-03

Task 04
Task 05-06-07
Task 08-09-10

Task 11-12

41

Monitoring and Evaluation Plan

The project team consists of a principal investigator, co-investigator, and
one graduate student. Responsibilities will be divided among the two senior
investigators on the basis of their previous experience and background.

Dr. Aiman El-Maleh holds a B.Sc. in Computer Engineering, with first hon-
ors, from King Fahd University of Petroleum & Minerals in 1989, a M.A.SC.
in Electrical Engineering from University of Victoria, Canada, in 1991, and
a Ph.D in Electrical Engineering, with dean’s honor list, from McGill Uni-
versity, Canada, in 1995.

Dr. El-Maleh is an Assistant Professor in the Computer Engineering De-
partment at King Fahd University of Petroleum & Minerals since September
1998. He was a member of scientific staff with Mentor Graphics Corp., a
leader in design automation, from 1995-1998.

Dr. El-Maleh‘s research interests are in the areas of synthesis, testing, and
verification of digital systems. In addition, Dr. El-Maleh has research inter-
ests in VLSI design, design automation, and computer arithmetic.

Dr. El-Maleh is the winner of the best paper award for the most outstanding
contribution in the field of test for 1995 at the European Design & Test
Conference. His paper presented at the 1995 Design Automation Conference
was also nominated for best paper award. He holds one US patent.

Dr. El-Maleh was a member of the program committee of the Design Au-
tomation and Test in Europe Conference (DATE’98).

Dr. Sadiq M. Sait has major interests in VLSI Design automation, and,
in engineering and applications of computers. He has published several pa-
pers in the area of VLSI design automation. He has co-authored two books:
(a) VLSI Physical Design Automation: Theory and Practice, McGraw-Hill
Book Co., Europe, December 1994, also Co-published by IEEE Press, USA,
January 1995 (Hard bound edition), and, (b) Iterative Computer Algorithms
with Applications in Engineering: Solving Combinatorial Optimization Prob-
lems. December 1999, IEEE Computer Society Press, California (also Co-
published by John Wiley & Sons).

Both investigators will take the responsibility of the overall management of

42

the project. They will propose ideas, analyze results and evaluate the perfor-
mance of the proposed techniques. The graduate student will be computer
engineering/science graduate with good programming background and will
work under the guidance of the investigators. The investigators will hold
meetings as often as necessary (minimum once a week) to coordinate their
work and to make necessary decisions. Periodic progress reports will be sub-
mitted every 6 months summarizing the status and accomplishments of the
project.

8 Utilization Plan

The utility value of this project is many-fold, namely:

1. The results of this research can be used by chip manufacturing and test-
ing industry to reduce the cost of testing in the overall chip production
cost.

2. The results of this work can be used by other investigators in academia
and industry to enhance existing methods.

3. The project provides an opportunity for training of graduate students
on conducting scientific research.

9 Detailed Budget

Senior Investigators

The senior investigators will work for 18 months during the regular semesters
for the entire duration of the project. They will receive payments as per the
university regulations. The graduate student(s) will assist in the implemen-
tation aspects of the research. His total compensation will be (10,800/- per
Graduate Student/Research Assistant).

Dr. Aiman El-Maleh (PI) SR 1200/- * 18 =SR 21,600
Dr. Sadiq M. Sait (CO-I) SR 1000/- * 18 =SR 18,000
Graduate Student SR 600/- * 18 = SR 10,800

Total SR 50,400/-

43

Equipment, Materials & Supplies, and Other Expenses

Facilities available at KFUPM will be used at no charge to the project. Ad-
ditional equipment needed for the project includes 1xPentium 4 PC, 3.2GHz
or better, (Desktop/Portable), with other peripherals costing SR 6,000, ex-
penses for simple peripherals (such as CD writers, flash memories, hard-
disks, remote keyboard and mouse, wireless devices, etc.,), consumables such
as floppies, tapes, zip drives, CDs, printer toner, etc., will amount to SR
2,000/-, purchase of literature and books, stationary, etc., will require SR
2,500/-. Miscellaneous and other incidental expenses may amount to a max-
imum of SR 1,000/-

A secretary will work for the entire duration of the project. SR 3,000/- for
payments to secretary will be required.

Individual items of the budget are summarized below.

Man Power SR 50,400/-
Equipment:
1 x Pentium 4, 3.2GHz (or better)(Desktop/Portable)
with a Monitor & other peripherals. SR 6,000/-
Books, other literature, Stationary, etc., SR 2,500/-
Consumables such as CDs, fax, telephones, printer toner etc. SR 2,000/-
Secretary SR 3,000/-
Miscellaneous and other incidental expenses SR 1,000/-
Conference Attendance (1 Trip) SR 10,000/-

The total cost 1 of the project is estimated to be SR 74,900/-

1SR 74,900/-= US $ 19,973.33/-

44

Dr. Sadiq M. Sait

Publications in Refereed Journals

1. M. Masud and Sadiq M. Sait. ‘Universal AHPL-A Language For
VLSI Design Automation’. IEEE Circuits and Devices Magazine, Septem-
ber 1986, pp 8–14.

2. Sadiq M. Sait and M. A. Kulaib. ‘A CMOS Cell for Parallelly
Loadable Counters’. International Journal of Electronics, Vol. 62,
No.6, 1987, pp 867–871.

3. A. A. Soomro, M. Rahman, and Sadiq M. Sait. ‘A General Real-Time
Decoder Based on AMD2900 Devices’. Journal of Microprocessing and
Microprogramming, December 1987, pp 97–113.

4. A. A. Soomro, Sadiq M. Sait and M. Rahman. ‘A Bit-Slice Micro-
processor Based Decoder’. Journal of Microprocessors and Microsys-
tems, December 1987, pp 527–534.

5. Sadiq M. Sait, A. Y. Yaagoub, and M. Masud. ‘A CAD Tool for
the Automatic Generation of Microprograms for Systems Modeled in
UAHPL’. Journal of Microprocessors and Microsystems, October 1988,
pp 463–470.

