COE 561
Digital System Design &
Synthesis
Logic Synthesis Background

Dr. Aiman H. El-Maleh
Computer Engineering Department
King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline

Boolean Algebra

Boolean Functions

Basic Definitions

Representations of Boolean Functions

Binary Decision Diagrams (BDDs)
® Ordered BDDs (OBDDs)
® Reduced Ordered BDDs (ROBDDs)

If-then-else (ITE) DAGS
Satisfiability and Minimum Cover Problems
Branch and Bound Algorithm

Boolean Algebra

m Boolean algebra
® Quintuple (B,+, ., 0, 1)
¢ Satisfies commutative and distributive laws
® |dentity elements are 0 and 1.
® Each element has a complement:a+a=1;a.a =0
® Binary Boolean algebra B = {0, 1}

m Some properties of Boolean algebraic systems

Associativity a+(b+c)=(a+b)+c | a(bc)=(ab)c

ldempotence at+a=a a.a=a

Absorption a+(ab)=a a(atb)=a

De Morgan (a+b)'=a’.b’ (a.b)'=a’+b’

Involution (@)'=a

Boolean Functions

= Boolean function 3-dimensional
® Single output: Boolean Space

® Multiple output:

® Incompletely specified
- don't care symbol *.

m Don’t care conditions
® We don't care about the value of the function.

® Related to the environment:
* Input patterns that never occur.
* Input patterns such that some output is never observed.

® Very important for synthesis and optimization.

Definitions ...

m Scalar function
® ON-Set: subset of the domain such that f is true.
® Off-Set: subset of the domain such that f is false.
® Don’t care Set: subset of the domain such that f is a don't care.

Multiple-output function
¢ Defined for each component.

Boolean literal: variable or its complement.
Product or cube: product of literals.

Implicant: product implying a value of a function (usually TRUE).
® Hypercube in the Boolean space.
Minterm: product of all input variables implying a value of a
function (usually TRUE).
® Vertex in the Boolean space.

... Definitions ...

Let f(x,X,,...,X,) be a Boolean function of n variables.
The set (X,X,,...,X,) Is called the support of the function.

The cofactor of f(x{,X,,...,X;,...,X,) with respect to
variable x; is f,; = f(X,X,,...,.X;=1,...,X,,)

The cofactor of f(xy,X,,....X;,...,X,)) With respect to
variable x;’ is f.;. = f(X{,X5,...,%=0,...,X,)

Theorem: Shannon's Expansion

Any function can be expressed as sum of products
(product of sums) of n literals, minterms (maxterms), by
recursive expansion.

... Definitions ...

m Example: f=ab +ac + bc
*f,=b+c
*f,=Dbc
*F=af,+af,=a(b+c)+a (bc)

= A Boolean function can be interpreted as the set of its
minterms.

= Operations and relations on Boolean functions can be
viewed as operations on their minterm sets
® Sum of two functions is the Union (L) of their minterm sets

® Product of two functions is the Intersection (m) of their
minterm sets

® Implication between two functions corresponds to
containment (<) of their minterm sets

o f, >f,=f, cf=f +f,=1

... Definitions ...

= A function f(X,X,,...,X;,...,X;,) IS positive (negative)
Unate with respect to variable x; if f, o f,.. (f,, = f,.).

= A function is (positive/negative) Unate if it is

(positive/negative) unate in all support variables,
otherwise it is Binate (or mixed).

m Example:f=a+b + ¢’
® fis positive unate with respect to variable a
« f=1of,=b+c
+ Minterms of f, ={bc, b’c,bc’,b’c’} > minterms of f,.={bc,bc’,b’c’}
® fis positive unate with respect to variable b
® fis negative unate with respect to variable c
® Thus, fis binate.

