King Fahd University of Petroleum and Minerals

Computer Engineering Department

COE 561 Digital Systems Design and Synthesis (Course Activity)

Synthesis using Synopsys Design Compiler Tutorial The Synthesis Flow (What, How & Why?)

Presented by Mohammad IbrahimAl-Behwashi

> Advisor Dr. Aiman El-Maleh

Date 16-11-2006 Fall Semester (061)

Introduction

• The Design Compiler is the core of the Synopsys synthesis software products. It includes tools that synthesis the HDL designs into optimized technology-dependent, gate level designs. It can optimize for speed, area and power.

- **Synthesis**: is the process that generates a gate-level netlist for an IC design that has been defined using a Hardware Description Language (HDL). Synthesis includes reading the HDL source code an optimizing the design from that description.
- **Optimization**: is the step in the synthesis process that attempts to implement a combination of library cells that best meet the functional timing, and area requirements of the design.
- **Compile**: is the Design Compiler command and process that executes the optimization step. After reading in the design performing the necessary tasks, the compile command is invoked to generate a gate-level netlist for the design.

5

6

Basic Synthesis Flow

- 1) Develop HDL Files
- 2) Specify Libraries
- 3) Read Design
- 4) Define Design Environment
- 5) Set Design Constraints
- 6) Optimize the Design
- 7) Analyze and Resolve the Design Problems

Developing HDL Files and Specifying Libraries

- Of course, use another program to do so. But you don't need to compile the HDL file.
- Libraries: link, target and symbol libraries
- Link and target libraries: define the semiconductor vendor's set for cells and related information, such as cell names, cell pin names, delay arcs, pin loading, design rules and operating conditions.
- **Symbol library:** defines symbols for schematic and viewing the design. (Needed if GUI is to be used).

7

8

Showing an example of a library

Step (3): Reading, Analyzing and Elaborating Designs

- Read: → Loading into the memory. (to see the designs loaded, use *list_designs*)
- Analyze: Reads an HDL source file. Checks it for errors. Creates HDL library objects in an HDL intermediate format.
- Elaborate: Creates a technology-independent design from the intermediate files produced during analysis.

- **Timing Constraints and Area Constraints**. (For Power constraints, the Synopsys Power Compiler is used).
- **Timing Constriants**: specify the required performance of the design
- Steps for setting the timing constraints:
- (a) Define the clock
- (b) Specify I/O timing requirements relative to the clock
- (c) Specify the combinational path delay requirements
- (d) Specify the timing exceptions

(Optimization Constraints - Timing Constriants Commands) • Example: create_clock clk1 -period 40			
create_clock	Defines the period and the waveform for the clock	set_max_delay set_min_delay	Defines maximum delay for combination paths
<pre>set_clock_latency set_propagated_clock set_clock_uncertainty</pre>	Defines clock delay	set_false_path	Specifies false paths
set_input_delay	Defines timing requirements for input ports relative to the clock period	set_multicycle_path	Specifies multicycle path
set_output_dlay	Defines timing requirements for output ports relative to the clock period	report_clock	Informs about a clock sources ir the design

Follow step(5): Setting the Design Constraints (Optimization Constraints - Timing Constriants)

- (b) Specifying I/O timing requirements relative to the clock. When the signal will arrive to the port relative to the clock.
- Use *report_port* Command to list all I/O delays associated with ports.
- (c) Specifying Combinational Path Delay Requirements. For purely combinational delays that are not bounded by a clock period.
- Example max_delay 30.0 all_outputs()

- Design Compiler User Guide by Synopsys, Version 2002.05
- Other Useful Links:
- <u>http://www.ecs.syr.edu/faculty/ercanli/cse664/Synopsys.HTM</u>
- <u>http://www-ece.engr.utk.edu/~sowmyan/synthesis.html</u>
- <u>http://www.altera.com/support/software/eda_maxplus2/synopsy</u> s/compilers/vsynt.html