6. M. A. Kulaib, G. F. Beckhoff, and Sadiq M. Sait. ‘Design of a Pro-
grammable Length FIFO Memory and its Controller’. International
Journal of Electronics, Vol 65, No.2, November 1988, pp 923–932.

7. Sadiq M. Sait and F. A. Al-Khulaiwi. ‘Automatic Weinberger Syn-
thesis from a UAHPL Description’. International Journal of Electron-
ics, Vol-69, No.2, 1990, pp 211–224.

8. Sadiq M. Sait and M. A. Al-Rashed. ‘An Efficient Algorithm for
Weinberger Array Folding’. International Journal of Electronics, Vol-
69, No.4, 1990, pp 509–518.

9. Sadiq M. Sait and A. H. El-Maleh. ‘A State Machine Synthesizer
with Weinberger Arrays’. International Journal of Electronics, 1991,
Vol 71, No.1, pp 1–12.

10. Sadiq M. Sait. ‘Integrating UAHPL-DA System with VLSI Design
Tools to Support VLSI DA Courses’. IEEE Transactions on Education,
Vol 35, No.4, November 1992, pp 312–320.

45

11. Sadiq M. Sait. ‘An Architecture to Store Path History in a Trellis
and its Application to the Viterbi Algorithm’. International Journal
of Electronics, 1992, Vol 72, No.1, pp 11–19.

12. J. Yazdani, M. Masud and Sadiq M. Sait. ‘PCB Layout Generation
from RTL Specifications’. International Journal of Electronics, 1992,
Vol 72, No.1, pp 1–10.

13. Sadiq M. Sait and M. S. K. Tanvir. ‘VLSI Layout Generation of
a Programmable CRC Chip’. IEEE Transactions on Consumer Elec-
tronics, November 1993, Vol 39, No.4, pp 911–916.

14. M. S. T. Benten and Sadiq M. Sait. ‘GAP: A Genetic Algorithm
Approach to Optimize 2-bit Decoder PLAs’. International Journal of
Electronics, 1994, Vol 76, No.1, pp 99–106.

15. M. S. T. Benten, Sadiq M. Sait, A. S. Al-Mulhem, and H. Youssef.
‘RTL Structural Synthesis from Behavioral Descriptions in a Unix En-
vironment’. Arabian Journal for Science and Engineering, 19:4B, Oc-
tober 1994, pp 783–803.

16. Sadiq M. Sait, M. S. T. Benten, H. Youssef, and F. Soleja. ‘Auto-
mated VHDL Composition from AHPL’. Arabian Journal for Science
and Engineering, 19:4B, October 1994, pp 771–782.

17. M. S. T. Benten and Sadiq M. Sait. ‘Genetic scheduling of task
graphs’. International Journal of Electronics, 1994. Vol 77, No.4, pp
401–415.

18. Sadiq M. Sait and W. Hasan. ‘Hardware Design and VLSI imple-
mentation of a Byte-Wise CRC Generator Chip’. IEEE Transactions
on Consumer Electronics, Vol 41, No.1, February 1995, pp 195–200.

19. Sadiq M. Sait, M. S. T Benten, and A. M. T Khan. ‘ASIC Design
with UAHPL’. IEEE Circuits and Devices Magazine, March 1995, pp
14–24.

20. Sadiq M. Sait and A. A. Khalid. ‘VLSI Design and Implementa-
tion of Systolic Queues’. Journal of Microprocessors and Microsystems,
April 1995, Vol 19, No.3, pp 139–146.

21. H. M. Alnuweiri and Sadiq M. Sait. ‘Efficient Network Folding Tech-
niques for Routing Permutations in VLSI’. IEEE Transactions on Very
Large Scale Integrated (VLSI) Systems, June 1995, pp 254–263.

46

22. Sadiq M. Sait, K. Elleithy and M. Hasan. ‘Formal Synthesis of
VLSI Layouts from Algorithmic Specifications’. International Journal
of Computer Systems: Science and Engineering, UK, Vol 11, Number
2, March 1996, pp 67-81. 21 and 23).

23. H. Youssef, Sadiq M. Sait, A. S. Al-Mulhem, and M. S. T. Benten.
‘High-level Synthesis from Purely Behavioral Descriptions’. Interna-
tional Journal of Computer Systems: Science and Engineering, UK,
Vol 11, Number 5, 1996. September 1996, pp 125-139.

24. Sadiq M. Sait, S. Ali, and M. S. T Benten. ‘Scheduling and Allo-
cation in High-level Synthesis using Stochastic Techniques’. Microelec-
tronics Journal, Elsevier Science Ltd, North Holland, Vol. 27, No. 8,
October 1996, pp 693-712.

25. Sadiq M. Sait and H. Youssef. ‘Timing Influenced General Cell
Genetic Floorplanner’, Microelectronics Journal, Elsevier Science Ltd,
North Holland, Vol. 28, No. 8, March 1997, pp 151-166.

26. Sadiq M. Sait, A. A. Farooqui, G. F. Beckhoff. ‘The Architecture of
a Highly Reconfigurable RISC Data Flow Array (DF-RISC-A) Proces-
sor’. International Journal of Electronics, Vol. 83, No.4, August 1997.
pp 493-518.

27. Sadiq M. Sait and Talal Maghrabi. ‘Component Selection and
Pipelining using Stochastic Evolution Algorithm’. (Manuscript Sub-
mitted) Journal of Computers & Electrical Engineering.

28. Sadiq M. Sait and Habib Youssef. ‘CMOS/BiCMOS mixed design
using Tabu Search’. IEE Electronics Letters, Vol. 34, No. 14, 1998, pp
1395-1396.

29. H. Youssef, Sadiq M. Sait, and K. Al-Farra. ‘Timing Influenced
Constraint Graph Based Force-Directed Floorplanning’. Manuscript
accepted by INTEGRATION, the VLSI Journal, 1999.

30. Sadiq M. Sait, A. A. Farooqui, G. F. Beckhoff. ‘A Novel Technique
for Fast Multiplication’, International Journal of Electronics, Vol 86,
No.1, pp 67–77, January 1999.

