
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
Logic Synthesis BackgroundLogic Synthesis Background

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

OutlineOutlineOutline

Boolean Algebra
Boolean Functions
Basic Definitions
Representations of Boolean Functions
Binary Decision Diagrams (BDDs)
• Ordered BDDs (OBDDs)
• Reduced Ordered BDDs (ROBDDs)

If-then-else (ITE) DAGS
Satisfiability and Minimum Cover Problems
Branch and Bound Algorithm

Boolean Algebra
Boolean Functions
Basic Definitions
Representations of Boolean Functions
Binary Decision Diagrams (BDDs)
• Ordered BDDs (OBDDs)
• Reduced Ordered BDDs (ROBDDs)

If-then-else (ITE) DAGS
Satisfiability and Minimum Cover Problems
Branch and Bound Algorithm

3

Boolean AlgebraBoolean AlgebraBoolean Algebra

Boolean algebra
• Quintuple (B,+, . , 0, 1)
• Satisfies commutative and distributive laws
• Identity elements are 0 and 1.
• Each element has a complement: a + a’=1 ; a . a’ = 0
• Binary Boolean algebra B = {0, 1}

Some properties of Boolean algebraic systems

Boolean algebra
• Quintuple (B,+, . , 0, 1)
• Satisfies commutative and distributive laws
• Identity elements are 0 and 1.
• Each element has a complement: a + a’=1 ; a . a’ = 0
• Binary Boolean algebra B = {0, 1}

Some properties of Boolean algebraic systems

(a’)’=aInvolution

(a.b)’=a’+b’(a+b)’=a’.b’De Morgan

a(a+b)=aa+(ab)=aAbsorption

a.a=aa+a=aIdempotence

a(bc)=(ab)ca+(b+c)=(a+b)+cAssociativity

4

Boolean FunctionsBoolean FunctionsBoolean Functions

Boolean function
• Single output:

• Multiple output:

• Incompletely specified
• don't care symbol *.
•

Don’t care conditions
• We don't care about the value of the function.
• Related to the environment:

• Input patterns that never occur.
• Input patterns such that some output is never observed.

• Very important for synthesis and optimization.

Boolean function
• Single output:

• Multiple output:

• Incompletely specified
• don't care symbol *.
•

Don’t care conditions
• We don't care about the value of the function.
• Related to the environment:

• Input patterns that never occur.
• Input patterns such that some output is never observed.

• Very important for synthesis and optimization.

BBf n →:

mn BBf →:

mnBf ,*}1,0{: →

3-dimensional
Boolean Space

5

Definitions …Definitions Definitions ……

Scalar function
• ON-Set: subset of the domain such that f is true.
• Off-Set: subset of the domain such that f is false.
• Don’t care Set: subset of the domain such that f is a don't care.

Multiple-output function
• Defined for each component.

Boolean literal: variable or its complement.
Product or cube: product of literals.
Implicant: product implying a value of a function (usually TRUE).
• Hypercube in the Boolean space.

Minterm: product of all input variables implying a value of a
function (usually TRUE).
• Vertex in the Boolean space.

Scalar function
• ON-Set: subset of the domain such that f is true.
• Off-Set: subset of the domain such that f is false.
• Don’t care Set: subset of the domain such that f is a don't care.

Multiple-output function
• Defined for each component.

Boolean literal: variable or its complement.
Product or cube: product of literals.
Implicant: product implying a value of a function (usually TRUE).
• Hypercube in the Boolean space.

Minterm: product of all input variables implying a value of a
function (usually TRUE).
• Vertex in the Boolean space.

6

… Definitions ……… Definitions Definitions ……

Let f(x1,x2,…,xn) be a Boolean function of n variables.
The set (x1,x2,…,xn) is called the support of the function.
The cofactor of f(x1,x2,…,xi,…,xn) with respect to
variable xi is fxi = f(x1,x2,…,xi=1,…,xn)
The cofactor of f(x1,x2,…,xi,…,xn) with respect to
variable xi’ is fxi’ = f(x1,x2,…,xi=0,…,xn)
Theorem: Shannon's Expansion

Any function can be expressed as sum of products
(product of sums) of n literals, minterms (maxterms), by
recursive expansion.