. Definitions

The Boolean Difference of a function f(x;,X,,...,X,...,X,)
with respect to variable x; is & / &; =f,; @f,;

® Indicates whether f is sensitive to changes in X

The Consensus of a function f(xy,X,,... X,) With
respect to variable x; is f,; . f,;

® Represents the component that is independent of X

The Smoothing of a function f(xy,X,,... X,) With
respect to variable x; is f,; + f,;

® Corresponds to dropping the variable from the function

Example: f=ab + ac + bc
- f=b+tc f,.=Dbc
- Boolean difference = f, ® f,.= (b+c) @ bc = b’c+bc’
- Consensus =f,. f,= (b+c). bc =bc
» Smoothing = f, + f_= (b+c) + bc = b+c

Boolean Expansion Based on Orthonormal
Basis ...

= Let ¢;,1=1,2,k be a set of Boolean functions such
that ., ¢; =1land¢;. ¢, =0for Vi=j e{l,2,...k}.

An Orthonormal Expansion of a function f is

= 2i_1 ok f¢i 0,
fi1s called the generalized cofactor of f w.r.t. ¢; V' I.

The generalized cofactor may not be unique
* f.oc fucf+é
Example: f = ab+ac+bc; ¢, = ab; ¢,=a’+b’;
®*abc fc1; Ietf¢1 =
® a'bctab’cc fy,c ab+bc+ac; letf,, = a’bc+ab’c
*f=¢ fy t0, fip=2ab (1) + (a+b’)(a’bctab’c)=ab+bctac

... Boolean Expansion Based on
Orthonormal Basis ...

m Theorem

¢ Letf, g, be two Boolean functions expanded with the same
orthonormal basis ¢, i=1,2, ...,k

® Let ® be a binary operator on two Boolean functions

m Corollary

¢ Letf, g, be two Boolean functions with support variables {x,
i=1,2, ...,n}.

® Let ® be a binary operator on two Boolean functions

... Boolean Expansion Based on
Orthonormal Basis

= Example:

® Letf=ab + c; g=a’c + b; Compute f &g

* Let ¢,=a’b’; ¢,=a’b; p;=ab’; ¢,=ab;

. f¢1 = C; f¢2: C: f¢3zc; f¢4: 1:

* 901 =6C9p2=1913=0;94 = 1;

*f=ab (c®c)+ab(c®1)+ab (c®0)+ ab (1 1)
=abc’ +ab'c

® F= (ab+c) ® (a’c+b)= (ab+c)(a+c’)b’ + (a’+b’)c’'(a’c+b)
= (ab+ac)b’ + (a’c+a’b)c’ = ab’c +a’bc’

Representations of Boolean Functions

= There are three different ways of representing Boolean
functions:

® Tabular forms
» Personality matrix
» Truth table
* Implicant table

® Logic expressions
» Expressions of literals linked by the + and . Operators
» Expressions can be nested by parenthesis
« Two-level: sum of products or products of sum
 Multilevel: factored form

® Binary decisions diagrams

- Represents a set of binary-valued decisions, culminating in an
overall decision that can be either TRUE or FALSE

Tabular Representations

Truth table
® List of all minterms of a function.

Implicant table or cover
® List of implicants of a function sufficient to define a function.

Implicant tables are smaller in size.
Example: x =ab+a’c; y = ab+bc+ac

Implicant
Table

Cubical Representation of Minterms and
Implicants

m f1 =ab’c’'+a’b’c+tab’ctabc+abc’= a’b’+b’ctac+ab
m f2=ab’ctab’c=Db’c

Binary Decision Diagrams ...

= Binary decision diagrams (BDDs) can be represented
by trees or rooted DAGS, where decisions are
associated with vertices.

m Ordered binary decision diagrams (OBDDs) assume an
ordering on the decision variables.

® Can be transformed into canonical forms, reduced ordered
binary decision diagrams (ROBDDs)

® Operations on ROBDDs can be made in polynomial time of
their size i.e. vertex set cardinality
¢ Size of ROBDDs depends on ordering of variables
- Adder functions are very sensitive to variable ordering
» Exponential size in worst case
 Linear size in best case

* Arithmetic multiplication has exponential size regardless of
variable order.