31. Sadiq M. Sait, H. Youssef, K. W. Nassar, and M. S. T. Benten.
‘Timing Driven Genetic Placement’, International Journal of Computer
Systems: Science and Engineering, Vol 14 No 1 January 1999, pp 3–14.

47

32. H. Youssef and Sadiq M. Sait. ‘Timing Driven Global Routing
for Standard Cell VLSI Design’, International Journal of Computer
Systems: Science and Engineering, Vol 14, No 3, May 1999, pp 175–
186.

33. H. Youssef, Sadiq M. Sait and Hakim Adiche. ‘Evolutionary Algo-
rithms, Simulated Annealing, and Tabu Search: A Comparative Study,’
Engineering Applications of Artificial Intelligence, IFAC, Pergamon,
Vol 14, No 2, 2001. pp 167–181.

34. Habib Youssef, Sadiq M. Sait, E. Shragowitz, and H. Adiche. “Fuzzy
Genetic Algorithm for Floorplanning”, Engineering Intelligent Systems,
CRL Publishing Ltd, UK, Vol 8, No. 3, September 2000, pp 145-153.

35. Habib Youssef, Sadiq M. Sait, and Ali Hussain. “Fuzzy Simulated
Evolution Algorithm for VLSI Placement”, accepted for publication
in the International Journal on Applied Intelligence, Special issue on
Applied Metaheuristics, Volume/Issue 44/2 pp. 227-247, January 2003.

36. Hasan Cam, Mostafa Abd-El-Barr, and Sadiq M. Sait. ‘Design and
Analysis of a High-Performance Hardware-Efficient Memory Allocation
Technique’. The Journal of Systems and Software, June 2000 (Submit-
ted).

37. Sadiq M. Sait, H. Youssef, H. Barada, and Ahmed Al-Yamani. “Par-
allellising Tabu Search on a Cluster of Heterogeneous Workstations”,
Journal of Heuristics, Special Issue on Parallel Metaheuristics, Vol 8,
Number 3, May 2002.

38. H. Youssef, Abdulaziz Al-Mulhem, Sadiq M. Sait, M. Atif Khan.
“QoS-Driven Multicast Tree Generation Using Tabu Search”, The Com-
puter Communications Journal on Advances in Performance Evaluation
of Computer and Telecommunications Networking (Special Issue). El-
sevier Science Ltd, 25 (2002), pp 1140-1149.

39. Habib Youssef, Sadiq M. Sait, and Salman A. Khan. “Topology De-
sign of Switched Enterprise Networks Using Fuzzy Simulated Evolution
Algorithm”, Engineering Applications of Artificial Intelligence Elsevier
Science Ltd, November 2002, 15/3-4 pp. 327-340.

40. Sadiq M. Sait and Munir M. Zahra. “Tabu Search Based Circuit Op-
timization”, Engineering Applications of Artificial Intelligence Elsevier
Science Ltd, November 2002, Volume/Issue 15/3-4 pp. 357-368

48

41. H. Youssef, Sadiq M. Sait, and Salman Khan. “An Evolutionary
Algorithm for Network Topology Design”. Arabian Journal for Science
and Engineering, (Revised Manuscript Accepted). June 2002.

42. Hassan Barada, Sadiq M. Sait and Naved Baig. “A Simulated Evo-
lution Approach to Task Matching and Scheduling in Heterogeneous
Computing Environments”, Engineering Applications of Artificial In-
telligence Elsevier Science Ltd, November 2002. Volume 15 pp. 491-
500.

43. Sadiq M. Sait and Junaid A. Khan, “Simulated Evolution for Tim-
ing & Low-Power VLSI Standard Cell Placement”, Engineering Ap-
plications to Artificial Intelligence (EAAI), Volume/Issue 16/5-6, pp
407-423, 2003.

44. Aiman Al-Maleh, Sadiq M. Sait and S. Z. Shazli. “Evolutionary
Algorithms for State Justification in Sequential Automatic Test Pat-
tern Generation”, (Accepted by) International Journal of Engineering
Intelligent Systems, August 2003.

Publications in IEEE and International Refereed Con-
ferences

1. Sadiq M. Sait. ‘A General Cell Placement Procedure for UAHPL
Based DA System’. IEEE Proceedings of CompEuro’87, Hamburg,
May 1987, pp 513-514.

2. Sadiq M. Sait and M. Masud. ‘CAD of Custom VLSI Layouts from
RTL Specifications’. 30th Midwest Symposium on Circuits and Sys-
tems, August 1987, Syracuse, New York, pp 554-558.

3. Sadiq M. Sait, M. Masud, and G. F. Beckhoff. ‘Heuristics for Au-
tomatic Routing of Cells Placed by UAHPL Silicon Compiler’. Sec-
ond International Conference on Microelectronics and Microcomputers,
Menouf, Egypt, December 1987.

4. M. A. Kulaib, G. F. Beckhoff, and Sadiq M. Sait. ‘CMOS Pro-
grammable Length First-In, First-Out Memory’. Second International
Conference on Micro-Electronics and Micro-computers, Menouf, Egypt,
December 1987.

5. Sadiq M. Sait, A. F. Damati, and M. Rahman. ‘Systolic Architecture
Design for Decoding Convolutional Codes using Viterbi Algorithm’.

49

Proceedings of International Conference on Mini and Microcomputers
and Their Applications, MIMI’88, Barcelona, Spain, June 1988, pp
526–529.

6. M. Masud, Sadiq M. Sait, and A. Y. Yaagoub. ‘Automatic Gen-
eration of Microprograms for Systems Modeled in RTL’. Proceedings
of International Conference on Mini and Microcomputers and Their
Applications, MIMI’88, Barcelona, Spain, June 1988, pp 150–153.

7. M. Atiquzzaman and Sadiq M. Sait. ‘A New Data Loading Tech-
nique in Multiprocessor Systems for Image Processing’. Proceedings
of International Conference on Mini and Microcomputers and Their
Applications, MIMI’88, Barcelona, Spain, June 1988, pp 457–460.

