

COE-561 DIGITAL SYSTEM DESIGN AND

SYNTHESIS

(Term 051)

Final Report of a tutorial on Advanced ASIC Chip Synthesis

using Synopsys

By

S.M.Rehman

230419

Submitted to

Dr.Aimane El-Maleh

 1

ABSTRACT

As the number of logic gates fabricated on to a small chip using deep submicron

technologies is exponentially increasing, the conventional schematic capture used with

the help of CAD tools started declining giving way to a more sophisticated but exact

VHDL coding. A conventional ASIC design flow is reported using Synopsys synthesis

tool. Synthesis, as referred to in present day IC design, can be broadly divided into Logic

synthesis and High level synthesis. An overview of relevant Synopsys products such as

Library Compiler, Design Compiler and Design Vision, Physical Compiler, PrimeTime,

DFT Compiler, and Formality is mentioned in this report. A description of RTL and

VHDL gate level simulation is also stressed. This report talks in detail how to use

Synopsys products for area, delay as well as power optimization.

 2

1. INTRODUCTION

Since the 1980s, when schematic capture was introduced into the world of VLSI design,

it has been a widely used design format. In the concept of schematic capture, logic gates

that will be used to design a certain circuit are hand drawn using CAD tool. Upon

completion of schematics drawing, a database is stored based on the hand drawn

schematics. A common format used for the database interface is Electronic Database

Interchange Format (EDIF).

Schematic capture failed in 1990s when the number of logic gates involved in a design

increased to hundreds of thousands a smaller ‘window market’ is forcing designers to

design a product for a much shorter time frame. This is where HDLs enter the scene.

In VHDL (Very High Speed Integrated Circuit Hardware Description Language) design,

a designer will code the design in terms of VHDL code as opposed to conventional

method of schematic capture.This code can then be synthesized using VHDL synthesis

tools. The synthesized ciruit can then be stored in a netlist database. Among the tools

commonly used for synthesis are Synopsys’s Design Compiler, Mentor Graphics’s

Autologix, Exemplar, Synplicity’s Synplify, Cadence’s Ambit and many others.

In general, a VHDL design can be categorized into 3 different groups. Each has its own

distinct characteristics and style of coding:

1) Stuctural VHDL

2) Behavioral VHDL , and

3) Synthesizable VHDL.

Structural VHDL is a data type structure that is best described as a netlist of a design or

schematic. It has declarations of all the types of components used in the design and

interconnects to connect all the different components.

 3

Behavioral VHDL structure describes the design in a behavioral manner, mimicking its

performance and functionality. A design coded behaviorally is just a black box. The code

is written in such a way as to generate the specified output signals for a given set of input

signals. This form of coding is nonsynthesizable and is normally used only for system

testing.

Synthesizable (RTL) coding is the most complicated form of coding as it describes a

design in a high level manner through a subset of VHDL syntax. This form of coding is

somewhere between structural and behavioral code. It is at a higher level of description

compared to structural VHDL but at a lower level of description compared to that of

behavioral VHDL. There are many different styles to write RTL code.

In VHDL synthesis, the timing and functionality of a design must always be considered

together. In synthesis, VHDL code is mapped into hardware logic gates for a specific

technology library. During this phase of synthesis, the designer will also input design

contraints into the synthesis tool. This would allow the tool to map more efficiently to

logic gates. If the synthesized result meets all timing criteria, the designer can move

forward to layout. However if timing is not met, the designer will have to analyse the

design to fix the timing violations.

 4

2. ASIC DESIGN FLOW USING SYNTHESIS

The synthesis based ASIC design flow consists of the following steps:

1) Functional specification of the design.

2) HDL coding in VHDL/Verilog RTL

3) RTL/ behavioral or functional simulation of the HDL

4) Logic synthesis

5) Test insertion and ATPG

6) Post synthesis or gate level simulation

7) Floorplanning / place and route.