... Binary Decision Diagrams ...

m An OBDD is arooted DAG with vertex set V. Each non-
leaf vertex has as attributes

¢ a pointer index(v) € {1,2,...n} to an input variable
{X1: X5, Xise o0, X0}

® Two children low(v) and high(v) € V.
m A leaf vertex v has as an attribute a value value(v) € B.

m For any vertex pair {v,low(v)} (and {v,high(v)}) such that
no vertex is a leaf, index(v)<index(low(v))
(index(v)<index(high(v))

= An OBDD with root v denotes a function f¥ such that
® If vis a leaf with value(v)=1, then V=1

® If vis a leaf with value(v)=0, then =0
® If vis not a leaf and index(v)=i, then f'= x;" flow(¥) + x, fhigh(v)

... Binary Decision Diagrams

Example: f=(a+b)c
® Vertices {v1,v2,v3,v4,v5} (Fig. 2.20 (c))
® Variable x,=a, X,=b, X5=C;
® v1is the root; index(v1)=1 meaning that v1 is related to first
variable in the order i.e. x,=a

FIGURE 2.2{)
Binary decision diagrams for f = (a + b)e: (a) OBDD for the variable order (a, b;). (b) OBDD for the
variable order (a, ¢, #). (¢) ROBDD for the variable order (a, b, ¢).

Reduced Binary Decision Diagrams ...

Two OBDDs are isomorphic if there is a one-to-one
mapping between the vertex set that preserves
adjacency, indices and leaf values.

Two isomorphic OBDDS represent the same function.

An OBDD is said to be reduced OBDD (ROBDD) if
® It contains no vertex v with low(v)=high(v)
® Not any pair {u,v} such that the subgraphs rooted in u and in
v are isomorphic.
ROBDDs are canonical
® All equivalent functions will result in the same ROBDD.

... Reduced Binary Decision Diagrams ...

REDUCE{OBDD)|

Set id(v) = 1 to all leaves v & V with value(v) = 0;

Set fd(v) = 2 to all leaves v € V with value(v) = 1;

Initialize ROBDD with two leaves with id = 1 and id = 2 respectively:

nextid = 2; /* mextid is the next available identifier value */
for (i =n to 1 withi =i — 1){

Vi) = v e V. index(v) =i};

foreach (v & V(in| /* consider vertices at level @ #/
if (id{(fow () = id(high(ui)

idiv) = id{low(u)); £ redundant vertex */
Drop v from V{i);

keviv) = id{low(v)), fdihighiuv));
/# define kevi{v) as the identifier pair of v’s children */
}
oldkey = 0, () /= initial key that cannot be matched by any vertex */
foreach v £ V(i) sorted by key({u) {
if (key(uv) = oldlkey)
id(v) = nexrid
else |

/% graph rooted at v is redundant =/

ponredundant vertex to receive new identifier value */
nextid = nextid + 1;

felin) = nextid,
oldkey = kev(v):
Add v to ROBDD with edges to vertices in ROBDD

whaose id equal those of {ow(v) and highiu);

Reduced Binary Decision Diagrams ...

Index = |

index = 3

n|.[|u|'|1

id=2 id=1 id=2 id=1
ia) (b
FIGURE 2.21 :
Binary decision diagrams for f = (a + b)c: (a) OBDD for the variable order (a, b, ¢). (b) OBDD with
identifiers. (¢c) ROBDD for the variable order (a, b,).

If-then-else (ITE) DAGs ...

ROBDD construction and manipulation can be done
with the ite operator.

Given three scalar Boolean functions f, g and h
® lte(f,g,h)=f.g+f .h

Let z=ite(f, g, h) and let x be the top variable of
functions f, g and h.

The function z is associated with the vertex whose
variable is x and whose children implement ite(f,,g,,h,)
and ite(f,.,g,.,h,.).

®z=xz,+X 2,

® =x(fg+fh) +x (fg+f h),

* = X(fx I« * f,x hx) + X (fx’ Ox * f’x’ hx’)

* =ite(x, ite(f,,9,.h,) , ite(f,,g,.,h,))

... If-then-else (ITE) DAGs

Terminal cases of ite
operator
® lte(f,1,0)=f, ite(1,g9,h)=qg,

ite(0, g, h)=h, ite(f, g, g)=¢g
and ite(f, 0, 1)=Ff.