8. Sadiq M. Sait, A. F. Damati, and M. Rahman. ‘A New Architec-
ture for Viterbi Decoding and Its CMOS VLSI Implementation’. 31st
Midwest Symposium on Circuits and Systems, Missouri-Rolla, August
1988.

9. Sadiq M. Sait and M. Masud. ‘Interfacing UAHPL DA System to
Silicon Foundry’. First International Conference on Micro-Electronics,
ICM’88, Algiers, November 1988.

10. Sadiq M. Sait, A. F. Damati, and M. Rahman. ‘A Systolic Algorithm
for VLSI Design of a 1

n
Rate Viterbi Decoder’. IEEE Melecon’89,

April 1989, Portugal.

11. M. Masud, J. Yazdani, and Sadiq M. Sait. ‘Automatic Generation of
PCB Layouts from Register Transfer Level Specifications’. (Accepted)
1989 International Symposium on Circuits and Systems. China.

12. A. H. El-Maleh and Sadiq M. Sait. ‘A State Machine Synthesizer
with Weinberger Arrays’. The IEEE Pacific RIM Conference, Victoria,
Canada, 1991.

13. H. Essam, Sadiq M. Sait and M. S. T. Benten. ‘From Digital System
Models in UAHPL to Layouts using ULMs’. (Accepted by) First Great
Lakes Symposium on VLSI, GLSVLSI’91, Michigan, March 1991.

14. M. S. T. Benten and Sadiq M. Sait. ‘Automatic Implementation
of Data Link Controllers from High Level Language Descriptions of
Protocols’. (Accepted by) First Great Lakes Symposium on VLSI,
GLSVLSI’91, Michigan, March 1991.

50

15. A. M. T. Khan, Sadiq M. Sait and G. F. Beckhoff. ‘VLSI Imple-
mentation of Controllers for Communication Protocols from their Petri
Net Models’. IEEE International Symposium on Circuits and Systems,
California, May, 1992.

16. A. M. T. Khan, Sadiq M. Sait and G. F. Beckhoff. ‘High Level Syn-
thesis of Controllers for Communication Protocols’. Second Great Lakes
Symposium on VLSI, GLSVLSI’92, Kalamazoo, February, 1992, pp
114-121..

17. Sadiq M. Sait. ‘UAHPL-DA System and VLSI Design Tools to Sup-
port VLSI DA Courses,’ SUNY Conference on Educational Technology,
SUNY College, Oneonta, May 27-28, 1992.

18. H. Al-Nuweiri, Sadiq M. Sait and M. Al-Darwish. ‘Efficient Routing
of a Class of Permutations in VLSI’. BROWN/MIT Conference on
Advanced Research in VLSI and Parallel Systems, Providence, March
25-27, 1992.

19. Sadiq M. Sait, H. Youssef, F. Soleja, and M. S. T. Benten. ‘Auto-
mated VHDL composition from AHPL’. Fifth International Conference
on Microelectronics, ICM’93, December 1993, pp 220–224.

20. Sadiq M. Sait, M. S. T. Benten, and A. M. T Khan. ‘ASIC Design
from UAHPL Models’. Fifth International Conference on Microelec-
tronics, ICM’93, December 1993, pp 237–241.

21. K. Elleithy, Sadiq M. Sait and M. Hasan. ‘Formal Design of VLSI
Systems’. Fifth International Conference on Microelectronics, ICM’93,
December 1993, pp 214–219.

22. Sadiq M. Sait, M. S. T. Benten, and Asjad M. T. K. ‘ASIC Design
with AHPL’. IEEE Melecon’94, April 1994, pp 1234–1237.

23. Sadiq M. Sait, K. Elleithy, and M. Hasan. ‘Design of a Cell Library
for Formal High-level Synthesis’, IEEE Melecon’94, April 1994, pp
1238–1241.

24. S. Ali, Sadiq M. Sait, and M. S. T. Benten. ‘GSA: Scheduling and Al-
location using Genetic Algorithm’. European Design Automation Con-
ference with Euro-VHDL, Euro-DAC’94, Grenoble, September1994,
pp 84-89.

51

25. S. Ali, Sadiq M. Sait, and M. S. T. Benten. ‘Application of Tabu
Search in High-level Synthesis of Digital Systems’. International Con-
ference on Electronics, Circuits and Systems, ICECS’94, Cairo, De-
cember 1994, pp 423-428.

26. Sadiq M. Sait, A. S. Al-Mulhem, H. Youssef, and M. S. T. Benten.
‘Hardware Specific Optimization in High-level Synthesis’. International
Conference on Electronics, Circuits and Systems, ICECS’94, Cairo,
December 1994. pp 418–422.

27. H. F. Al-Sukhni, H. Youssef, Sadiq M. Sait, and M. S. T. Benten.
‘Loop Based Scheduling for High-Level Synthesis’. IEEE Phoenix Con-
ference on Computers and Communications, IPCCC, March 1995, pp
76-81.

28. H. Youssef, Sadiq M. Sait, K. Nassar, and M. S. T. Benten. ‘Perfor-
mance Driven Standard-cell Placement Using the Genetic Algorithm’.
Fifth Great Lakes Symposium on VLSI, GLSVLSI’95, Buffalo, USA,
March 1995, pp 124-127.

29. Sadiq M. Sait, H. Youssef, K. Nassar, and M. S. T. Benten. ‘Timing
Driven Genetic Algorithm for Standard Cell Placement’. IEEE Phoenix
Conference on Computers and Communications, IPCCC, March 1995,
pp 403-409.

30. Sadiq M. Sait, A. A. Farooqui, G. F. Beckhoff. ‘A Novel Technique
for Fast Multiplication’. IEEE Phoenix Conference on Computers and
Communications, IPCCC, March 1995, pp 109-114.

31. H. Youssef, Sadiq M. Sait, and K. Al-Farrah. ‘Timing Influenced
Force Directed Floorplanning’. European Design Automation Confer-
ence with Euro-VHDL, Euro-DAC’95, Brighton, September 1995, pp
156-161.