After the design has been captured in HDL, it is essential to verify that the code matches

the required functionality, prior to synthesis. This step is called as pre-synthesis

behavioral simulation of the HDL. This can be performed by simply viewing the

waveforms in a graphical simulation tool. An alternative way is to write a testbench.

To simulate a synthesized gate level netlist, VHDL simulation models of the technology

library cells are required. These can be of 4 types:

1) Unit Delay Structural Model (UDSM)—Combination cells have a rise/fall delay

of 1ns, while all sequential cells have a rise/fall delay of 2 ns.

2) Full Timing Structural Model (FTSM)—includes transport wire delays and pin to

pin delays on a zero delay functional network.

3) Full Timing Behavioral Model (FTBM) – includes detailed timing verification.

 5

4) Full Timing Optimized Gate level Simulation (FTGS) – used for fast sign off

quality timing verification.

Logic Synthesis

Test insertion/ ATPG

Netlist Simulation

Physical Heirarchy based

Opto/IPO

Floorplanner

Placement/ Route

 6

Functional Specification

RTL Coding

Behavioral Simulation

Synthesis, as referred to in present day IC design, can be broadly divided into Logic

synthesis and High level synthesis. High level synthesis involves synthesis of logic from

behavioral descriptions. Logic synthesis on other hand synthesizes logic from Register

Transfer Logic (RTL) descriptions. The logic synthesis process consists of 2 steps—

translation and optimization. Translation involves transforming a HDL (RTL)

description to gates, while optimization involves selecting the optimal combination of

ASIC technology library cells to achieve the required functionality.

Logic synthesis provides the best results when the critical path lies in one heirarchical

block as opposed to traversing multiple heirarchical blocks. Logic synthesis optimizes

area and timing whereas behavioral synthesis adds one more dimension to optimization,

namely latency.In general behavioral synthesis is suited to designs with complex data

flow or I/O operations, and several memory accesses. It is meant for fully synchronous

designs and implies faster simulation. A tight integration is required between Behavioral

Synthesis and Logic synthesis tools, since the output of behavioral synthesis is an RTL

description which is then synthesized to gates using logic synthesis.

Designs for testability (DFT) techniques in ASIC design have been used in recent years

to reduce the cost of testing by defining testability criteria early in the design cycle. The

most popular DFT technique is the Scan Design Technique.

With the advent of deep submicron technologies, interconnect or net delays have become

a significant component of the overall delays. In other words, while gate delays have

decreased, the wire delays have increased due to effects such as lateral capacitance,

fringe capacitance and overalap capacitance.

 7

3. SYNTHESIS USING SYNOPSYS TUTORIAL

3.1. SYNOPSYS PRODUCTS

The following are relevant Synopsys products:

1) Library Compiler

2) Design Compiler and Design Vision

3) Physical Compiler

4) PrimeTime

5) DFT Compiler

6) Formality

3.1.1. LIBRARY COMPILER

The core of any ASIC design is the technology library containing a set of logic cells. The

library may contain functional description, timing, area and other pertinent information of

each cell. Library Compiler (LC) parses this textual information for completeness and

correctness, before converting it into a format used globally by all Synopsys applications.

LC is invoked by typing lc_shell in UNIX shell.

3.1.2. DESIGN COMPILER (DC) AND DESIGN VISION (DV)

DC and DV comprise a powerful suite of logic synthesis products, designed to provide an

optimal level of gate-level synthesized netlist based on the design specifications, and

timing constraints. In addition to high level synthesis capabilities, it also incorporates a

static timing analysis engine, along with solutions for FPGA synthesis and links to layout

(LTL).

 8

DC is a command line interface of Synopsis synthesis tool and is invoked by either

typing dc_shell or dc_shell-t in a Unix shell.

DV is the graphical front-end version of DC and is launched by typing design_vision. DV

also supports schematic generation, with critical path analysis through point to point

highlighting.