Let f(x1,x2,…,xn) be a Boolean function of n variables.
The set (x1,x2,…,xn) is called the support of the function.
The cofactor of f(x1,x2,…,xi,…,xn) with respect to
variable xi is fxi = f(x1,x2,…,xi=1,…,xn)
The cofactor of f(x1,x2,…,xi,…,xn) with respect to
variable xi’ is fxi’ = f(x1,x2,…,xi=0,…,xn)
Theorem: Shannon's Expansion

Any function can be expressed as sum of products
(product of sums) of n literals, minterms (maxterms), by
recursive expansion.

n1,2,...,i)).((

..),...,,...,,(.: 21

=∀+′+=

′+=→

′

′

ii

ii

xixi

xixini
n

fxfx

fxfxxxxxfThenBBfLet

7

… Definitions ……… Definitions Definitions ……

Example: f = ab + ac + bc
• fa = b + c
• fa’ = bc
• F = a fa + a’ fa’ = a (b + c) + a’ (bc)

A Boolean function can be interpreted as the set of its
minterms.
Operations and relations on Boolean functions can be
viewed as operations on their minterm sets
• Sum of two functions is the Union (∪) of their minterm sets
• Product of two functions is the Intersection (∩) of their

minterm sets
• Implication between two functions corresponds to

containment (⊆) of their minterm sets
• f1 → f2 ≡ f1 ⊆ f2 ≡ f1’ + f2 = 1

Example: f = ab + ac + bc
• fa = b + c
• fa’ = bc
• F = a fa + a’ fa’ = a (b + c) + a’ (bc)

A Boolean function can be interpreted as the set of its
minterms.
Operations and relations on Boolean functions can be
viewed as operations on their minterm sets
• Sum of two functions is the Union (∪) of their minterm sets
• Product of two functions is the Intersection (∩) of their

minterm sets
• Implication between two functions corresponds to

containment (⊆) of their minterm sets
• f1 → f2 ≡ f1 ⊆ f2 ≡ f1’ + f2 = 1

8

… Definitions ……… Definitions Definitions ……

A function f(x1,x2,…,xi,…,xn) is positive (negative)
Unate with respect to variable xi if fxi ⊇ fxi’ (fxi ⊆ fxi’).
A function is (positive/negative) Unate if it is
(positive/negative) unate in all support variables,
otherwise it is Binate (or mixed).
Example: f= a + b + c’
• f is positive unate with respect to variable a

• fa=1 ⊇ fa’= b + c’
• Minterms of fa ={bc, b’c,bc’,b’c’} ⊇ minterms of fa’={bc,bc’,b’c’}

• f is positive unate with respect to variable b
• f is negative unate with respect to variable c
• Thus, f is binate.

A function f(x1,x2,…,xi,…,xn) is positive (negative)
Unate with respect to variable xi if fxi ⊇ fxi’ (fxi ⊆ fxi’).
A function is (positive/negative) Unate if it is
(positive/negative) unate in all support variables,
otherwise it is Binate (or mixed).
Example: f= a + b + c’
• f is positive unate with respect to variable a

• fa=1 ⊇ fa’= b + c’
• Minterms of fa ={bc, b’c,bc’,b’c’} ⊇ minterms of fa’={bc,bc’,b’c’}

• f is positive unate with respect to variable b
• f is negative unate with respect to variable c
• Thus, f is binate.

9

… Definitions…… DefinitionsDefinitions

The Boolean Difference of a function f(x1,x2,…,xi,…,xn)
with respect to variable xi is ∂f / ∂xi = fxi ⊕ fxi’
• Indicates whether f is sensitive to changes in xi

The Consensus of a function f(x1,x2,…,xi,…,xn) with
respect to variable xi is fxi . fxi’
• Represents the component that is independent of xi

The Smoothing of a function f(x1,x2,…,xi,…,xn) with
respect to variable xi is fxi + fxi’
• Corresponds to dropping the variable from the function

Example: f= ab + ac + bc
• fa=b+c fa’= bc
• Boolean difference = fa ⊕ fa’= (b+c) ⊕ bc = b’c+bc’
• Consensus = fa . fa’= (b+c) . bc = bc
• Smoothing = fa + fa’= (b+c) + bc = b+c

The Boolean Difference of a function f(x1,x2,…,xi,…,xn)
with respect to variable xi is ∂f / ∂xi = fxi ⊕ fxi’
• Indicates whether f is sensitive to changes in xi

The Consensus of a function f(x1,x2,…,xi,…,xn) with
respect to variable xi is fxi . fxi’
• Represents the component that is independent of xi

The Smoothing of a function f(x1,x2,…,xi,…,xn) with
respect to variable xi is fxi + fxi’
• Corresponds to dropping the variable from the function

Example: f= ab + ac + bc
• fa=b+c fa’= bc
• Boolean difference = fa ⊕ fa’= (b+c) ⊕ bc = b’c+bc’
• Consensus = fa . fa’= (b+c) . bc = bc
• Smoothing = fa + fa’= (b+c) + bc = b+c

10

Boolean Expansion Based on Orthonormal
Basis …
Boolean Expansion Based on Boolean Expansion Based on OrthonormalOrthonormal
Basis Basis ……

Let φi , i=1,2, …,k be a set of Boolean functions such
that Σi=1 to k φi = 1 and φi . φj = 0 for ∀ i ≠ j ∈{1,2,…,k}.
An Orthonormal Expansion of a function f is
f= Σi=1 to k fφi . φi

fφi is called the generalized cofactor of f w.r.t. φi ∀ i.
The generalized cofactor may not be unique
• f . φi ⊆ fφi ⊆ f + φi