32. Sadiq M. Sait, H. Youssef, S. Tanvir and M. S. T. Benten. ‘Timing
Influenced General-Cell Genetic Floorplanner’. Asia and South-Pacific
Design Automation Conference, ASP-DAC’95, Japan, September 1995.

33. G. F. Beckhoff, Sadiq M. Sait, and A. A. Farooqui. ‘Highly reconfig-
urable RISC data flow array processor for DSP applications’. The 6th
International Conference of Signal Processing Applications & Technol-
ogy, ICSPAT’95, Boston, October 1995.

52

34. Sadiq M. Sait. ‘Synthesis of digital systems in VLSI’, (Invited Paper
and Keynote Address). The 7th International Conference of Microelec-
tronics, ICM’95, Kuala Lumpur, December 1995.

35. A. A. Farooqui, Sadiq M. Sait, and G. F. Beckhoff. ‘Data Flow
RISC Processor’. The 2nd Australasian Conference on Parallel and
Real-Time Systems, PART’95, Australia, September 1995.

36. E. Shragowitz, H. Youssef, Sadiq M. Sait, and H. Adiche. ‘Fuzzy
Genetic Algorithm for Floorplan Design’. (Invited Paper, abstract sub-
mitted to) International Conference on Applications of Soft Computing,
SPIE’97, 1997, Vol 3165, pp 36-47.

37. Sadiq M. Sait H. Youssef and Munir M. Zahra. ‘Tabu Search Based
Circuit Optimization’. Great Lakes Symposium on VLSI, GLSVLSI’98,
SW Louisiana, February 1998, pp 338-343.

38. Ta-Cheng, Sadiq M. Sait and W. R. Cyre. ‘Performance and In-
terface Buffer Size Driven Behavioral Partitioning for Embedded Sys-
tems’. 9th International Workshop on Rapid Systems Prototyping,
IEEE Computer Society Sponsored, Leuven, Belgium, April 1998.

39. Ta-Cheng Lin, Sadiq M. Sait and W. R. Cyre. ‘Buffer Size Driven
Partitioning for HW/SW Co-Design’. IEEE International Conference
on Computer Design, ICCD’98, Austin, USA, 1998.

40. Sadiq M. Sait, Habib Youssef and Ali Hussain. Fuzzy Simulated Evo-
lution Algorithm for Multiobjective Optimization of VLSI Placement”,
IEEE Congress on Evolutionary Computation”, July 1999, Washington
DC, pp 91-97.

41. Hasan Cam, Mostafa Abd-El-Barr, and Sadiq M. Sait. ‘A High-
Performance Hardware-Efficient Memory Allocation Technique and De-
sign’. IEEE International Conference on Computer Design, ICCD’99,
Austin, USA, 1999, pp 274-276.

42. H. Youssef, Sadiq M. Sait, and Salman Khan. “Fuzzy Simulated
Evolution Algorithm for Topology Design on Campus Networks”, IEEE
Congress on Evolutionary Computation”, July 2000, San Diego, USA,

43. Hassan Barada, Sadiq M. Sait, and Naved Baig. “Task Matching and
Scheduling in Heterogeneous Computing Environments using Iterative
Heuristics”, 13th International Conference on Parallel and Distributed
Computing Systems, August 2000, Las Vegas, USA.

53

44. Sadiq M. Sait, H. Youssef, H. Barada, and Ahmed Al-Yamani. “A
Parallel Tabu Search Algorithm for VLSI Standard-Cell Placement”,
IEEE International Symposium on Circuits and Systems”, May 2000,
Geneva, pp 581-584.

45. H. Barada, Sadiq M. Sait and N. Baig. “Task Matching and Schedul-
ing in Heterogeneous Systems Using Simulated Evolution”, 10th Het-
erogeneous Computing Workshop, in Proceedings of the 15th IEEE
International Parallel and Distributed Processing Symposium, IPDPS
2001, San Francisco, April 2001.

46. H. Youssef, Sadiq M. Sait, and Salman Khan. “Fuzzy Evolutionary
Hybrid Metaheuristics for Network Topology Design”, International
Conference on Evolutionary Multi-Criterion Optimization, EMO’01,
March 7-9, 2001, ETH Zurich, Switzerland (A Springer Publication).
(Accepted).

47. Habib Youssef, Sadiq M. Sait and Ali Hussain. Adaptive Bias Sim-
ulated Evolution Algorithm for Placement”, IEEE 2001 International
Symposium on Circuits and Systems, May 2001, Sydney, Australia,
pages 355-358.

48. Junaid Khan, Sadiq M. Sait, and Salman Khan. A Fast Construc-
tive Algorithm For Fixed Channel Assignment Problem”, IEEE 2001
International Symposium on Circuits and Systems, May 2001, Sydney,
Australia, pages 65-68.

49. Aiman H. El-Maleh, Sadiq M. Sait, and Syed Z. Shazli. Test Pattern
Generation. (Spector, L., E. Goodman, A. Wu, W.B. Langdon, H.-
M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E.
Burke, editors). 2001. Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001. San Francisco, CA: Morgan
Kaufmann Publishers. pages 1019-1025.

50. Sadiq M. Sait, Habib Youssef, and Junaid A. Khan. Fuzzy Evolution-
ary Algorithm for VLSI Placement, (Spector, L., E. Goodman, A. Wu,
W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.
Garzon, and E. Burke, editors). 2001. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2001. San Francisco,
CA: Morgan Kaufmann Publishers. pages 1056-1063.

51. Junaid A. Khan, Sadiq M. Sait, and Abdulaziz S. Al-Mulhem. Al-
gorithms for Channel Assignment Problem in Wireless Networks, SCI
2001, July 22-25, 2001, Orlando, Florida USA, Volume 14, pp 57-62.

54

52. H. Youssef, Sadiq M. Sait and Salman Khan. An Evolutionary Algo-
rithm for Network Topology Design. International Joint INNS-IEEE
Conference on Neural Networks Washington DC, July 14-19, 2001.