3.1.3. PHYSICAL COMPILER (PHYC)

PhyC is a new tool by symopsys that is a superset of DC IN addition to incorporating all

the synthesis and optimization capabilities of DC, it also provides the ability to

concurrently place cells optimally, based on the timing and/or area constraints of the

design.

PhyC is invoked by typing psyn_shell. A separate GUI version is also available, which is

launched by typing psyn_gui. Although slow by comparison, psyn_gui provides the users

the ability to traverse between the logical and schematic view of the design.

PhyC is the superset of DC.

3.1.4. PRIMETIME (PT)

PT is the synopsis time-off quality, full chip, gate level static timing analysis tool. In

addition it also allows for comprehensive modelling capabilities, often required by large

designs. PT is faster compared to DCs internal static timing analysis. It also provides

enhanced analysis capabilities, both textually and graphically.

PT is a stand-alone device and can be invoked as a command line interface (pt_shell) or

graphically (primetime).

3.1.5. DFT COMPILER (DFTC)

The DFTC is the Synopsys test insertion tool that is incorporated within the DC suit of

tools. The DFTC is used to insert DFT features like scan insertion and boundary scan, to

the design. All DFTC commands are directly invoked from dc_shell or psyn_shell.

 9

3.1.6. FORMALITY

Formality is the Synopsys formal verification or more precisely a logic equivalence

checking tool. The tool features enhanced graphical debugging capabilities that include

schematic representation of logic under verification, and visual suggestion annotated to

the schematic as pointers of possible incorrect logic. It also provides suggestions for

possible fixes to the design.

3.2. TOOL INTRODUCTION

The most commonly used synthesis tool in the ASIC industry is Synopsy’s Design

Compiler.Synopsy’s synthesis tool is divided into 2 sections: Design Analyzer (DA) and

Design compiler (DC). DA is the graphical front end of the Synopsys’s synthesis tool.

DC or the dc_shell is the command line interface for the same synthesis tool.

DA allows the following actions:

1) Set system variable values such as the technology library name.

2) Read and write designs in multiple formats such as EDIF, netlist, PLA, Verilog,

VHDL, and Equation.

3) Set constraints and attributes graphically on designs, cells, pins, nets, buses, and

clocks.

4) Work with heirarchical designs.

5) Synthesize digital circuits.

3.2.1. DESIGN ANALYZER WINDOW

 The DA window has a frame (border) around it provided by the Motif Wireless Manager

(MWM) for the UNIX system. These borders control the size, shape, and location of an

MWM window.

 10

To use DA,

1) The X windows system as well as the Window manager is started on the

workstation.

2) DA is started.

When using Synopsys’s synthesis tool, a startup file must be present in the currnet

working directory from which the synthesis tool has been invoked. This startup file is

.synopsys_dc.setup file.For PhyC, DC and PT, the default start up file are automatically

loaded upon invocation of these tools. These default files do not contain the design

dependent data. Their function is to load the Synopsys’s technology independent libraries

and other parameters. In addition to this system wide file, the user can have a local

.synopsys_dc.setup file. In the local startup files, the following minimum information

must be set before any synthesis is performed:

a) search_path: This parameter is used to specify to the synthesis tool all the paths

that are to be searched when looking for a synthesis technology library to

reference during synthesis.

b) target_library: The file pointed to by this parameter is the library that contains

all the logic cells for mapping during synthesis.

c) symbol_library: This parameter points to the library that contains “visual”

information on the logic cells in the synthesis technology library.. All logic cells

have symbolic representation and information about the symbols stored in this

library.

 11

d) link_library: This parameter points to the library that contains information on the

logic gates in the synthesis technology library.

3.2.2. DESIGN OBJECTS

There are 8 different types of design objects categorized by DC. These are:

1) Design

2) Cell

3) Reference

4) Port

5) Pin

6) Net

7) Clock

8) Library.

