
1
1

COE 405
Design Methodology Based on

VHDL

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

2-2

Outline

Elements of VHDL
Top-Down Design
Top-Down Design with VHDL
• Serial Adder Design

Subprograms
Controller Description
• Moore sequence detector

VHDL Operators

2
2

2-3

Interface and Architectural
Specifications

Entity component_name IS
input and output ports
physical and other parameters

END component_name;

Architecture identifier of component_name IS
declarations

BEGIN
specification of the functionality of the
component in terms its inputs & influenced
by physical and other parameters.

END identifier;

2-4

Packages

Packages are used to encapsulate information that is
to be shared among multiple design units.
A package is used by the USE clause
• e.g. Use work.package_name.all

Package package_name IS
component declarations
sub-program parameters

END package_name;

Package Body package_name IS
type definitions
sub-programs

END package_name;

3
3

2-5

Package Examples

Standard Package
• Defines primitive types, subtypes, and functions.
• e.g. Type Boolean IS (false, true);
• e.g. Type Bit is (‘0’, ‘1’);

TEXTIO Package
• Defines types, procedures, and functions for standard text I/O

from ASCII files.

2-6

Design Libraries…

VHDL supports the use of design libraries for
categorizing components or utilities.
Applications of libraries include
• Sharing of components between designers
• Grouping components of standard logic families
• Categorizing special-purpose utilities such as subprograms or

types

Exiting libraries
• STD Library

• Contains the STANDARD and TEXTIO packages
• Contains all the standard types & utilities
• Visible to all designs

• WORK library
• Root library for the user

4
4

2-7

…Design Libraries

IEEE library
• Contains VHDL-related standards
• Contains the std_logic_1164 (IEEE 1164.1) package

• Defines a nine values logic system

To make a library visible to a design
• LIBRARY libname;

The following statement is assumed by all designs
• LIBRARY WORK;

To use the std_logic_1164 package
• LIBRARY IEEE
• USE IEEE.std_logic_1164.ALL

2-8

Design Binding

Using Configuration, VHDL allows
• Binding of Entities and Architectures.
• binding of subcomponents of a design to elements of various

libraries.

Configuration config_name of component_name IS
binding of Entities and Architectures
specifying parameters of a design
binding components of a library to subcomponents

END config_name;

5
5

2-9

Top-Down Design

Top-down design process uses a divide-and-conquer
strategy
Top-down design involves recursive partitioning of a
system into subcomponents until
• all subcomponents are manageable design parts

Design of a component is manageable if the
component is
• Available as part of a library
• Can be implemented by modifying an already available part
• Can be described for a synthesis program or an automatic

hardware generator.

2-10

Recursive Partitioning Procedure

Mapping to hardware, depends on target technology,
available libraries, and available tools.

Parition (system)
IF HardwareMappingOf(system) is done Then

SaveHardwareof(system)
ELSE

FOR EVERY Functionally-Distinct Part_I of System
Partition (Part_I)

END FOR;
END IF;

END Parition;

6
6

2-11

Top-Down Design, Bottom-Up
Implementation

System Under
Design

SSC1 SSC4SSC3SSC2

SSC3nSSC31 SSC42SSC41

SSC312SSC311 SSC3n2SSC3n1

Design

Implementation SSC: system sub-component

2-12

Design Verification

Initially, a behavioral description of system under
design (SUD) must be simulated to verify design.
After first level of partitioning
• A behavioral description of each of the subcomponents must

be developed
• A structural hardware model of the SUD is formed by wiring

subcomponents behavioral descriptions
• Simulating the new model and comparing it with original SUD

description verifies correctness of first level of partitioning

7
7

2-13

Verifying First Level of Partitioning

System Under
Design

SSC1 SSC4SSC3SSC2

Behavioral Model

Interconnection of Behavioral Models

Compare

2-14

Verifying Hardware Implementation of
SSC1 and SSC2

System Under
Design

SSC1 SSC4SSC3SSC2

Behavioral Model

Mixed Level Model

Compare

8
8

2-15

Verifying the Final Design

System Under
Design

SSC1 SSC4SSC3SSC2

SSC3nSSC31 SSC42SSC41

SSC312SSC311 SSC3n2SSC3n1

Behavioral Model
Compare

Hardware Level Model

2-16

Verifying Hardware Implementation of
SSC3

SSC3

SSC3nSSC31

SSC312SSC311 SSC3n2SSC3n1

Behavioral Model

Hardware Level Model

Compare

9
9

2-17

Verifying the Final Design

System Under
Design

SSC1 SSC4SSC3SSC2

SSC42SSC41

Behavioral Model
Compare

Mixed Level Model

Back Annotation: Behavioral models of subcomponents can
be adjusted to mimic properties of hardware-level models.