53. Aiman Al-Maleh, Sadiq M. Sait and S. Z. Shazli. Evolutionary meta-
heuristic for state justification in sequential ATPG. International Joint
INNS-IEEE Conference on Neural Networks Washington DC, July 14-
19, 2001.

54. Sadiq M. Sait, H. Youssef and Junaid Khan. Fuzzy Simulated Evo-
lution for Power and Performance Optimization of VLSI Placement.
International Joint INNS-IEEE Conference on Neural Networks Wash-
ington DC, July 14-19, 2001.

55. Sadiq M. Sait, H. Youssef Aiman El-Maleh and M. Minhas. Iterative
Heuristics for Multiobjective VLSI Cell Placement. International Joint
INNS-IEEE Conference on Neural Networks Washington DC, July 14-
19, 2001.

56. H. Youssef, A. Almulhem, Sadiq M. Sait, and M. Atif Tahir. QoS-
Driven Multicast Tree Generation Using Tabu Search. Proceedings
of the 2001 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS 2001). Florida,
July 2001.

57. Sadiq M. Sait, H. Youssef and Junaid Khan. Fuzzified Iterative Al-
gorithms for Performance Driven Low Power VLSI Placement IEEE
International Conference on Computer Design, ICCD’2001, Austin,
September 23-26, 2001.

58. Ahmad Al-Yamani, Sadiq M. Sait, and Hassan R. Barada. “HPTS:
Heterogeneous Parallel Tabu Search for VLSI Placement”, IEEE Congress
on Evolutionary Computation”, May 2002, Honolulu, Hawaii, USA, pp
351-355.

59. Sadiq M. Sait, Mahmood R. Minhas, and Junaid A. Khan. “Per-
formance and Low Power Driven VLSI Standard Cell Placement using
Tabu Search”, IEEE Congress on Evolutionary Computation”, May
2002, Honolulu, Hawaii, USA, pp 372-377.

60. Junaid A. Khan and Sadiq M. Sait. “Fuzzy Aggregating Functions
for Multiobjective VLSI Placement”, IEEE International Conference
on Fuzzy Systems”, May 2002, Honolulu, Hawaii, USA, pp 831-836.

55

61. Junaid A. Khan, Sadiq M. Sait and Mahmood R. Minhas. “Fuzzy Bi-
asless Simulated Evolution for Multiobjective VLSI Placement”, IEEE
Congress on Evolutionary Computation”, May 2002, Honolulu, Hawaii,
USA, pp 1642-1647.

62. M. Atif Tahir, H. Youssef, A. Almulhem, Sadiq M. Sait, Fuzzy based
MultiObjective Multicast Routing Using Tabu Search, Proceedings of
the 3rd International Conference on Internet Computing 2002, Las Ve-
gas, June 2002.

63. Khalid M. Al-Tawil and Sadiq M. Sait. “Use and Effect of Inter-
net in Saudi Arabia”. The 6th world Multiconference on Systemics,
Cybernetics and Informatics, Orlando, Florida, USA, July 2002.

64. Khalid M. Al-Tawil and Sadiq M. Sait. “E-Governance Where We
Stand?”. Workshop on Fostering Digital Inclusion-The Role of ICT in
Development/MDF-4, Jordan, Amman, October 2002.

65. Sadiq M. Sait, Aiman El-Malheh and Raslan Al-Abaji. General It-
erative Heuristics for VLSI Multiobjective Partitioning. IEEE Inter-
national Symposium on Circuits and Systems”, May 2003, Bangkok,
Volume V, pp 497-500.

66. Sadiq M. Sait, Aiman El-Malheh and Raslan Al-Abaji. Simulated
Evolution Algtrithm for Multiobjective VLSI Netlist Bi-Partitioning.
IEEE International Symposium on Circuits and Systems”, May 2003,
Bangkok, Volume V, pp 457-460.

67. Aamir A. Farooqui, Vojin G. Oklobdzija, Sadiq M. Sait. “Area-
Time Optimal Adder with Relative Placement Generator. IEEE Inter-
national Symposium on Circuits and Systems”, May 2003, Bangkok,
Volume V, pp 141-144.

68. Sadiq M. Sait, Syed Hussain Ali, Khalid M. Al-Tawil and Syed
Sanaullah, “Trends in Internet Usage & its effects in Saudi Arabia”,
ICASE World Conference on Science & Technology Education, pp 692-
700, Penang Malaysia, April 2003.

69. Syed Hussain Ali, Sadiq M. Sait, and Khalid M. Al-Tawil, “Percep-
tions about eLearning in Saudi Arabia”, ICASE World Conference on
Science & Technology Education, pp 393-399, Penang, Malaysia, April
2003.

56

70. Ahmad Al-Yamani, Sadiq M. Sait, Hassan Barada, and Habib Youssef,
“Parallel Tabu Search in a Heterogeneous Environment”, Proceedings
of 17th International Parallel & Distributed Processing Symposium,
Nice, April 2003.

71. Sadiq M. Sait, Halim H. Redhwi, Mohammad Abul-Hamayel, Aymen
Kayyal, and Mohammad Al-Ohali. “New Era for Sustainable Technol-
ogy Based Development”, XX IASP World Conference on Science and
Technology Parks, June 1-4, 2003 Lisboa.

72. Sadiq M. Sait, Aiman El-Malheh and Raslan Al-Abaji. Enhancing
Performance of Iterative Heuristics for VLSI Netlist Partitioning. IEEE
International Symposium on Circuits and Systems”, December 2003,
Sharjah (Accepted).

73. Mostafa Abd-El-Barr, Bambang A.B. Sarif, Sadiq M. Sait, Uthman
Al-Saiari. “A Modified Ant Colony Algorithm for Evolutionary Design
of Digital Circuits”. IEEE Congress on Evolutionary Computation.,
Canberra, December 2003.

74. Sadiq M. Sait, Mostafa Abd-El-Barr, Uthman Al-Saiari, Bambang
A.B. Sarif “Digital Circuit Design Through Simulated Evolution (SimE)”.
IEEE Congress on Evolutionary Computation., Canberra, December
2003.