Finding Design Objects

One of the most useful commands provided by DC & PT is the get_* commands. A full

list of get commands can be found by typing “help get_*” in the dc_shell command line.

3.2.3. VARIABLES

All variables are global and last only during the session. They are not saved along with

the design database. A list of all DC variables can be obtained by

dc_shell –t > printvar *

For a particular type of variable, say test related,

dc_shell –t > printvar *test*

3.2.4. ATTRIBUTES

Attributes are similar in nature to variables. Both store information. However, attributes

store information on a particular design object such as nets, cells or clocks.

 12

3.2.5. SYNOPSYS FORMATS

Most Synopsys products support and share, a common internal structure, called the “db”

format. The db files are the binary compiled forms representing the text data, be it the

RTL code, the mapped gate level designs or the Synopsys library itself.

A common practice of organizing files is the following:

Script files: <filename> .scr

RTL Verilog files: <filename> .v

Synthesized Verilog netlist <filename> .sv

RTL VHDL file: <filename> .vhd

Synthesized VHDL netlist <filename> .svhd

EDIF file: <filename> .edf

Synopsys database file: <filename> .db

Reports: <filename> .rpt

Log files: <filename> .log

Design Analyzer uses 4 different views of designs. The first view shows all design in

memory. The other 3 views represent different aspects of a design.

3.3. DESIGNS VIEW

Shows all designs and subdesigns in memory. A certain type of icon represents each

design. Designs view is the initial view. From the designs view, a design is selected for

exploration or for setting design attributes and constraints.

3.3.1. HEIRARCHY VIEW

Shows a design as a set of one or more named subdesigns.

 13

3.3.2. SYMBOL VIEW

Shows a design as a black box with input or output ports. From the symbol view,

attributes and constraints can be set for a design and its ports.

3.3.3. SCHEMATIC VIEW

 Shows a design as a schematic composed of instances, nets, and ports. An instance in a

schematic can be a subdesign.

3.4. DESCRIBING THE MENU BAR

The DA provides a help menu at the far right of the menu bar. The others are:

1) Setup menu

2) File menu

3) Edit menu

4) View menu

5) Attributes menu

6) Analysis menu

7) Tools menu.

3.4.1. SETUP MENU

The setup menu can be used to obtain information about

a) Defaults

b) Variables

c) Licenses

d) Execute script

e) Scripts

 14

f) Command window

3.4.2. FILE MENU

The file menu can be used to get information about

a) Read

b) Analyze

c) Elaborate

d) Import

e) Save

f) Save As

g) Save Info

h) Plot

i) Quit.

3.4.3. EDIT MENU

The edit menu can be used to get information about

a) Delete

b) Insert pads

c) Select

d) Unselect All

e) Group

f) Ungroup

g) Uniquify

h) Reset

3.4.4. VIEW MENU

The view menu can be used to get information about

a) Full view

b) Zoom in

c) Zoom out

d) Change sheet

e) Change view

f) Change level

g) Push to reference

h) New View

i) Style

j) Refresh

k) Recreate.

3.4.5. ATTRIBUTES MENU

The attributes menu can be used to get information about the following four sections:

a) Clocks

b) Operating Environment

c) Optimization Constraints

 15

d) Optimization directives.

3.4.6. ANALYSIS MENU

The analysis menu can be used to get information about

a) Link Design

b) Check Design

c) Time Design

d) Show Timing

e) Show Net load

f) Highlight

g) Test report

h) Report

3.4.7. TOOLS MENU

The tools menu can be used to get information about

a) Design optimization

b) Finite State Machines (FSM)

c) FPGA compiler

d) Test Synthesis.

4. PRE AND POST-SYNTHESIS SIMULATION

Simulation is the process of verifying the functionality and timing of a design against its

original specifications. In the ASIC design flow, designers perform functional simulation

prior to synthesis. After synthesis, gate level simulation is performed on the netlist

generated by synthesis.