‘

Example: f = ab+ac+bc; φ1 = ab; φ2 = a’+b’;
• ab ⊆ fφ1 ⊆ 1 ; let fφ1 = 1
• a’bc+ab’c ⊆ fφ2 ⊆ ab+bc+ac ; let fφ2 = a’bc+ab’c
• f = φI fφI . + φ2 fφ2 = ab (1) + (a’+b’)(a’bc+ab’c)=ab+bc+ac

Let φi , i=1,2, …,k be a set of Boolean functions such
that Σi=1 to k φi = 1 and φi . φj = 0 for ∀ i ≠ j ∈{1,2,…,k}.
An Orthonormal Expansion of a function f is
f= Σi=1 to k fφi . φi

fφi is called the generalized cofactor of f w.r.t. φi ∀ i.
The generalized cofactor may not be unique
• f . φi ⊆ fφi ⊆ f + φi

‘

Example: f = ab+ac+bc; φ1 = ab; φ2 = a’+b’;
• ab ⊆ fφ1 ⊆ 1 ; let fφ1 = 1
• a’bc+ab’c ⊆ fφ2 ⊆ ab+bc+ac ; let fφ2 = a’bc+ab’c
• f = φI fφI . + φ2 fφ2 = ab (1) + (a’+b’)(a’bc+ab’c)=ab+bc+ac

11

… Boolean Expansion Based on
Orthonormal Basis …
…… Boolean Expansion Based on Boolean Expansion Based on
OrthonormalOrthonormal Basis Basis ……

Theorem
• Let f, g, be two Boolean functions expanded with the same

orthonormal basis φI , i=1,2, …,k
• Let ⊗ be a binary operator on two Boolean functions

Corollary
• Let f, g, be two Boolean functions with support variables {xi,

i=1,2, …,n}.
• Let ⊗ be a binary operator on two Boolean functions

Theorem
• Let f, g, be two Boolean functions expanded with the same

orthonormal basis φI , i=1,2, …,k
• Let ⊗ be a binary operator on two Boolean functions

Corollary
• Let f, g, be two Boolean functions with support variables {xi,

i=1,2, …,n}.
• Let ⊗ be a binary operator on two Boolean functions

).(
1

ii
gfgf

k

i
i ΦΦ

⊗Φ=⊗ ∑
=

).().(
iiii xxixxi gfxgfxgf ′′ ⊗′+⊗=⊗

12

… Boolean Expansion Based on
Orthonormal Basis
…… Boolean Expansion Based on Boolean Expansion Based on
OrthonormalOrthonormal BasisBasis

Example:
• Let f = ab + c; g=a’c + b; Compute f ⊕g
• Let φ1=a’b‘; φ2=a’b; φ3=ab‘; φ4=ab;
• fφ1 = c; fφ2 = c; fφ3 = c; fφ4 = 1;
• gφ1 = c; gφ2 = 1; gφ3 = 0; gφ4 = 1;
• f = a’b’ (c ⊕c) + a’b (c ⊕1) + ab’ (c ⊕0) + ab (1 ⊕1)

= a’bc’ + ab’c
• F= (ab+c) ⊕ (a’c+b)= (ab+c)(a+c’)b’ + (a’+b’)c’(a’c+b)

= (ab+ac)b’ + (a’c+a’b)c’ = ab’c +a’bc’

Example:
• Let f = ab + c; g=a’c + b; Compute f ⊕g
• Let φ1=a’b‘; φ2=a’b; φ3=ab‘; φ4=ab;
• fφ1 = c; fφ2 = c; fφ3 = c; fφ4 = 1;
• gφ1 = c; gφ2 = 1; gφ3 = 0; gφ4 = 1;
• f = a’b’ (c ⊕c) + a’b (c ⊕1) + ab’ (c ⊕0) + ab (1 ⊕1)

= a’bc’ + ab’c
• F= (ab+c) ⊕ (a’c+b)= (ab+c)(a+c’)b’ + (a’+b’)c’(a’c+b)

= (ab+ac)b’ + (a’c+a’b)c’ = ab’c +a’bc’

13

Representations of Boolean FunctionsRepresentations of Boolean FunctionsRepresentations of Boolean Functions

There are three different ways of representing Boolean
functions:
• Tabular forms

• Personality matrix
• Truth table
• Implicant table

• Logic expressions
• Expressions of literals linked by the + and . Operators
• Expressions can be nested by parenthesis
• Two-level: sum of products or products of sum
• Multilevel: factored form

• Binary decisions diagrams
• Represents a set of binary-valued decisions, culminating in an

overall decision that can be either TRUE or FALSE

There are three different ways of representing Boolean
functions:
• Tabular forms

• Personality matrix
• Truth table
• Implicant table

• Logic expressions
• Expressions of literals linked by the + and . Operators
• Expressions can be nested by parenthesis
• Two-level: sum of products or products of sum
• Multilevel: factored form

• Binary decisions diagrams
• Represents a set of binary-valued decisions, culminating in an

overall decision that can be either TRUE or FALSE

14

Tabular RepresentationsTabular RepresentationsTabular Representations

Truth table
• List of all minterms of a function.

