KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 360 Principles of VLSI Design Term 991 Lectures

	Date	Topics	Ref.
1	M 6/09	Syllabus. Introduction.	1.6 &1.7
2	W 8/09	Conduction in metals, current density, mobility and conductivity, drift current, intrinsic semiconductors, extrinsic semiconductors.	Notes
3	S 11/09	N-type and p-type semiconductors, mass-action-law, charge-neutrality law, diffusion current, open-circuit P-N junction, built-in potential.	Notes
4	M 13/09	Forward and reverse-biased P-N junctions, transition capacitance, P-N junction breakdown.	Notes
5	W 15/09	Basic specifications of digital circuits (V_{OL} , V_{OH} , V_{IL} , V_{IH} , noise margin, fanin, fanout, loading, and power dissipation). (HW#1 Distributed)	2.3.2, notes
6	T 16/09	Structure of nmos and pmos transistors, transmission gate, inverter, nand, and nor gates.	1.3, 1.4, 1.5, notes
7	S 18/09	Compound gates, multiplexers, xor and xnor gates, D-latch and D-FF.	1.5, notes
8	M 20/09	MOS transistor theory: structure and operation, threshold voltage. (HW#1 Collected)	2.1, notes
9	W 22/09	MOS device design equations. (Quiz#1)	2.2, notes
10	S 25/09	Threshold voltage body effect, channel-length modulation, drain punchthrough, impact ionization, spice DC parameters. (HW#2 Distributed)	2.2, notes
11	M 27/09	Types of MOS transistors: enhancement- and depletion-types. Summary of operation regions of MOS transistors.	2.3, notes
12	W 29/09	CMOS processing technology: oxidation, epitaxy, deposition, ion implantation, diffusion, patterning of SiO_2 , fabrication steps for a silicon gate nmos transistor, parasitic MOS transistor.	3.1, notes
13	S 2/10	CMOS n-well process, substrate and well contacts, multiple metal layers, p-well process, twin-well CMOS process, layout design rules. (HW#2 Collected)	3.2, 3.4, notes
14	M 4/10	The latch-up problem. (Quiz#2)	3.5, notes
15	W 6/10	Layout design of simple logic gates: inverter, NAND, and NOR. Complex gates layout.	5.3, notes
16	S 9/10	Complex gates layout: examples. (HW#3 Distributed)	5.3, notes
17	M 11/10	Resistive-load inverter: calculation of V_{OL} , V_{OH} , V_{IL} , V_{IH} .	2.4, notes
18	W 13/10	Resistive-load inverter: calculation of V_{th} . Voltage transfer characteristic, power consumption.	2.4, notes

19	S 16/10	Review for Exam I. (HW#3 Collected)	
	U17/10	EXAM I	
20	M 18/10	Saturated Enhancement-load inverter: calculation of V_{OL} , V_{OH} , V_{IL} , V_{IH} .	2.4, notes
21	W 20/10	Linear Enhancement-load inverter, pseudo-nmos inverter.	2.4, notes
22	S 23/10	Depletion-type nmos load inverter: calculation of V_{OL} , V_{OH} , V_{IL} , V_{IH} . voltage transfer characteristic, power consumption.	Notes
23	M 25/10	CMOS inverter: calculation of V_{OL} , V_{OH} , V_{IL} , V_{IH} .	2.3, notes
24	W 27/10	CMOS inverter: calculation of V_{th} . Voltage transfer characteristic, power consumption. Design of CMOS inverters. (HW#4 Distributed)	2.3, notes
25	S 30/10	Inverter-equivalent circuits: Nand and Nor gates.	Notes
26	M 1/11	Inverter-equivalent circuits: Compound gates.	Notes
27	W 3/11	Resistance estimation. Capacitance estimation: MOS capacitor characteristics. (HW#4 Collected)	4.2, 4.3, notes
28	S 6/11	MOS device capacitances, diffusion capacitance. (Quiz#3)	4.3, notes
29	M 8/11	Spice modeling of MOS capacitances, distributed RC effects.	4.3, notes
30	W 10/11	Capacitance estimation: Example. (HW#5 Distributed)	4.3, notes
31	S 13/11	Delay-time definitions: T_{PHL} , T_{PLH} , rising, and falling times.	4.5, notes
32	M 15/11	Calculation of delay times.	4.5, notes
33	W 17/11	Calculation of delay times. (HW#5 Collected)	4.5, notes
34	S 20/11	Review for Exam II.	
	U 21/11	EXAM II	
35	M 22/11	Power Dissipation: static dissipation, short-circuit dissipation, and dynamic dissipation.	4.7, notes
36	W 24/11	Total power dissipation estimation.	4.7, notes
37	S 27/11	Power dissipation estimation using the power meter technique. (HW#6 Distributed)	notes
38	M 29/11	Dynamic CMOS logic, cascading problem in dynamic CMOS logic.	5.4, notes
39	W 1/12	Domino CMOS logic, charge sharing problem.	5.4, notes
40	S 4/12	Measures to avoid erroneous output due to charge sharing, the Manchester carry chain. (HW#6 Collected)	notes
41	M 6/12	NORA CMOS logic. (Quiz#4)	5.4, notes
42	W 8/12	NORA CMOS logic, Zipper CMOS.	5.4, notes
43	S 11/12	Pass transistor logic.	5.4, notes
44	M 13/12	Scaling of MOS circuits.	4.13, notes
45	W 15/12	Review for Final Exam.	