4.1. RTL SIMULATION

Before Synthesis, the design must be entered in DC in the RTL format (although other

formats also exist). The following two methods of design entry can be done:

1) “read” command

2) “analyze/elaborate” command.

 16

VHDL RTL simulation is used to verify that the design coded in VHDL captures the

fuctionality required by the design specifications. After the design has been coded in

VHDL, a testebch which applies stimulus to the design must be created. The design to be

simulated is refrerred to as the Design Under Test (DUT). The outputs generated by the

DUT can then be compared in the testbench or verified interactively during debugging.

4.2. VHDL GATE LEVEL SIMULATION

To perform gate level simulation of a VHDL netlist, one requires the VHDL simulation

libraries from the ASIC vendor. The Synopsis ‘liban’ utility can generate the VHDL

library models from the synthesis technology library. For the more complex cells,

simulation models have to be manully created. The VHDl models generated are

encrypted so that the vendor proprietary information is protected.

4.3. TECHNOLOGY LIBRARY

The Synopsys technology libraries can be separated into 2 broad classes:

1) Logic Library

2) Physical Library.

4.3.1. LOGIC LIBRARY

The logic library contains information relevant only to the synthesis process and is used

by the DC for the synthesis and optimization of the design. This information may include

pin to pin timing, area, pin types and power along with other necessary data needed by

DC. The logic library is a text file (“.lib”) which is compiled using the Library Compiler

(LC) to generate a binary format with “.db” extension.

4.3.2. PHYSICAL LIBRARY

 17

The physical library contains the physical characteristics of the cell along with other

necessary information relevant to Physical Compiler.Such information may contain data

relating to the physical dimensions of cell, a corresponding phyical cell should also be

present. The physical library is also a text file (“.plib”) and is compiled By LC to

generate a binay format with a “.pdb” extension

5. PHYSICAL SYNTHESIS

 Time to market is rapidly shrinking while design complexities are increasing. The

problem is further aggravated by shrinking geometries, forcing ASIC designers to think

about power and cross talk along with timing, much earlier in the design cycle. The

exchange of data between layout tools and DA is certianly not efficient. Time wasted

during synthesis layout iterations is still a major bottleneck.

The main cause of synthesis layout iterations can be attributed to the traditional synthesis

approach of relying on wire-load models to synthesize the design. The wire-load models

are just estimates of the final routed design. They may differ considerably from the real

extracted delays of the layout surface. Going back and forth from layout to synthesis

solves this problem however at the expense of time.

Inorder to alleviate this problem, Synopsys introduced a novel approach of synthesizing

the design without the need for wire-load models. This new tool is called Physical

Compiler (or PhyC) and it performs synthesis along with concurrent placement, based on

the floorplan information. Combining synthesis and placement provides an accurate

modelling of actual interconnect delays during synthesis. In addition this tool also

minimzes the previous headache of passing data back and forth from the layout tool to

the synthesis tool.

 18

6. GUIDELINES FOR LOGIC SYNTHESIS

The following guidelines are not ‘hard and fast’ rules for effective synthesis but are

applicable to most cases and exceptions to these guidelines are possible.

1) For better results from the synthesis, accurate point to point delays for

asynchronous paths are to be specified.

2) By registering outputs of the different design modules, the designer saves from

having to perform painstaking time budgeting.

3) Positive and Negative edge flipflops have to be separated into separate

heirarchical blocks. This makes the debug process and timing analysis during

synthesis much simpler.

4) FSMs should be grouped & optimized separately.

5) The recommended size of the module for synthesis is in the range of 250-5000.

6) Too many heirarchical blocks should be avoided. On the other hand having a

large flat design with no heirarchy is not the solution. One has to develop a feel

for the ‘middle of the road’ strategy.

7) Logic in the critical path has to be captured into a seaparate level of heirarchy.

8) Last but not the least, it is always advisable to perform a preliminary synthesis

and place and route so as to identify any serious issues which may require

rewriting the HDL code.

