Name:

COE 360, Principles of VLSI Design, Term 032 Quiz# 1

Date: Sunday, Feb. 29, 2004

Q1. Fill in the blank:

- (1) $\underline{\qquad}$ is the motion of charges due to the application of an electric field.
- (2) _____ is the motion of charges resulting from a non-uniform charge distribution.
- (3) The current per unit area in a conducting medium is called the _____.
- (4) The conductivity of a material increases with the increase in the ______ and _____.
- (5) The applied voltage across a conductor increases with the increase in the ______ and _____.
- (6) The resistance of a conductor increases with the increase in ______ and the decrease in ______ and
- (7) A silicon atom has ______ electrons, ______ of which are valence electrons.
- (8) At T=0K, all the valence electrons in a silicon semiconductor are in the _____ band.

- (9) <u>Semiconductors are pure crystals that contain no</u> foreign atoms or impurities
- (10) ______ energy is the energy level below which all the energy states are filled with electrons and above which all the states are empty at T=0K.
- (11) In an intrinsic semiconductor, at a given temperature, the concentration of free electrons is ______the concentration of free holes.
- (12) The addition of trivalent atoms to an intrinsic semiconductor results in a ______type material, while the addition of pentavalent atoms to an intrinsic semiconductor results in a _____type.
- (13) The majority charge carriers in a n-type material are while the minority charge carriers are
- (14) The mass action law states that under thermal equilibrium, the concentration of free electrons times the concentration of free holes is constant and is equal to ______.
- (15) If an intrinsic semiconductor material is doped with p-type impurities, the number of free holes ______ while the number of free electrons ______.
- (16) The charge neutrality law states that under thermal equilibrium, the semiconductor crystal is electrically ______.
- (17) The concentration of free electrons in an n-type material doped with donor concentration N_d is nearly ______ and the concentration of free holes is ______.