Implicant table or cover
• List of implicants of a function sufficient to define a function.

Implicant tables are smaller in size.
Example: x = ab+a’c; y = ab+bc+ac

Truth table
• List of all minterms of a function.

Implicant table or cover
• List of implicants of a function sufficient to define a function.

Implicant tables are smaller in size.
Example: x = ab+a’c; y = ab+bc+ac

Truth
Table

Implicant
Table

15

Cubical Representation of Minterms and
Implicants
Cubical Representation of Cubical Representation of MintermsMinterms andand
ImplicantsImplicants

f1 = a’b’c’+a’b’c+ab’c+abc+abc’= a’b’+b’c+ac+ab
f2 = a’b’c+ab’c = b’c
f1 = a’b’c’+a’b’c+ab’c+abc+abc’= a’b’+b’c+ac+ab
f2 = a’b’c+ab’c = b’c

16

Binary Decision Diagrams …Binary Decision Diagrams Binary Decision Diagrams ……

Binary decision diagrams (BDDs) can be represented
by trees or rooted DAGs, where decisions are
associated with vertices.
Ordered binary decision diagrams (OBDDs) assume an
ordering on the decision variables.
• Can be transformed into canonical forms, reduced ordered

binary decision diagrams (ROBDDs)
• Operations on ROBDDs can be made in polynomial time of

their size i.e. vertex set cardinality
• Size of ROBDDs depends on ordering of variables

• Adder functions are very sensitive to variable ordering
• Exponential size in worst case
• Linear size in best case

• Arithmetic multiplication has exponential size regardless of
variable order.

Binary decision diagrams (BDDs) can be represented
by trees or rooted DAGs, where decisions are
associated with vertices.
Ordered binary decision diagrams (OBDDs) assume an
ordering on the decision variables.
• Can be transformed into canonical forms, reduced ordered

binary decision diagrams (ROBDDs)
• Operations on ROBDDs can be made in polynomial time of

their size i.e. vertex set cardinality
• Size of ROBDDs depends on ordering of variables

• Adder functions are very sensitive to variable ordering
• Exponential size in worst case
• Linear size in best case

• Arithmetic multiplication has exponential size regardless of
variable order.

17

… Binary Decision Diagrams ……… Binary Decision Diagrams Binary Decision Diagrams ……

An OBDD is a rooted DAG with vertex set V. Each non-
leaf vertex has as attributes
• a pointer index(v) ∈ {1,2,…n} to an input variable

{x1,x2,…,xi,…,xn} .
• Two children low(v) and high(v) ∈ V.

A leaf vertex v has as an attribute a value value(v) ∈ B.
For any vertex pair {v,low(v)} (and {v,high(v)}) such that
no vertex is a leaf, index(v)<index(low(v))
(index(v)<index(high(v))
An OBDD with root v denotes a function fv such that
• If v is a leaf with value(v)=1, then fv=1
• If v is a leaf with value(v)=0, then fv=0
• If v is not a leaf and index(v)=i, then fv= xi

‘
. flow(v) + xi . fhigh(v)

An OBDD is a rooted DAG with vertex set V. Each non-
leaf vertex has as attributes
• a pointer index(v) ∈ {1,2,…n} to an input variable

{x1,x2,…,xi,…,xn} .
• Two children low(v) and high(v) ∈ V.

A leaf vertex v has as an attribute a value value(v) ∈ B.
For any vertex pair {v,low(v)} (and {v,high(v)}) such that
no vertex is a leaf, index(v)<index(low(v))
(index(v)<index(high(v))
An OBDD with root v denotes a function fv such that
• If v is a leaf with value(v)=1, then fv=1
• If v is a leaf with value(v)=0, then fv=0
• If v is not a leaf and index(v)=i, then fv= xi

‘
. flow(v) + xi . fhigh(v)

18

… Binary Decision Diagrams…… Binary Decision DiagramsBinary Decision Diagrams

Example: f=(a+b)c
• Vertices {v1,v2,v3,v4,v5} (Fig. 2.20 (c))
• Variable x1=a, x2=b, x3=c;
• v1 is the root; index(v1)=1 meaning that v1 is related to first

variable in the order i.e. x1=a

Example: f=(a+b)c
• Vertices {v1,v2,v3,v4,v5} (Fig. 2.20 (c))
• Variable x1=a, x2=b, x3=c;
• v1 is the root; index(v1)=1 meaning that v1 is related to first

variable in the order i.e. x1=a

19

Reduced Binary Decision Diagrams …Reduced Binary Decision Diagrams Reduced Binary Decision Diagrams ……

Two OBDDs are isomorphic if there is a one-to-one
mapping between the vertex set that preserves
adjacency, indices and leaf values.
Two isomorphic OBDDS represent the same function.
An OBDD is said to be reduced OBDD (ROBDD) if
• It contains no vertex v with low(v)=high(v)
• Not any pair {u,v} such that the subgraphs rooted in u and in

v are isomorphic.