7. DESIGN VALIDATION AND OPTIMIZATION

This section gives an introduction to the methodology of optimizing an ASIC for

parameters like Area, Power and Delay. Various optimizing schemes like derving

constraints on area and power, setting limits on timing requirement, Flattening logic,

Boolean optimization etc have been introduced here. The process mentioned below

covers validation, optimization using synopsys tool at gate level.

 19

Before we start the synthesis the setup files have to be created to store the RTL files

mkdir synthesis

cd synthesis

Type in synopsys_tools

The following setup files are to be copied to the login.

cp /usr/cad/course/devine/.synopsys_dc.setup .

cp /usr/cad/course/devine/.synopsys_vss.setup .

When analyzing the RTL files, a WORK directory is needed, so a directory WORK is

created.

mkdir WORK

Design_analyzer &

Let’s first copy a VHDL or a VERILOG file in to the directory we are working on. We

then analyze the file by clicking on File option in the menu and choosing Analyze.

File -----> Analyze

This command analyzes the HDL file and stores the intermediate format for the HDL

description in a specified library. In this case the files would be stored in WORK

directory. Then elaborate the design by choosing

File ----->Elaborate

This command builds a design from the intermediate format of VHDL module.

Sometimes we may have saved the design as a Synopsys file with an extension .db In

such cases we may just

 20

File ----> Read

This command reads in all the primitives associated with that particular file.So we should

have a schematic like this.

 21

This level of the design can be expanded by clicking on the box which says "Y=A+B”.

The expanded design level would be as shown below

By clicking on the schematic view, we can find the gate level configuration of this RTL.

To start the synthesis on this RTL, we need to set up the clock. Get back to the symbol

view of the design and click on the input pin clk and choose from the menu

Attributes --> Clocks --> specify

 22

Enter the clock period to be 20000. The units are pico seconds, which means that we have

set the frequency to be 50 MHz. Now also enable the option Dont Touch Network. This

enables the clock is not modified during the synthesis. Also if there is a module which

does not have an output, it is better to use the command Dont touch network, to save it

during synthesis. Since during the synthesis, the tool may remove it from the netlist. Then

to specify the skew click on skew and set it to 1000. This command sets the clock skew

values for all flip flops and latches in the transitive fanout of the specified clocks. Select

the propagated option. Design Compiler will use faster gates along a path if it is

necessary to meet a particular maximum delay requirement, which is affected by the

skew and the setup time of the flip-flop.

The next phase is setting up the design constraints for the synthesis.

7.1. AREA OPTIMIZATION

Let’s start with optimizing area first. Choose

Attributes --->Optimization Constraints --->Design constraints

 23

Values are not specified for Maximum area, Maximum power.Let optimization be done

without being Area and timing critical. When these options are used, the compiler would

use the default (minimum) values in the technology library and the synthesis would be

done for minimum values of area, power and delay.

The Max Area option sets the maximum area attribute for the design. This attribute

represents the target area of the design and is used by the compiler to calculate the area

cost of the design. The option Area critical when enabled tells the compiler that area

must be given precedence when inserting scan cells into the design. Scan cells are

introduced into the design to improve the testability of the design. In this section, we will

not concentrate much on inserting scan cells.

Now that we have the constraint set up, we can go ahead and synthesize the design. So

choose from the menu

Tools ---> Design Optimization

In this window choose Verify Design and Medium level of Map Effort. The synthesis

without any design constraints would take couple of minutes. Once the synthesis is done,

we need to generate a report on area, power and delay. Click on

 24

Analysis ----> Report

Then enable Area, Power and Timing options. This should bring out a report which gives

the area of the design, power consumed, required time, arrival time and slack. The result

of this synthesis would be a chip that has smaller area, lesser power and comparitively

fast.