75. Abd-El-Barr, M., Zakir, A., Sadiq M. Sait, and Almulhem, A. “Relia-
bility and fault Tolerance based Topological Optimization of Computer
Networks - Part I: Enumerative Techniques”, IEEE Pacific Rim Con-
ference, August 30-31, 2003, Victoria, BC, Canada.

76. Abd-El-Barr, M., Zakir, A., Sadiq M. Sait, and Almulhem, A. “Relia-
bility and fault Tolerance based Topological Optimization of Computer
Networks - Part II: Iterative Techniques”, IEEE Pacific Rim Confer-
ence, August 30-31, 2003, Victoria, BC, Canada.

77. Abd-El-Barr, M., Zakir, A., Sadiq M. Sait, and Almulhem, A., “Topo-
logical Optimization of Computer Networks Subject to Fault Tolerance
and Reliability Using Iterative Techniques”, IEEE 28th Annual Con-
ference on Local Computer Networks (LCN), Bonn, Germany, October
20-24, 2003.

57

References

[1] Srimat T. Chakradhar and Anand Raghunathan. Bottleneck Removal
Algorithm for Dynamic Compaction in Sequential Circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
16(10):1157–1172, October 1997.

[2] I. Pomeranz and S. M. Reddy. Dynamic Test Compaction for Syn-
chronous Sequential Circuits using Static Compaction Techniques. in
Proceedings of Annual Symposium on Fault Tolerant Computing, pages
53–61, June 1996.

[3] I. Pomeranz and S. M. Reddy. Procedures for Static Compaction of Test
Sequences for Synchronous Sequential Circuits. IEEE Transactions on
Computers, 49(6):596–607, June 2000.

[4] I. Pomeranz and S. M. Reddy. On Static Compaction of Test Sequences
for Synchronous Sequential Circuits. in Proceedings of the ACM/IEEE
33rd Design Automation Conference, pages 215–220, June 1996.

[5] Yoshinobu Higami, Yuzo Takamatsu and Kazo Kinoshita. Test Sequence
Compaction for Sequential Circuits with Reset States. 9th Asian Test
Symposium (ATS’00), pages 165–170, December 04-06, 2000.

[6] Irith Pomeranz, S. M. Reddy and Ruifeng Guo. Static Test Compaction
for Synchronous Sequential Circuits Based on Vector Restoration. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Sys-
tems, 18(7):1040–1049, July 1999.

[7] I. Pomeranz and S. M. Reddy. Vector Restoration Based Static Com-
paction of Test Sequences for Synchronous Sequential Circuits. in Pro-
ceedings of International Conference on Computer Design, pages 360–
365, October 1997.

[8] Ruifeng Guo, Irith Pomeranz and S. M. Reddy. Procedures for Static
Compaction of Test Sequences for Synchronous Sequential Circuits
Based on Vector Restoration. in Proceedings of Conference on Design
Automation and Test in Europe, pages 583–587, February 1998.

[9] H. K. Lee and D.S. Ha. HOPE: An Efficient Parallel Fault Simulator for
Synchronous Sequential Circuits. in Proceedings of Design Automation
Conference, pages 336–340, June 1992.

58

[10] Irith Pomeranz and S. M. Reddy. Vector Replacement to Improve Static-
Test Compaction for Synchronous Sequential Circuits. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
20(2):336–342, February 2001.

[11] Irith Pomeranz and S. M. Reddy. VERSE: A Vector Replacement Pro-
cedure for Improving Test Compaction in Synchronous Sequential Cir-
cuits. in Proceedings of IEEE VLSI Design Conference, pages 250–255,
January 1999.

[12] S. M. Reddy, I. Pomeranz and S. Kajihara. On the Effects of Test Com-
paction on Defect Coverage. in Proceedings of 14th VLSI Test Sympo-
sium, pages 430–435, April 1996.

[13] Irith Pomeranz and S. M. Reddy. Sequence Reordering to Improve
the Levels of Compaction Achievable by Static Compaction Procedures.
Proceedings of the Conference on Design Automation and Test in Eu-
rope, pages 214–218, March 2001.

[14] Irith Pomeranz and S. M. Reddy. Enumeration of Test Sequences in
Increasing Chronological Order to Improve the Levels of Compaction
Achieved by Vector Omission. IEEE Transactions on Computers,
51(7):866–872, July 2002.

[15] Irith Pomeranz and S. M. Reddy. An Approach for Improving the Levels
of Compaction Achieved by Vector Omission. IEEE/ACM International
Conference on Computer-Aided Design, pages 463–466, November 1999.

[16] S. Bommu, S.T. Chakradhar and K. Doreswamy. Static Test Se-
quence Compaction Based on Segment Reordering and Accelerated Vec-
tor Restoration. in Proceedings of International Test Conference, pages
954–961, October 1998.

[17] S. Bommu, S.T. Chakradhar and K. Doreswamy. Static Compaction
using Overlapped Restoration and Segment Pruning. in Proceedings
of International Conference on Computer-Aided Design, pages 140–146,
November 1998.

[18] M. S. Hsiao, E. M. Rudnick and J. K. Patel. Fast Static Compaction
Algorithms for Sequential Circuit Test Vectors. IEEE Transactions on
Computer, 48(3):311–322, March 1999.

59

[19] M. S. Hsiao, E. M. Rudnick and J. K. Patel. Fast Algorithms for Static
Compaction of Sequential Circuit Test Vectors. in Proceedings of IEEE
VLSI Test Symposium, pages 188–195, April 1997.

[20] M. S. Hsiao and S. T. Chakradhar. State Relaxation Based Subsequence
Removal for Fast Static Compaction in Sequential Circuits. in Proceed-
ings of Design Automation and Test in Europe, DATE98, pages 577–582,
February 1998.

[21] R. Guo, Irith Pomeranz and S. M. Reddy. On Speeding-Up Vector
Restoration Based Static Compaction of Test Sequences for Sequential
Circuits. in Proceedings of 7th Asian Test Symposium, pages 467–471,
December 1998.

