Name: Id#

COE 360, Principles of VLSI Design, Term 981 Quiz# 4

Date: Saturday, May 8

(I) A depletion-load inverter has an output low voltage V_{OL} of 0.2V when $\beta_{load}/\beta_{driver}=1/6$. Assuming $(W/L)_{load}=1/3$, determine $(W/L)_A$, $(W/L)_B$, $(W/L)_C$, $(W/L)_D$, and $(W/L)_E$, for the circuit shown below such that the worst case $V_{OL}=0.2V$.

(II) Given a CMOS inverter with
$$\beta_n = 2.5 \beta_p$$
 , $V_{tn} = 1.0$ V, $V_{tp} =$ -0.8V, and $V_{DD} = 5 V$.

1. Show that

$$V_{th} = \frac{V_{tn} + \sqrt{\frac{\beta_p}{\beta_n}} (V_{DD} + V_{tp})}{\left(1 + \sqrt{\frac{\beta_p}{\beta_n}}\right)}$$

- 2. Compute the value of the inverter threshold, V_{th}
- 3. For what ratio of $\beta_{\text{n}}/\beta_{\text{p}}$ the inverter threshold voltage, $V_{\text{th}}\!\!=\!\!2.5$ Volts.