COE 360, Term 071

Principles of VLSI Design Quiz# 1

Date: Wednesday, Sep. 29, 2004

Q1. Fill in the blank:

(1)	is the motion of charges due to the application of an
	electric field.
(2)	is the motion of charges resulting from a non-uniform charge distribution.
	C
(3)	The current per unit area in a conducting medium is called the
(4)	describes the ease with which charge carriers drift in the
	material.
(5)	Drift velocity with the increase of the area of a conducting medium.
(6)	Drift velocity with the increase of the charge carriers concentration per unit volume.
(7)	The conductivity of a material increases with the increase in the and
(8)	The electric field across a conductor increases with the increase in
(9)	The resistance of a conductor increases with the increase in and the decrease in and and
(10)	A silicon atom has electrons, of which are valence electrons.
(11)	At T=0°K, all the valence electrons in a silicon semiconductor are in the band.
(12)	semiconductors are pure crystals that contain no foreign
	atoms or impurities
(13)	energy is the energy level below which all the energy states are filled with electrons and above which all the states are empty at $T=0^{\circ}K$.
(14)	In an intrinsic semiconductor, at a given temperature, the concentration of free electrons isthe concentration of free holes.

- (15) The addition of trivalent atoms to an intrinsic semiconductor results in a _____type material, while the addition of pentavalent atoms to an intrinsic semiconductor results in a _____type.
- (16) The majority charge carriers in an n-type material are ______ while the minority charge carriers are ______.
- (17) The mass action law states that under thermal equilibrium, the concentration of free electrons times the concentration of free holes is constant and is equal to
- (18) If an intrinsic semiconductor material is doped with acceptor impurities, the number of free holes ______ while the number of free electrons

.

- (19) The charge neutrality law states that under thermal equilibrium, the semiconductor crystal is electrically ______.
- (20) The concentration of free electrons in an n-type material doped with donor concentration N_d is nearly ______ and the concentration of free holes is ______.
- (21) The conductivity of a semiconductor material _____ with increasing temperature.
- (22) The Fermi level for an n-type semiconductor is ______ the intrinsic Fermi level E_{Fi} while the Fermi level for a p-type semiconductor is ______ E_{Fi} .
- (23) As the doping level increases, the Fermi energy level moves closer to the valence band for the _____ material and closer to the conduction band for the _____ material.
- (25) Increasing the doping concentration ______ the built-in potential across the PN junction.
- (26) The width of the depletion region _____ with increasing the doping concentration.
- (27) In a reverse biased PN junction, the junction potential ______ and the depletion region width _____.
- (28) If a positive voltage is applied to the p-region with respect to the n-region, the PN junction is called ______.
- (29) Transition capacitance across the PN junction _____ with increasing the doping concentration.
- (30) The higher the doping concentrations of the PN junction are the ______ the breakdown voltage.

Q2. Determine the <u>electron and hole concentrations</u> and the <u>conductivity</u> of a piece of silicon at 300°K given that it is doped with Arsenic (pentavalent) at a density of $4X10^{16}$ atoms/cm³ and doped with Boron (trivalent) at a density of $4X10^{12}$ atoms/cm³. Assume the following: Electron mobility at 300°K=1500 cm²/V.s, Hole mobility at 300°K = 475 cm²/V.s, Intrinsic concentration at 300°K=1.45X10¹⁰ cm⁻³, q= 1.6X10⁻¹⁹. Indicate clearly the <u>units</u> in your solution.