> -/,!`0bjbj\\ .>>
{
}
}
}
}
}
}
$h|
[
[
[
{
[
{
[
[
[
p^gTzA [
{
0
[
5
[
[
[
E
FFT Discrete Fourier transform.
FFT(X) is the discrete Fourier transform (DFT) of vector X. For
matrices, the FFT operation is applied to each column. For N-D
arrays, the FFT operation operates on the first non-singleton
dimension.
FFT(X,N) is the N-point FFT, padded with zeros if X has less
than N points and truncated if it has more.
FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
dimension DIM.
For length N input vector x, the DFT is a length N vector X,
with elements
N
X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
n=1
The inverse DFT (computed by IFFT) is given by
N
x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
k=1
The relationship between the DFT and the Fourier coefficients a and b in
N/2
x(n) = a0 + sum a(k)*cos(2*pi*k*t(n)/(N*dt))+b(k)*sin(2*pi*k*t(n)/(N*dt))
k=1
is
a0 = X(1)/N, a(k) = 2*real(X(k+1))/N, b(k) = -2*imag(X(k+1))/N,
where x is a length N discrete signal sampled at times t with spacing dt.
See also IFFT, FFT2, IFFT2, FFTSHIFT.
?ZhCd#h"mHsHh"hCd#$i@ p r
$
;
+CEV,1h/ =!"#$%@@@NormalCJ_HaJmH sH tH DADDefault Paragraph FontVi@VTable Normal :V44
la(k@(No List$i@pr$;+CEV0000000000000000000000000000000
8@0(
B
S ?$9;B+V#mu
DH{}#9;B*UZ_333333333#Cd#"@ '0@UnknownGz Times New Roman5Symbol3&z Arial"qh c5¦Y242HX)?Cd#2FFT Discrete Fourier transformccse-genITCOh+'0 $
DP
\hpx FFT Discrete Fourier transformccse-genNormal.dotITC2Microsoft Office Word@G@,@FHTz՜.+,0hp|
dFFT Discrete Fourier transformTitle
!"#%&'()*+.Root Entry FPrjgTz0Data
1TableWordDocument.SummaryInformation(DocumentSummaryInformation8$CompObjq
FMicrosoft Office Word Document
MSWordDocWord.Document.89q