All Boolean functions of
two arguments can be
represented in terms of ite
operator.

Operator Equivalent itre form

| 0
ite(f, g,)
ite(f, g, 0)

f

ite(f,0, g)
ite(f, g, a)
tte(f, 1,8
ire(f,0, g
ire(f. g, g
fte(g, 0,
ite(f, 1,2
itel f, 0,
ite(f, g, 1)

£ "

——e—

ITE Algorithm ...

ITE(f, g, h){

If (terminal case)
return (r = trivial result)

else {
it (

else {

has entry {(f,g,h), r})
return (r from)

x top variable of f, g, h

t=ITE(f,, g,, h,)

e =ITE(f,, 9, h,.)

if (t==-e)return (t)

r =find_or_add_unique table(x, t, e)
Update with {(f,g,h), r})
return (r)

... ITE Algorithm

= Uses two tables
® Unique table: stores ROBDD information in a strong
canonical form
- Equivalence check is just a test on the equality of the identifiers
- Contains a key for a vertex of an ROBDD
» Key is a triple of variable, identifiers of left and right children
® Computed table: to improve the performance of the algorithm

- Mapping between any triple (f, g, h) and vertex implementing
ite(f, g, h).

Applications of ITE DAGS

Implication of two functions is Tautology
*fog=f+g="1
® Check if ite(f, g, 1) has identifier equal to that of leaf value 1

® Alternatively, a function associated with a vertex is tautology if
both of its children are tautology

Functional composition

® Replacing a variable by another expression
. fX=g =f.g+f.g =ite(g, f,f,)

Consensus

*f .f.= ite(f, f,, 0)

Smoothing

°f +f.= ite(f,1,f,)

X» 1y

Satisfiability ...

Many synthesis and optimization problems can be
reduced to a fundamental one: satisfiability.

A Boolean function is satisfiable if there exists an
assignment of Boolean values to the variables that
makes the function TRUE.

Most common formulation requires the function to be
expressed in a product of sum form

® Sum terms are called clauses
® Assignment must make all clauses true

Satisfiability problem is Intractable
¢ 3-satisfiability (i.e. clauses with max. 3 literals) is intractable
¢ 2-satisfiability can be solved in polynomial time

... Satisfiability

= Example
® F=(at+b+c')(a+b'+c')(a+b'+c)(a'+b+c)(a'+b+c')(a'+b'+c')(a'+b'+C)
® Find an input assignment that makes F=1

m Solution
* A=1,

-~

-~

-~

-~

O W o W W W

[
> > > > > 2>
O =~ 0O =0 =0

-~

Satisfiability Formulation as Zero-One

Linear Programming (ZOLP) Problem

= Satisfiability problem can be modeled as a ZOLP

= Example: Satisfiability problem
® (at+b)(a’+b’+c)
® Possible solution: a=1; b=1; c=1
= ZOLP modeling
*a+b=1
®* (1-a)+(1-b)+c = 1
®a b,ceB

= Minimum-cost satisfiability problem

® Find x € B" that minimizes the cost c' x where c is a weight
vector.

Minimum Covering Problem

= Given a collection C (called groups) of subsets of a
finite set S. A minimum-covering problem is the search
of a minimum number of subsets from C that cover S.

Let A € B™™ , where #rows=n=|S| and #columns=m=|C|

® A cover corresponds to a subset of columns having at least a
1 entry in all rows of A.

® Corresponds to selecting x € B™, such that Ax > 1

® Minimum-weighted cover corresponds to selecting x € B™,
such that Ax > 1 and c' x is minimum.

Intractable.

Exact method
® Branch and bound algorithm.

Heuristic methods.