When we perform the synthesis on some RTLs, we may notice in the command window

(Setup --> Command Window) messages like "cell name # does not have active output

activity". In such a case, a note is made of such cells, then up in the schematic view we

click on them and mark them as " Dont touch network". Marking them as Dont touch

network, can be done by choosing

Attributes ---> Optimization Directives ---> Cell

This is done so that the cell is not removed from the netlist during synthesis.

To optimize the design for maximum area, we enter a value larger than the value got

from library default synthesis. This would give the compiler some freedom during

optimization and we can see in the report a reduction in power with an increase in area.

To optimize for minimum area we then choose a value for area that is far less than what

was achieved with library defaults, I used "0" for minimum area optimization. The result

would be a reduction in area, with an increase in one of the other two design variables.

Options like flattening can also be used to perform area and power optimization. Click on

 25

Attributes ----> Optimization Directives ----> Design

Enable the option "Flatten logic" and "Boolean optimization" and perform the synthesis.

Flattening merges modules present in a design into one. So one would expect a reduced

area as the result of this synthesis, well that’s what would be the answer in most of the

cases. But in some cases the result of the synthesis results in an increase in area. It is

because this optimization constraint reduces the logical network to a two level sum of

products representation and sometimes this may not essentially result in the most efficient

design layout.

If we are interested in inserting scan circuits into the design, then "area critical" and

"timing critical" options can be used to see the change in area and timing, with/without

using these options.

 26

7.2. POWER OPTIMIZATION

For power optimization we choose

Attributes ---> Optimization Constraints ---> Design Constraints

and perform the steps similar to area optimization by entering values for max power. This

sets the target value for the tool during power optimization. An important issue with

power optimization is that the technology library file used decides on the effectiveness of

the synthesis. This is because some tech libraries may not have an equivalent low power

module for the module being synthesized, and this may result in the module being

removed from the netlist. HP26G is one such library. Hence if we use this library, we

may find that the area and power are substantially reduced. The reason can be attributed

to the tech library.

The design constraints used in the case of area optimization can also be combined with

the constraints used for power optimization to acheive area and power optimization.

 27

Now we move to the tougher part of the synthesis and optimization, the Delay

Optimization

7.3. DELAY OPTIMIZATION

Let’s not set any constraints for area and power optimization and just synthesize for the

default area and power. In the report that is generated at the end of the synthesis, go to the

section which shows the timing results.

7.3.1. READING THE TIMING REPORTS

The Timing and Point Timing reports show a path and give timing values in that path. It

is critical that we understand how to read what is shown. A sample path is given below:

On the upper left hand side of the timing table is the name Point. Below this are listed

components in the circuit which a signal travels through. To the right of this is the name

Incr. Below this are listed the delay associated with the components on the left. To the

extreme right is the name Path. Below this is the total time the signal has spent in the

path at a given point. To the right of the numbers is an r if the signal is rising, or f if the

signal is falling.The data arrival time represents the time it takes the signal to traverse the

given path. In the Timing report, this is the critical path. Below this is timing related to

the clock. The data required time represents the minimum amount of time found between

the rising and falling clock edges. The slack is the amount of wasted clocking time. It

tells us that we could decrease the clock by the given amount, and the circuit would still

operate properly.

 28

 29

The slack given at the bottom of the report should say "MET". This means that signal is

present for enough duration for the process to be done. The term data Required Time is

the time by which the signal has to settle down into a steady state and the Arrival Time

is the time by which the signal settles down into a steady state. When the report says

“slack met” it means that the required time is larger than the arrival time, hence modules

receive the signals just right for the process to be done.

Make a note of the arrival time and the required time. Let’s say that our arrival time is

10000 ps and that the slack was met. Click on

 30

Attributes ----> Optimization Constraints ---> Timing Constraints

Now double click on the row that follows the clock attrributes in the report.

 The figure given below should help in figuring out where to click. You would find the

row attribute you have clicked on is loaded into the window for timing constraints. Also

double click on the row that’s just above the row that says "data arrival time".