ROBDDs are canonical
• All equivalent functions will result in the same ROBDD.

Two OBDDs are isomorphic if there is a one-to-one
mapping between the vertex set that preserves
adjacency, indices and leaf values.
Two isomorphic OBDDS represent the same function.
An OBDD is said to be reduced OBDD (ROBDD) if
• It contains no vertex v with low(v)=high(v)
• Not any pair {u,v} such that the subgraphs rooted in u and in

v are isomorphic.

ROBDDs are canonical
• All equivalent functions will result in the same ROBDD.

20

… Reduced Binary Decision Diagrams ……… Reduced Binary Decision Diagrams Reduced Binary Decision Diagrams ……

21

Reduced Binary Decision Diagrams …Reduced Binary Decision Diagrams Reduced Binary Decision Diagrams ……

22

If-then-else (ITE) DAGs …IfIf--thenthen--else (ITE) else (ITE) DAGsDAGs ……

ROBDD construction and manipulation can be done
with the ite operator.
Given three scalar Boolean functions f, g and h
• Ite(f, g, h) = f . g + f’ . h

Let z=ite(f, g, h) and let x be the top variable of
functions f, g and h.
The function z is associated with the vertex whose
variable is x and whose children implement ite(fx,gx,hx)
and ite(fx’,gx’,hx’).
• z = x zx + x’ zx’
• = x(f g + f’ h)x + x’ (f g + f’ h)x’
• = x(fx gx + f’x hx) + x’ (fx’ gx’ + f’x’ hx’)
• =ite(x, ite(fx,gx,hx) , ite(fx’,gx’,hx’))

ROBDD construction and manipulation can be done
with the ite operator.
Given three scalar Boolean functions f, g and h
• Ite(f, g, h) = f . g + f’ . h

Let z=ite(f, g, h) and let x be the top variable of
functions f, g and h.
The function z is associated with the vertex whose
variable is x and whose children implement ite(fx,gx,hx)
and ite(fx’,gx’,hx’).
• z = x zx + x’ zx’
• = x(f g + f’ h)x + x’ (f g + f’ h)x’
• = x(fx gx + f’x hx) + x’ (fx’ gx’ + f’x’ hx’)
• =ite(x, ite(fx,gx,hx) , ite(fx’,gx’,hx’))

23

… If-then-else (ITE) DAGs…… IfIf--thenthen--else (ITE) else (ITE) DAGsDAGs

Terminal cases of ite
operator
• Ite(f,1,0)=f, ite(1,g,h)=g,

ite(0, g, h)=h, ite(f, g, g)=g
and ite(f, 0, 1)=f’.

All Boolean functions of
two arguments can be
represented in terms of ite
operator.

Terminal cases of ite
operator
• Ite(f,1,0)=f, ite(1,g,h)=g,

ite(0, g, h)=h, ite(f, g, g)=g
and ite(f, 0, 1)=f’.

All Boolean functions of
two arguments can be
represented in terms of ite
operator.

24

ITE Algorithm …ITE Algorithm ITE Algorithm ……
ITE(f, g, h){

If (terminal case)
return (r = trivial result)

else {
if (computed table has entry {(f,g,h), r})

return (r from computed table)
else {

x top variable of f, g, h
t = ITE(fx, gx, hx)
e = ITE(fx’, gx’, hx’)
if (t == e) return (t)
r = find_or_add_unique_table(x, t, e)
Update computed table with {(f,g,h), r})
return (r)

}
}

}

ITE(f, g, h){
If (terminal case)

return (r = trivial result)
else {

if (computed table has entry {(f,g,h), r})
return (r from computed table)

else {
x top variable of f, g, h
t = ITE(fx, gx, hx)
e = ITE(fx’, gx’, hx’)
if (t == e) return (t)
r = find_or_add_unique_table(x, t, e)
Update computed table with {(f,g,h), r})
return (r)

}
}

}

25

… ITE Algorithm…… ITE AlgorithmITE Algorithm

Uses two tables
• Unique table: stores ROBDD information in a strong

canonical form
• Equivalence check is just a test on the equality of the identifiers
• Contains a key for a vertex of an ROBDD
• Key is a triple of variable, identifiers of left and right children

• Computed table: to improve the performance of the algorithm
• Mapping between any triple (f, g, h) and vertex implementing

ite(f, g, h).

Uses two tables
• Unique table: stores ROBDD information in a strong

canonical form
• Equivalence check is just a test on the equality of the identifiers
• Contains a key for a vertex of an ROBDD
• Key is a triple of variable, identifiers of left and right children

• Computed table: to improve the performance of the algorithm
• Mapping between any triple (f, g, h) and vertex implementing

ite(f, g, h).