Minimum-Vertex Cover Example

Vertex/edge incidence matrix

701100)

00110
11000
10011

kOOOOlj

« Minimum vertex cover
* Edge set corresponds to S and vertex setto C
«A=A" andc=1.
 Possible covers: x'=[10010]" , x2=[01101]", x3=[01111]"
* Note that Ax > 1 for x = x!, x2, x3
 Vector x! is @ minimum cover

Minimum-Edge Cover Example

Vertex/edge incidence matrix

710100)

11001
01101
00010

KOlllO/

« Minimum edge cover
* Vertex set corresponds to S and edge setto C
A=A andc=1.
« A minimum cover is {a, b, d} or x=[11010]"
«Let c=[1, 2, 1, 1, 1]"; a minimum cover is {a, c, d},
x=[10110]"

Covering Problem Formulated as
Satisfiability Problem

= Associate a selection variable with each group
(element of C)

m Associate a clause with each element of S

® Each clause represents those groups that can cover the
element

® Disjunction of variables corresponding to groups

= Note that the product of clauses is a unate expression
® Unate cover

= Edge-cover example
® (XT1+x3)(X1+x2+x5)(X2+x3+x5) (x4)(x2+x3+x4)=1
® (x1+x3) denotes vertex v1 must be covered by edge aor c
® x=[11010]T satisfies the product of sums expression

Branch and Bound Algorithm ...

Tree search of the solution
space
¢ Potentially exponential search.

For each branch, a lower
bound is computed for all
solutions in subtree.

Use bounding function

® |If the lower bound on the =] Killed subtree
solution cost that can be
derived from a set of future
choices exceeds the cost of
the best solution seen so far

* Kill the search.

Good pruning may reduce
run-time.

... Branch and Bound Algorithm

BRANCH AND BOUND {
Current best = anything; Current cost = o« ; S = s0;
while (S#0) do {
Select an element s € S; Remove s from S ;
Make a branching decision based on s yielding sequences {s;,i =1, 2, ... , m};
for (i=1tom){
Compute the lower bound b, of s;;
if (b; > Current cost) Kill s;;
else {
if (s;is a complete solution)&(cost of s; < Current cost) {
Current best =s;; Current cost = cost of s, ;
} else if (s; is not a complete solution) Add s; to set S;

}

* S denotesi a selutien er greup off seluliens With a SUSEl of

decisions made
* S0 deneles the sequence of zero length conresp. 1o initall state

Withine decisions; made 35

Covering Reduction Strategies ...

= Partitioning
® If A'is block diagonal
 Solve covering problem for corresponding blocks.

m Essentials

® Column incident to one (or more) rows with single 1
« Select column,
- Remove covered row(s) from table.

m Column dominance

* If ;> a, vV k: remove column j.
® Dominating column covers more rows.

m Row dominance
* If gy >ay Vk:removerow i.
® A cover for the dominated rows is a cover for the set.
36

... Covering Reduction Strategies

 Fourth column is essential.
e Fifth column is dominated by second column.
* Fifth row dominates fourth row.

Reduced matrix A=

Branch and Bound Exact Covering
Algorithm

EXACT _COVER(A, x, b) {
Reduce matrix A and update corresponding X;
If (Current estimate 2 [b]) return(b); X contains current solution
If (A has no rows) return (x); initially set to) 0;
Select a branching column c; bicontains best solution
X.=1;
A~ = A after deleting ¢ and rows incident to it;

initially: set o) 1;

x~ = EXACT_COVER(A™, X, b);
it (x| <[b]) b=x7;

X.=0;

A~ = A after deleting c ;

x~ = EXACT_COVER(A-, x, b);
it (Ix7 <[b]) b=x7;

return (b);

Bounding function ...

m Estimate lower bound on the covers derived from the current

X.

m The sum of 1’s in x, plus bound on cover for local A
® Independent set of rows: no 1 in same column.
® Build graph denoting pairwise independence.
® Find cligue number (i.e. largest clique)
® Approximation (lower) is acceptable.

710100)

11001
01101
00010

\01110/

* Row 4 independent from 1,2, 3
* Clique number is 2; Bound is 2
39

... Bounding function

There are no independent rows.
Clique number is 1 (1 vertex). A =

Boundis 1 + 1 (already selected essential).
Choose first column x,

® Recur with A~ =[11].

® Delete one dominated column.

® Take other col. (essential); assume it x,
New cost is 3; x=[11010]" and b=[11010]"

Exclude first column x,
® Both columns are essential
® x=[01110]7; cost is 3 (discarded)

Returned solution is x=[11010]"

AN