2-18

Top Down Design of Serial Adder

Serial data is synchronized with clock and appear on a
and b inputs
Valid data bits on a and b appear after a synchronous
pulse on start
After eight clock pulses, the addition of a and b will
appear on result
The ready output is set to 1 to indicate that the result of
addition is ready and remains one until another start
pulse is applied

Serial Adder

a
b

start
clock

result

ready

8

10
10

2-19

Design Assumptions

Synthesis tools:
• Capable of synthesizing logic expressions to combinational

logic blocks

Design Library:
• A 2x1 multiplexer with active high inputs and outputs
• A synchronous D-FF with synchronous active high reset input
• VHDL models of library elements are provided

Parts from previous designs
• Divide-by-8 counter (3-bit counter)

• Synchronous reset
• Single bit output remains high as long as the circuit is counting; it

goes to low when reset is pressed or 8 clock edges are counted

2-20

VHDL Model of 2x1 Multiplexer

Entity mux2_1 IS
Generic (dz_delay: TIME := 6 NS);
PORT (sel, data1, data0: IN BIT; z: OUT BIT);

END mux2_1;

Architecture dataflow OF mux2_1 IS
Begin

z <= data1 AFTER dz_delay WHEN sel=‘1’ ELSE
data0 AFTER dz_delay;

END dataflow;

1D

0D
Z

S1

sel

data0
data1 z

11
11

2-21

VHDL Model of D-FF
Entity flop IS

Generic (td_reset, td_in: TIME := 8 NS);
PORT (reset, din, clk: IN BIT; qout: OUT BIT :=‘0’);

END flop;
Architecture behavioral OF flop IS
Begin

Process(clk)
Begin

IF (clk = ‘0’ AND clk’Event) Then
IF reset = ‘1’ Then

qout <= ‘0’ AFTER td_reset ;
ELSE

qout <= din AFTER td_in ;
END IF;

END IF;
END process;

END behavioral ;

1R Q

1D
1C

reset
din

clk

qout

2-22

Divide-by-8 Counter
Entity counter IS

Generic (td_cnt: TIME := 8 NS);
PORT (reset, clk: IN BIT; counting: OUT BIT :=‘0’);
Constant limit: INTEGER :=8;

END counter ;
Architecture behavioral OF counter IS
Begin

Process(clk)
Variable count: INTEGER := limit;

Begin
IF (clk = ‘0’ AND clk’Event) THEN

IF reset = ‘1’ THEN count := 0 ;
ELSE IF count < limit THEN count:= count+1; END IF;
END IF;
IF count = limit Then counting <= ‘0’ AFTER td_cnt;
ELSE counting <= ‘1’ AFTER td_cnt;
END IF;

END IF;
END process;

END behavioral ;

12
12

2-23

Serial Adder Behavioral Description
Entity serial_adder IS

PORT (a, b, start, clock: IN BIT; ready: OUT BIT; result: BUFFER Bit_Vector (7 downto 0));
END serial_adder ;
Architecture behavioral OF serial_adder IS
Begin

Process(clock)
Variable count: INTEGER := 8; Variable sum, carry: BIT;

Begin
IF (clock = ‘0’ AND clock’Event) THEN

IF start = ‘1’ THEN count := 0 ; carry:=‘0’;
ELSE IF count < 8 THEN

count:= count+1;
sum := a XOR b XOR carry;
carry := (a AND b) OR (a AND carry) OR (b AND carry);
result <= sum & result(7 downto 1);

END IF;
END IF;
IF count = 8 Then ready <= ‘1’; ELSE ready <= ‘0’; END IF;

END IF;
END process;

END behavioral;

2-24

Serial Adder First Level of Partitioning

Serial Adder

Full_adder countershifterFlip_flop

Can be synthesized Available in library
& previous designs

13
13

2-25

General Layout of Serial Adder

Adder
Shifter

Counter

Flop

clock

en
si

a
b

carry_in

carry_out

counting

sum

2-26

Full-Adder VHDL Description

Entity fulladder IS
port (a, b, cin: IN bit; sum, cout: OUT bit);

END fulladder;

Architecture behavioral OF fulladder IS
Begin

sum <= a xor a xor cin;
cout <= (a and b) or (b and cin) or (a and cin);

END behavioral ;