26

Applications of ITE DAGsApplications of ITE Applications of ITE DAGsDAGs

Implication of two functions is Tautology
• f → g ≡ f’ + g = 1
• Check if ite(f, g, 1) has identifier equal to that of leaf value 1
• Alternatively, a function associated with a vertex is tautology if

both of its children are tautology

Functional composition
• Replacing a variable by another expression
• fx=g = fx g + fx’ g’ = ite(g, fx, fx’)

Consensus
• fx . fx’ ≡ ite(fx, fx’, 0)

Smoothing
• fx + fx’ ≡ ite(fx,1, fx’)

Implication of two functions is Tautology
• f → g ≡ f’ + g = 1
• Check if ite(f, g, 1) has identifier equal to that of leaf value 1
• Alternatively, a function associated with a vertex is tautology if

both of its children are tautology

Functional composition
• Replacing a variable by another expression
• fx=g = fx g + fx’ g’ = ite(g, fx, fx’)

Consensus
• fx . fx’ ≡ ite(fx, fx’, 0)

Smoothing
• fx + fx’ ≡ ite(fx,1, fx’)

27

Satisfiability …SatisfiabilitySatisfiability ……

Many synthesis and optimization problems can be
reduced to a fundamental one: satisfiability.
A Boolean function is satisfiable if there exists an
assignment of Boolean values to the variables that
makes the function TRUE.
Most common formulation requires the function to be
expressed in a product of sum form
• Sum terms are called clauses
• Assignment must make all clauses true

Satisfiability problem is Intractable
• 3-satisfiability (i.e. clauses with max. 3 literals) is intractable
• 2-satisfiability can be solved in polynomial time

Many synthesis and optimization problems can be
reduced to a fundamental one: satisfiability.
A Boolean function is satisfiable if there exists an
assignment of Boolean values to the variables that
makes the function TRUE.
Most common formulation requires the function to be
expressed in a product of sum form
• Sum terms are called clauses
• Assignment must make all clauses true

Satisfiability problem is Intractable
• 3-satisfiability (i.e. clauses with max. 3 literals) is intractable
• 2-satisfiability can be solved in polynomial time

28

… Satisfiability…… SatisfiabilitySatisfiability

Example
• F=(a+b+c')(a+b'+c')(a+b'+c)(a'+b+c)(a'+b+c')(a'+b'+c')(a'+b'+c)
• Find an input assignment that makes F=1

Solution
• A=1, B=1, C=0 => Fails
• A=0, B=1, C=0 => Fails
• A=1, B=0, C=1 => Fails
• A=0, B=0, C=1 => Fails
• A=1, B=1, C=1 => Fails
• A=0, B=1, C=1 => Fails
• A=1, B=0, C=0 => Fails
• A=0, B=0, C=0 => Success!!

Example
• F=(a+b+c')(a+b'+c')(a+b'+c)(a'+b+c)(a'+b+c')(a'+b'+c')(a'+b'+c)
• Find an input assignment that makes F=1

Solution
• A=1, B=1, C=0 => Fails
• A=0, B=1, C=0 => Fails
• A=1, B=0, C=1 => Fails
• A=0, B=0, C=1 => Fails
• A=1, B=1, C=1 => Fails
• A=0, B=1, C=1 => Fails
• A=1, B=0, C=0 => Fails
• A=0, B=0, C=0 => Success!!

29

Satisfiability Formulation as Zero-One
Linear Programming (ZOLP) Problem
SatisfiabilitySatisfiability Formulation as ZeroFormulation as Zero--One One
Linear Programming (ZOLP) ProblemLinear Programming (ZOLP) Problem

Satisfiability problem can be modeled as a ZOLP
Example: Satisfiability problem
• (a+b)(a’+b’+c)
• Possible solution: a=1; b=1; c=1

ZOLP modeling
• a + b ≥ 1
• (1-a)+(1-b)+c ≥ 1
• a, b, c ∈ B

Minimum-cost satisfiability problem
• Find x ∈ Bn that minimizes the cost cT x where c is a weight

vector.

Satisfiability problem can be modeled as a ZOLP
Example: Satisfiability problem
• (a+b)(a’+b’+c)
• Possible solution: a=1; b=1; c=1

ZOLP modeling
• a + b ≥ 1
• (1-a)+(1-b)+c ≥ 1
• a, b, c ∈ B

Minimum-cost satisfiability problem
• Find x ∈ Bn that minimizes the cost cT x where c is a weight

vector.

30

Minimum Covering Problem Minimum Covering Problem Minimum Covering Problem

Given a collection C (called groups) of subsets of a
finite set S. A minimum-covering problem is the search
of a minimum number of subsets from C that cover S.
Let A ∈ Bnxm , where #rows=n=|S| and #columns=m=|C|
• A cover corresponds to a subset of columns having at least a

1 entry in all rows of A.
• Corresponds to selecting x ∈ Bm, such that Ax ≥ 1
• Minimum-weighted cover corresponds to selecting x ∈ Bm,

such that Ax ≥ 1 and cT x is minimum.

