Name: Id#

COE 360, Principles of VLSI Design, Term 011 Ouiz# 1

Date: Saturday, Sep. 22, 2001

- Q1. Indicate whether the following is true or false, and if it is false **correct** it:
 - (1) (**True, False**) If an intrinsic semiconductor material is doped with n-type impurities, the number of free electrons increases while the number of free holes remains the same.
 - (2) (**True, False**) To maintain the electric neutrality of the crystal, the number of free electrons $n = p + N_A N_D$.
 - (3) (**True, False**) Mobility increases with temperature because more carriers are present and these carriers are more energetic at higher temperatures.
 - (4) (True, False) Further diffusion of majority carriers across a pn junction is stopped due to the balance of concentration of majority carriers across the junction.
 - (5) (**True, False**) In general, higher doping concentrations result in lower depletion region width and lower transition capacitance.
 - (6) (**True, False**) The width of the depletion region in a forward-biased pn junction is narrower than that of a reverse-biased pn junction.
 - (7) (True, False) V_{OH} is the output voltage produced when the input voltage is less than or equal to V_{IL} .

- (8) (True, False) A piece of semiconductor material which is doped with equal donor and acceptor impurity concentrations has higher conductivity compared to the intrinsic semiconductor since it has higher electron and hole concentrations.
- (9) (True, False) It is desirable to have V_{IL} as large as possible and V_{IH} as small as possible to increase the noise margins.
- (10) (True, False) The fanout of a gate with V_{IL} =1.2V, V_{IH} =2.4V, V_{OH} =4.8V, V_{OL} =0.2, I_{IH} =60 μ A, I_{IL} =4.8mA, I_{OH} =360 μ A, and I_{OL} =24mA is 5.
- **Q2.** An intrinsic silicon bar is 8 mm long and has a rectangular cross section of 40X80 μ m. The material has a resistivity of 100K Ω .cm. Determine the following:
 - (i) The concentration of Arsenic atoms needed to be added to the material to convert it to an n-type material with a resistivity of 20 Ω .cm.
 - (ii) Determine the voltage across the intrinsic silicon bar when a steady current of 5 μA is measured.

Assume the following: Electron mobility at 300 K=1500 cm²/V.s, Hole mobility at 300 K = 475 cm²/V.s, $q=1.6X10^{-19}$