14
14

2-27

Shifter VHDL Description
Entity shifter IS

port (sin, reset, enable, clk: IN bit;
parout: BUFFER Bit_Vector(7 downto 0));

END shifter ;

Architecture dataflow OF shifter IS
Begin

sh: BLOCK (clk=‘0’ AND NOT clk’STABLE)
Begin

parout <= GUARDED “00000000” WHEN reset=‘1’
ELSE sin & parout(7 downto 1) WHEN enable=‘1’
ELSE parout; - -could use here UNAFFECTED (VHDL’93)

END BLOCK;
END dataflow ;

2-28

Structural Description of Serial Adder …

Entity serial_adder IS
PORT (a, b, start, clock: IN BIT; ready: OUT BIT;
result: OUT Bit_Vector (7 downto 0));

END serial_adder ;
Architecture structural OF serial_adder IS

Component counter IS
Generic (td_cnt: TIME := 8 NS);
PORT (reset, clk: IN BIT; counting: OUT BIT :=‘0’);

END component ;
Component shifter IS

port (sin, reset, enable, clk: IN bit; parout: BUFFER Bit_Vector(7 downto 0));
END component ;
Component fulladder IS

port (a, b, cin: IN bit; sum, cout: OUT bit);
END component ;
Component flop IS

Generic (td_reset, td_in: TIME := 8 NS);
PORT (reset, din, clk: IN BIT; qout: Buffer BIT :=‘0’);

END component ;

15
15

2-29

… Structural Description of Serial Adder

SIGNAL sum, carry_in, carry_out, counting: BIT;
Begin

u1: fulladder port map (a, b, carry_in, sum, carry_out);
u2: flop port map (start, carry_out, clock, carry_in);
u3: counter port map (start, clock, counting);
u4: shifter port map (sum, start, counting, clock,
result);
u5: ready <= NOT counting;

END structural ;

2-30

Second Level of Partitioning:
Partitioning Shifter

Shifter needs eight flip-flops with synchronous reset
and clock enabling (der_flop)
der_flop cannot be directly implemented with given
tools and library

Shifter

der_flop der_flop der_flop der_flop der_flop der_flop der_flop der_flop

16
16

2-31

Behavioral Model of der_flop
Entity der_flop IS

PORT (din, reset, enable, clk: IN BIT; qout: Buffer BIT :=‘0’);
END der_flop;
Architecture behavioral OF der_flop IS
Begin

Process(clk)
Begin

IF (clk = ‘0’ AND clk’Event) Then
IF reset = ‘1’ Then

qout <= ‘0’;
ELSE

IF enable=‘1’ Then
qout <= din;

END IF;
END IF;

END IF;
END process;

END behavioral ;

2-32

Structural Description of Shifter
Entity shifter IS

port (sin, reset, enable, clk: IN bit;
parout: BUFFER Bit_Vector(7 downto 0));

END shifter ;

Architecture structural OF shifter IS
Component der_flop IS

PORT (din, reset, enable, clk: IN BIT; qout: Buffer BIT :=‘0’);
END component;

Begin
b7: der_flop port map (sin, reset, enable, clk, parout(7));
b6: der_flop port map (parout(7), reset, enable, clk, parout(6));
b5: der_flop port map (parout(6), reset, enable, clk, parout(5));
b4: der_flop port map (parout(5), reset, enable, clk, parout(4));
b3: der_flop port map (parout(4), reset, enable, clk, parout(3));
b2: der_flop port map (parout(3), reset, enable, clk, parout(2));
b1: der_flop port map (parout(2), reset, enable, clk, parout(1));
b0: der_flop port map (parout(1), reset, enable, clk, parout(0));

END structural ;

17
17

2-33

Partitioning der_flop

der_flop

mux2_1 flop

1D

0D
Z

S1

enable

din

1R Q

1D 1C

reset

clk

qout

dff_in

2-34

Structural Description of der_flop
Entity der_flop IS

PORT (din, reset, enable, clk: IN BIT; qout: Buffer BIT :=‘0’);
END der_flop;
Architecture structural OF der_flop IS

Component flop IS
Generic (td_reset, td_in: TIME := 8 NS);
PORT (reset, din, clk: IN BIT; qout: Buffer BIT :=‘0’);

END component ;
Component mux2_1 IS

Generic (dz_delay: TIME := 6 NS);
PORT (sel, data1, data0: IN BIT; z: OUT BIT);

END component ;
Signal dff_in: BIT;
Begin

mx: mux2_1 port map (enable, din, qout, dff_in);
ff: flop port map (reset, dff_in, clk, qout);