Intractable.
Exact method
• Branch and bound algorithm.

Heuristic methods.

Given a collection C (called groups) of subsets of a
finite set S. A minimum-covering problem is the search
of a minimum number of subsets from C that cover S.
Let A ∈ Bnxm , where #rows=n=|S| and #columns=m=|C|
• A cover corresponds to a subset of columns having at least a

1 entry in all rows of A.
• Corresponds to selecting x ∈ Bm, such that Ax ≥ 1
• Minimum-weighted cover corresponds to selecting x ∈ Bm,

such that Ax ≥ 1 and cT x is minimum.

Intractable.
Exact method
• Branch and bound algorithm.

Heuristic methods.

31

Minimum-Vertex Cover ExampleMinimumMinimum--Vertex Cover ExampleVertex Cover Example

0 1 1 0 0
0 0 1 1 0
1 1 0 0 0
1 0 0 1 1
0 0 0 0 1

AI =

Vertex/edge incidence matrix

• Minimum vertex cover
• Edge set corresponds to S and vertex set to C
• A = AI

T and c = 1.
• Possible covers: x1=[10010]T , x2=[01101]T, x3=[01111]T
• Note that Ax ≥ 1 for x = x1, x2, x3

• Vector x1 is a minimum cover

32

Minimum-Edge Cover ExampleMinimumMinimum--Edge Cover ExampleEdge Cover Example

1 0 1 0 0
1 1 0 0 1
0 1 1 0 1
0 0 0 1 0
0 1 1 1 0

AI =

Vertex/edge incidence matrix

• Minimum edge cover
• Vertex set corresponds to S and edge set to C
• A = AI and c = 1.

• A minimum cover is {a, b, d} or x=[11010]T
• Let c=[1, 2, 1, 1, 1]T; a minimum cover is {a, c, d},
x=[10110]T

33

Covering Problem Formulated as
Satisfiability Problem
Covering Problem Formulated as Covering Problem Formulated as
SatisfiabilitySatisfiability ProblemProblem

Associate a selection variable with each group
(element of C)
Associate a clause with each element of S
• Each clause represents those groups that can cover the

element
• Disjunction of variables corresponding to groups

Note that the product of clauses is a unate expression
• Unate cover

Edge-cover example
• (x1+x3)(x1+x2+x5)(x2+x3+x5)(x4)(x2+x3+x4)=1
• (x1+x3) denotes vertex v1 must be covered by edge a or c
• x=[11010]T satisfies the product of sums expression

Associate a selection variable with each group
(element of C)
Associate a clause with each element of S
• Each clause represents those groups that can cover the

element
• Disjunction of variables corresponding to groups

Note that the product of clauses is a unate expression
• Unate cover

Edge-cover example
• (x1+x3)(x1+x2+x5)(x2+x3+x5)(x4)(x2+x3+x4)=1
• (x1+x3) denotes vertex v1 must be covered by edge a or c
• x=[11010]T satisfies the product of sums expression

34

Branch and Bound Algorithm …Branch and Bound Algorithm Branch and Bound Algorithm ……

Tree search of the solution
space
• Potentially exponential search.

For each branch, a lower
bound is computed for all
solutions in subtree.
Use bounding function
• If the lower bound on the

solution cost that can be
derived from a set of future
choices exceeds the cost of
the best solution seen so far

• Kill the search.

Good pruning may reduce
run-time.

Tree search of the solution
space
• Potentially exponential search.

For each branch, a lower
bound is computed for all
solutions in subtree.
Use bounding function
• If the lower bound on the

solution cost that can be
derived from a set of future
choices exceeds the cost of
the best solution seen so far

• Kill the search.

Good pruning may reduce
run-time.

35

… Branch and Bound Algorithm…… Branch and Bound AlgorithmBranch and Bound Algorithm
BRANCH AND BOUND {

Current best = anything; Current cost = ∝ ; S = s0;
while (S ≠ 0) do {

Select an element s ∈ S; Remove s from S ;
Make a branching decision based on s yielding sequences {si, i = 1, 2, … , m};
for (i = 1 to m) {

Compute the lower bound bi of si;
if (bi ≥ Current cost) Kill si;
else {

if (si is a complete solution)&(cost of si < Current cost) {
Current best = si; Current cost = cost of si ;

} else if (si is not a complete solution) Add si to set S;
}

}
}

}

BRANCH AND BOUND {
Current best = anything; Current cost = ∝ ; S = s0;
while (S ≠ 0) do {

Select an element s ∈ S; Remove s from S ;
Make a branching decision based on s yielding sequences {si, i = 1, 2, … , m};
for (i = 1 to m) {

Compute the lower bound bi of si;
if (bi ≥ Current cost) Kill si;
else {

if (si is a complete solution)&(cost of si < Current cost) {
Current best = si; Current cost = cost of si ;

} else if (si is not a complete solution) Add si to set S;
}

}
}

}

•• S denotes a solution or group of solutions with a subset of S denotes a solution or group of solutions with a subset of
decisions madedecisions made
•• s0 denotes the sequence of zero length s0 denotes the sequence of zero length correspcorresp. to initial state . to initial state
with no decisions madewith no decisions made

36

Covering Reduction Strategies …Covering Reduction Strategies Covering Reduction Strategies ……

Partitioning
• If A is block diagonal

• Solve covering problem for corresponding blocks.

