

Chapter 8 Multiplexing

Frequency Division Multiplexing

- **₩**FDM
- **#**Useful bandwidth of medium exceeds required bandwidth of channel
- **#** Each signal is modulated to a different carrier frequency
- # Carrier frequencies separated so signals do not overlap (guard bands)
- ₿e.g. broadcast radio
- #Channel allocated even if no data

Channel	Band	Channel	Band	Channel	Band
Number	(MHz)	Number	(MHz)	Number	(MHz)
2	54-60	22	168-174	42	330-336
3	60-66	23	216-222	43	336-342
4	66-72	24	222-228	44	342-348
5	76-82	25	228-234	45	348-354
6	82-88	26	234-240	46	354-360
7	174-180	27	240-246	47	360-366
8	180-186	28	246-252	48	366-372
9	186-192	29	252-258	49	372-378
10	192-198	30	258-264	50	378-384
11	198-204	31	264-270	51	384-390
12	204-210	32	270-276	52	390-396
13	210-216	33	276-282	53	396-402
FM	88-108	34	282-288	54	402-408
14	120-126	35	288-294	55	408-414
15	126-132	36	294-300	56	414-420
16	132-138	37	300-306	57	420-426
17	138-144	38	306-312	58	426-432
18	144-150	39	312-318	59	432-438
19	150-156	40	318-324	60	438-444
20	156-162	41	324-330	61	444-450
21	162-168				

 Table 8.1
 Cable Television Channel Frequency Allocation

FDM Carrier Standards

Number of voice channels	Bandwidth	Spectrum	AT&T	ІТИ-Т
12	48 kHz	60–108 kHz	Group	Group
60	240 kHz	312–552 kHz	Supergroup	Supergroup
300	1.232 MHz	812–2044 kHz		Mastergroup
600	2.52 MHz	564–3084 kHz	Mastergroup	
900	3.872 MHz	8.516–12.388 MHz		Supermaster group
$N \times 600$			Mastergroup multiplex	
3,600	16.984 MHz	0.564–17.548 MHz	Jumbogroup	
10,800	57.442 MHz	3.124–60.566 MHz	Jumbogroup multiplex	

Table 8.2 North American and International FDM Carrier Standards

Synchronous Time Division Multiplexing # Data rate of medium exceeds data rate of digital signal to be transmitted # Multiple digital signals interleaved in time # May be at bit level of blocks # Time slots preassigned to sources and fixed # Time slots allocated even if no data # Time slots do not have to be evenly distributed amongst sources

TDM Carrier Standards

Table 8.3 North American and International TDM Carrier Standards

N	orth America	1	International (ITU-T)			
Designation	Number of Voice Channels	Data Rate (Mbps)	Level	Number of Voice Channels	Data Rate (Mbps)	
DS-1	24	1.544	1	30	2.048	
DS-1C	48	3.152	2	120	8.448	
DS-2	96	6.312	3	480	34.368	
DS-3	672	44.736	4	1920	139.264	
DS-4	4032	274.176	5	7680	565.148	

Hierarchy of TDM

- **#**USA/Canada/Japan use one system
- **#**ITU-T use a similar (but different) system
- **#**US system based on DS-1 format
- **#**Multiplexes 24 channels
- #Each frame has 8 bits per channel plus one framing bit
- #193 bits per frame

For voice each channel contains one word of digitized data (PCM, 8000 samples per sec)
 Data rate 8000x193 = 1.544Mbps
 Five out of six frames have 8 bit PCM samples
 Sixth frame is 7 bit PCM word plus signaling bit
 Signaling bits form stream for each channel containing control and routing information
 Same format for digital data
 C3 channels of data
 T bits per frame plus indicator bit for data or systems

Mixed Data

control

△24th channel is sync

#DS-1 can carry mixed voice and data signals

24 channels used

XNo sync byte

#Can also interleave DS-1 channels

△Ds-2 is four DS-1 giving 6.312Mbps

#Separate physical line for each direction

#Pseudoternary coding scheme

□1=no voltage, 0=positive or negative 750mV +/-10%

#Data rate 192kbps

Basic access is two 64kbps B channels and one 16kbps D channel

This gives 144kbps multiplexed over 192kbps

Remaining capacity used for framing and sync

- **#** B channel is basic user channel
- 🖁 Data
- **#**PCM voice
- Separate logical 64kbps connections to different destinations
- #Each frame 48 bits long
- ₿ One frame every 250µs

SONET Designation	ITU-T Designation	Data Rate (Mbps)	Payload Rate (Mbps)
STS-1/OC-1		51.84	50.112
STS-3/OC-3	STM-1	155.52	150.336
STS-9/OC-9		466.56	451.008
STS-12/OC-12	STM-4	622.08	601.344
STS-18/OC-18		933.12	902.016
STS-24/OC-24		1244.16	1202.688
STS-36/OC-36		1866.24	1804.032
STS-48/OC-48	STM-16	2488.32	2405.376
STS-96/OC-96		4876.64	4810.752
STS-192/OC-192	STM-64	9953.28	9621.504