Once the start and end point have been choosen, we then set the maximum and minimum

delay time in the timing constraints window. The delay we set are from the modules

present in the "from" box to the modules present in the "To" box in the timing constraint

window. Initially we would find no element present in the "from" box, so click on the

first element (row) in the "to" box, and click on the up arrow present. This would move

that module to the "from" box.

 Now go ahead and set the value for the max delay and min delay. As assumed earlier,

let’s have the arrival time to be 10000ps (we can find what the arrival time in our case

from the report). Then to get a smaller delay netlist, type a value that is smaller than the

arrival time previously got.

 31

If you look at the report after optimizing, you would find that the arrival time has

reduced. Make sure that the slack is met. If the slack is not met then use a smaller value

for "Max Delay".

 32

 33

 34

When performing the synthesis, we may find that the tool is inserting delay between the

modules. This is because the value that we have set up has resulted in some of the

modules processing the data faster (because of sizing) and the data is available to the next

module even before it is ready to handle them.

Attributes --->Optimization Constraints ---> Derive

option also sets up delay optimization attributes for the tool. The command derives

timing constraints from the existing timing of the design. Both sequential and

combinational timing constraints are derived from all previously unconstrained timing

paths in the design. There options within this command are Minimum delay, Maximum

delay and Maximim period. These constraints use a scaling factor, which is multiplied

with the timing and placed into the design. In the case of Minimum delay, a scaling value

less than one means less restrictive timing than the actual timing of the design. In the case

of maximum delay and period, it’s the opposite.

If the use of this command results in "Slack" not being met, then click on

Attributes ---> Operating Environment ---> Input/Output Delay

Here we can induce input/output delays between various points in the design. This is a

tedious process.

 Commands used with area and power optimization can be used along with the delay

optimization commands to acheive a netlist optimized in all three design spaces.

The above mentioned are some of the ways by which you can optimize a netlist for area,

power and delay. Options like wire loads, operating conditions, capacitive loads etc can

also be used to change the design space parameters of the design (but things get tougher

since more the constraints, more care needs to be taken to see that there are no

violations).

 35

 And finally if we want to save the commands that we had used in a script which can be

executed, in the command widow type

history -h > script.scr

This is the way where we do not have to do the repetitive things like analyze etc, instead

run the script.

CONCLUSION

This report serves as a good hands-on tutorial for learning Synopsys tool. Due to license

limitations, few products such as PrimeTime where timing analysis can better be

analysed couldn’t be exploited to its maximum. Similarly, the product Formality also

lacks license which could be better used as a good place and route tool. This helps in

floorplanning. This report gives a tour of Synopsys for VHDL and Logic synthesis with

the help of an example.

REFERENCES

1) VHDL CODING AND LOGIC SYNTHESIS WITH SYNOPSYS --- Weng

Fook Lee.

2) LOGIC SYNTHESIS USING SYNOPSYS --- Pran Kurup, Taher Abbasi.

3) ADVANCED ASIC CHIP SYNTHESIS USING SYNOPSYS DESIGN

COMPILER, PHYSICAL COMPILER AND PRIMETIME --- Himanshu

Bhatnagar.

4) http://www.ee.vt.edu/~ha/cadtools/synopsys/da/html

5) http://www.scudc.scu.edu/mentortu/synopsys_tutorial.html

6) SYNTHESIZING AN ASIC FOR VARIOUS AREA, POWER AND DELAY

--- Sowmyan Rajagopalan

7) DIGITAL LOGIC SYNTHESIS USING SYNOPSYS- A TUTORIAL --- Ted

Obuchowicz.

 36

8) DESIGN ANALYSER --- Reference Manual, Synopsys Online Documentation.

http://www.ee.vt.edu/~ha/cadtools/synopsys/da/html
http://www.scudc.scu.edu/mentortu/synopsys_tutorial.html