END structural ;

18
18

2-35

Complete Design of Serial Adder

Serial Adder

Full_adder counterFlip_flop Shifter

der_flop der_flop der_flop der_flop der_flop der_flop der_flop der_flop

mux2_1 flop

2-36

Synthesizable Serial Adder
Entity serial_adder IS

PORT (a, b, start, clock: IN BIT; ready: OUT BIT; result: BUFFER Bit_Vector (7 downto 0));
END serial_adder ;
Architecture syn OF serial_adder IS
Begin

Process(clock)
subtype CNT8 IS INTEGER Range 0 to 8;
Variable count: CNT8 := 8; Variable sum, carry: BIT;

Begin
IF (clock = ‘0’ AND clock’Event) THEN

IF start = ‘1’ THEN count := 0 ; carry:=‘0’;
ELSE IF count < 8 THEN

count:= count+1;
sum := a XOR b XOR carry;
carry := (a AND b) OR (a AND carry) OR (b AND carry);
result <= sum & result(7 downto 1);

END IF;
END IF;
IF count = 8 Then ready <= ‘1’; ELSE ready <= ‘0’; END IF;

END IF;
END process;

END syn;

19
19

2-37

Subprograms

VHDL allows the use of functions and procedures
Most of high-level behavioral constructs in VHDL can
be used in body of functions and procedures
Subprograms can be declared, defined, and invoked as
in software languages
Functions can be used
• to represent Boolean equations
• for type conversions
• for delay value calculations

Procedures can be used for
• type conversion
• description of counters
• outputting internal binary data in integer form

2-38

Procedure Example

Type Byte ARRAY (7 Downto 0) of BIT;
Procedure byte_to_integer(ib: IN Byte; oi: OUT Integer) IS
Variable result: Integer :=0;
Begin

For I IN 0 To 7 Loop
IF ib(I) = ‘1’ Then

result := result + 2**I;
END IF;

END Loop;
oi := result;

END byte_to_integer;

20
20

2-39

Function Example
Entity fulladder IS

Port (a, b, cin: IN BIT; sum, cout: OUT BIT);
END fulladder;
Architecture behavioral OF fulladder IS

Function fadd(a, b, c : IN BIT) RETURN Bit_Vector IS
variable sc: Bit_Vector(1 downto 0);

Begin
sc(1) := a XOR b XOR c;
sc(0) := (a AND b) OR (a AND c) OR (b AND c);
Return sc;

END;
Begin

(sum, cout) <= fadd(a, b, cin);
END behavioral ;

2-40

Controller Description

Moore Sequence Detector
• Detection sequence is 110

IF 110 found on x
Then Z gets ‘1’
Else z gets ‘0’
End

x

clk
z

Reset
/0

got1
/0

got11
/0

got110
/1

0

1

0

1 1 0

1

0

21
21

2-41

VHDL Description of Moore 110 Sequence
Detector
ENTITY moore_110_detector IS

PORT (x, clk : IN BIT; z : OUT BIT);
END moore_110_detector;
ARCHITECTURE behavioral OF moore_110_detector IS

TYPE state IS (reset, got1, got11, got110);
SIGNAL current : state := reset;

BEGIN
PROCESS(clk)
BEGIN

IF (clk = '1' AND CLK’Event) THEN
CASE current IS

WHEN reset =>
IF x = '1' THEN current <= got1;
ELSE current <= reset; END IF;

WHEN got1 =>
IF x = '1' THEN current <= got11;
ELSE current <= reset; END IF;

WHEN got11 =>
IF x = '1' THEN current <= got11;
ELSE current <= got110; END IF;

WHEN got110 =>
IF x = '1' THEN current <= got1;
ELSE current <= reset; END IF;

END CASE;
END IF;

END PROCESS;
z <='1' WHEN current = got110 ELSE '0';

END behavioral;

2-42

VHDL Predefined Operators

Logical Operators: NOT, AND, OR, NAND, NOR, XOR, XNOR
• Operand Type: Bit, Boolean, Bit_vector
• Result Type: Bit, Boolean, Bit_vector

Relational Operators: =, /=, <, <=, >, >=
• Operand Type: Any type
• Result Type: Boolean

Arithmetic Operators: +, -, *, /
• Operand Type: Integer, Real
• Result Type: Integer, Real

Concatenation Operator: &
• Operand Type: Arrays or elements of same type
• Result Type: Arrays

Shift Operators: SLL, SRL, SLA, SRA, ROL, ROR
• Operand Type: Bit or Boolean vector
• Result Type: same type