Table 8.4 SONET/SDH Signal Hierarchy

SONET STS-1 Overhead Octets								
ſ	Framing A1	Framing A2	STS-ID C1	Т	race J1			
Section	BIP-8 B1	Orderwire F1	User	в	IP-8 R3			
	DataCom	DataCom	DataCom	Si	ignal			
2	D1 Pointer	D2 Pointer	D3 Pointer	La	bel C2			
(H1	H2	Action H3	Sta	tus G1			
1	BIP-8	APS	APS		Jser			
1	B2	K1	K2		F2			
Line	DataCom D4	DataCom D5	DataCom D6	Mul	tiframe H4			
Overhead	DataCom	DataCom	DataCom	Gi	owth			
	D7	D8	D9		Z3			
1	DataCom	DataCom	DataCom	Gi	rowth 24			
1	Growth	Growth	Orderwire	G	2.4 rowth			
l	Z1	Z.2	E2	0.	Z5			
	(a) Tr	ansport Ove	erhead	(b) Path	Overhead			

Statistical TDM Frame Formats									
Flag	Flag Address Control Statistical TDM subframe FCS Flag								
			(a) Over	all frame					
Address	Address Data								
	(b) Subframe with one source per frame								
Address Le	Address Length Duta ••• Address Length Duta								
(c) Subframe with multiple sources per frame									

Performance

#Output data rate less than aggregate input rates

₭ May cause problems during peak periods
Buffer inputs

⊠Keep buffer size to minimum to reduce delay

	Capacity =	= 5000 bps	Capacity =	= 7000 bps
Input ^a	Output	Backlog	Output	Backlog
6	5	1	6	0
9	5	5	7	2
3	5	3	5	0
7	5	5	7	0
2	5	2	2	0
2	4	0	2	0
2	2	0	2	0
3	3	0	3	0
4	4	0	4	0
6	5	1	6	0
1	2	0	1	0
10	5	5	7	3
7	5	7	7	3
5	5	7	7	1
8	5	10	7	2
3	5	8	5	0
6	5	9	6	0
2	5	6	2	0
9	5	10	7	2
5	5	10	7	0

Table 8.6 Example of Statistical Multiplexer Performance

aInput = 10 sources, 1000 bps/source; average input rate = 50% of maximum.

- **#**I = number of input sources
- **#**R=data rate of each source, bps
- **#**M=effective capacity of multiplexed line, bps
- lpha =mean fraction of time each source is transmitting, 0< α <1
- **#**K=M/(IR)=ratio of multiplexed line capacity to total maximum input; α<K<1

 \square If K< α , input will exceed multiplexer's capacity

Table 8.7 Single-Server Queues with Constant Service Times and Poisson (Random) Arrivals

Parameters

- λ = mean number of arrivals per second
- T_s = service time for each arrival
- $\rho \qquad = utilization; \, fraction \, of \, time \, server \, is \, busy$
- N = mean number of items in system (waiting and being served)
- T_r = residence time; mean time an item spends in system (waiting and being served)
- σ_r = standard deviation of T_r

Formulas

$$\begin{split} \rho &= \lambda T_s \\ N &= \frac{\rho^2}{2(1-\rho)} + \rho \\ T_r &= \frac{T_s(2-\rho)}{2(1-\rho)} \\ \sigma_r &= \frac{1}{1-\rho} \sqrt{\rho - \frac{3\rho^2}{2} + \frac{5\rho^3}{6} - \frac{\rho^4}{12}} \end{split}$$

Asymmetrical Digital Subscriber Line (ADSL)

- In high-speed wide area digital network, challenging part is digital subscriber line
- ₭ Link between subscriber and network
 ▲Local loop
- ₭ Exploits currently installed twisted pair cable
 Can carry broader spectrum
 - ☑1 MHz or more
- # Provides high speed digital data transmission over ordinary telephone wires

ADSL Design

Asymmetric
Greater capacity downstream than upstream
Perfect fit for internet requirement
Frequency division multiplexing
△Lowest 25kHz for voice
△Plain old telephone service (POTS)
△Use echo cancellation or FDM to give two bands
△Use FDM within bands
Range 5.5km

Table 8.8 Comparison of xDSL Alternatives

	ADSL	HDSL	SDSL	VDSL
Bits/second	1.5 to 9 Mbps downstream 16 to 640 kbps upstream	1.544 or 2.048 Mbps	1.544 or 2.048 Mbps	13 to 52 Mbps downstream
				1.5 to 2.3 Mbps upstream
Mode	Asymmetric	Symmetric	Symmetric	Asymmetric
Copper Pairs	1	2	1	1
Range (24-gauge UTP)	3.7 to 5.5 km	3.7 km	3.0 km	1.4 km
Signaling	Analog	Digital	Digital	Analog
Line Code	CAP/DMT	2B1Q	2B1Q	DMT
Frequency	1 to 5 MHz	196 kHz	196 kHz	≥ 10 MHz
Bits/cycle	Varies	4	4	Varies

UTP = unshielded twisted pair