Essentials
• Column incident to one (or more) rows with single 1

• Select column,
• Remove covered row(s) from table.

Column dominance
• If aki ≥ akj ∀ k: remove column j.
• Dominating column covers more rows.

Row dominance
• If aik ≥ ajk ∀ k : remove row i.
• A cover for the dominated rows is a cover for the set.

Partitioning
• If A is block diagonal

• Solve covering problem for corresponding blocks.

Essentials
• Column incident to one (or more) rows with single 1

• Select column,
• Remove covered row(s) from table.

Column dominance
• If aki ≥ akj ∀ k: remove column j.
• Dominating column covers more rows.

Row dominance
• If aik ≥ ajk ∀ k : remove row i.
• A cover for the dominated rows is a cover for the set.

37

… Covering Reduction Strategies…… Covering Reduction StrategiesCovering Reduction Strategies

1 0 1 0 0
1 1 0 0 1
0 1 1 0 1
0 0 0 1 0
0 1 1 1 0

A =

• Fourth column is essential.
• Fifth column is dominated by second column.
• Fifth row dominates fourth row.

1 0 1
1 1 0
0 1 1

A =Reduced matrix

38

Branch and Bound Exact Covering
Algorithm
Branch and Bound Exact Covering Branch and Bound Exact Covering
AlgorithmAlgorithm
EXACT_COVER(A, x, b) {

Reduce matrix A and update corresponding x;
if (Current estimate ≥ |b|) return(b);
if (A has no rows) return (x);
Select a branching column c;
xc = 1 ;
A~ = A after deleting c and rows incident to it;
x~ = EXACT_COVER(A~ , x, b);
if (|x~| < |b|) b = x~ ;
xc = 0 ;
A~ = A after deleting c ;

x~ = EXACT_COVER(A~ , x, b);
if (|x~| < |b|) b = x~ ;
return (b);

}

EXACT_COVER(A, x, b) {
Reduce matrix A and update corresponding x;
if (Current estimate ≥ |b|) return(b);
if (A has no rows) return (x);
Select a branching column c;
xc = 1 ;
A~ = A after deleting c and rows incident to it;
x~ = EXACT_COVER(A~ , x, b);
if (|x~| < |b|) b = x~ ;
xc = 0 ;
A~ = A after deleting c ;

x~ = EXACT_COVER(A~ , x, b);
if (|x~| < |b|) b = x~ ;
return (b);

}

x contains current solutionx contains current solution
initially set to 0;initially set to 0;

b contains best solutionb contains best solution
initially set to 1;initially set to 1;

39

Bounding function …Bounding function Bounding function ……

Estimate lower bound on the covers derived from the current
x.
The sum of 1’s in x, plus bound on cover for local A
• Independent set of rows: no 1 in same column.
• Build graph denoting pairwise independence.
• Find clique number (i.e. largest clique)
• Approximation (lower) is acceptable.

Estimate lower bound on the covers derived from the current
x.
The sum of 1’s in x, plus bound on cover for local A
• Independent set of rows: no 1 in same column.
• Build graph denoting pairwise independence.
• Find clique number (i.e. largest clique)
• Approximation (lower) is acceptable.

• Row 4 independent from 1,2, 3
• Clique number is 2; Bound is 2

1 0 1 0 0
1 1 0 0 1
0 1 1 0 1
0 0 0 1 0
0 1 1 1 0

AI =

40

… Bounding function…… Bounding functionBounding function

There are no independent rows.
Clique number is 1 (1 vertex).
Bound is 1 + 1 (already selected essential).
Choose first column x1
• Recur with A~ = [11].
• Delete one dominated column.
• Take other col. (essential); assume it x2

New cost is 3; x=[11010]T and b=[11010]T

Exclude first column x1
• Both columns are essential
• x=[01110]T ; cost is 3 (discarded)

Returned solution is x=[11010]T

There are no independent rows.
Clique number is 1 (1 vertex).
Bound is 1 + 1 (already selected essential).
Choose first column x1
• Recur with A~ = [11].
• Delete one dominated column.
• Take other col. (essential); assume it x2

New cost is 3; x=[11010]T and b=[11010]T

Exclude first column x1
• Both columns are essential
• x=[01110]T ; cost is 3 (discarded)

Returned solution is x=[11010]T

0 1
1 0
1 1

A~ =

1 0 1
1 1 0
0 1 1

A =