[22] R. Guo, S. M. Reddy and Irith Pomeranz. PROPTEST: A Property
Based Test Pattern Generator for Sequential Circuits using Test Com-
paction. in Proceedings of Design Automation Conference, pages 653–
659, June 1999.

[23] R. Guo, Irith Pomeranz and S. M. Reddy. On Improving Static Test
Compaction for Sequential Circuits. in Proceedings of 14th International
Conference on VLSI Design, pages 111–116, January 2001.

[24] R. Guo, S. M. Reddy and Irith Pomeranz. Reverse-Order-Restoration-
Based Static Test Compaction for Synchronous Sequential Circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(3):293–304, March 2003.

[25] Aiman El-Maleh and Khaled Al-Utaibi. An Efficient Test Relaxation
Technique for Synchronous Sequential Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, to appear.

[26] R. Roy, T. Niermann, J. Patel, J. Abraham and R. Saleh. Compaction of
ATPG-Generated Test Sequences for Sequential Circuits. in Proceedings
of International Conference on Computer-Aided Design, pages 382–385,
November 1988.

[27] Aiman El-Maleh and Ali Al-Suwaiyan. An Efficient Test Relaxation
Technique for Combinational and Full-Scan Sequential Circuits. In Proc.
of the VLSI Test Symposium, pages 53–59, Monterey, CA, 2002. IEEE.

[28] Seiji Kajihara and Kohei Miyase. On Identifying Don’t Care Inputs of
Test Patterns for Combinational Circuits. In IEEE/ACM Int’l Confer-
ence on Computer-Aided Design, pages 364–369, San Jose, CA, USA,
Nov. 2001. IEEE.

60

[29] Paulo F. Flores, Horacio C. Neto, and Joao P. Marques-Silva. On Apply-
ing Set Covering Models to Test Set Compaction. In Proc. of the Ninth
Great Lakes Symposium on VLSI, pages 8–11, Ypsilanti, MI, USA, Mar.
1999. IEEE.

[30] Kwame Osei Boateng, Hideaki Konishi, and Tsuneo Nakata. A Method
of Static Compaction of Test Stimuli. In Proc. of the Asian Test Sym-
posium, pages 137–142, Kyoto, Japan, Nov. 2001. IEEE.

[31] Dorit S. Hochbaum. An Optimal Test Compression Procedure for Com-
binational Circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 15(10):1294–1299, Oct. 1996.

[32] M. H. Schulz, E. Trischler, and T. M. Sarfert. SOCRATES: A Highly
Efficient Automatic Test Pattern Generation System. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
7(1):126–137, Jan. 1988.

[33] Irith Pomeranz and Sudhakar M. Reddy. Forward-Looking Fault
Simulation for Improved Static Compaction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
20(10):1262–1265, Oct. 2001.

[34] Ilker Hamzaoglu and Janak H. Patel. Test Set Compaction Algorithms
for Combinational Circuits. In Proc. of the International Conference on
Computer-Aided Design, pages 283–289, San Jose, CA, USA, Nov. 1998.
IEEE.

[35] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy. Cost Effec-
tive Generation of Minimal Test Sets for Stuck-At Faults in Combina-
tional Logic Circuits. IEEE Transactions on Computer-Aided Design,
14(12):1496–1504, Dec. 1995.

[36] Xijaing Lin, Janusz Rajski, Irith Pomeranz, and Sudhakar M. Reddy.
On Static Test Compaction and Test Pattern Ordering for Scan Designs.
In Proc. of the Int’l Test Conference, pages 1088–1098, Baltimore, MD,
USA, 2001. IEEE.

[37] Bechir Ayari and Bozena Kaminska. A New Dynamic Test Vector Com-
paction for Automatic Test Pattern Generation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(3):353–
358, March 1994.

61

[38] Kohei Miyase, Seiji Kajihara, and Sudhakar M. Reddy. A Method of
Static Test Compaction Based on Don’t Care Identification. In Proc. of
the First IEEE Int’l Workshop on Electronic Design, Test, and Appli-
cation, pages 392–395, Christchurch, New Zealand, Jan. 2002. IEEE.

[39] Jau-Shien Chang and Chen-Shang Lin. Test Set Compaction for Com-
binational Circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 14(11):1370–1378, Nov. 1995.

[40] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Freedman, San
Francisco, 1979.

[41] Lakshmi N. Reddy, Irith Pomeranz, and Sudhakar M. Reddy. ROTCO:
A Reverse Order Test Compaction Technique. In Proc. of the EURO-
ASIC Conference, pages 189–194, Paris , France, June 1992. IEEE.

[42] Ilker Hamzaoglu and Janak H. Patel. Test Set Compaction Algorithms
for Combinational Circuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 19(8):957–963, Aug. 2000.

[43] Seiji Kajihara, Irith Pomranz, Kozo Kinoshita, and Sudhakar M. Reddy.
On Compacting Test Sets by Addition and Removal of Test Vectors. In
VLSI Test Symposium, pages 25–28, Cherry Hill, NJ, USA, April 1994.
IEEE.

[44] Aiman H. El-Maleh and Yahya E. Osais. Test Vector Decomposition
Based Static Compaction Algorithms for Combinational Circuits. ACM
Transactions on Design Automation of Electronic Systems, V(N):1–29,
July 2003.

[45] Sheldon B. Akers and Balakrishnan Krishnamurthy. Test Counting: A
Tool for VLSI Testing. IEEE Design and Test of Computers, 6(5):58–73,
Oct. 1989.

[46] Xijiang Lin, W u Tung Cheng, Irith Pomeranz, and Sudhakar M. Reddy.
SIFAR: Static Test Compaction for Synchrnous Sequential Circuits
Based on Single Fault Restoration. In Proc. of the VLSI Test Sym-
posium, pages 205–212. IEEE, 2000.

[47] Miron Abramovici, Melvin A. Bruer, and Arthur D. Friedman. Digital
Systems Testing and Testable Design. IEEE, Piscataway, NJ, 1990.

62

