William Stallings Data and Computer Communications

Chapter 2 Protocols and Architecture

Characteristics of Protocols

- **#** Direct or indirect
- **#** Monolithic or structured
- **#**Symmetric or asymmetric
- **#**Standard or nonstandard

Figure 2.1 Means of Connection of Communicating Systems

Basic Functions of Protocols

- **#**Encapsulation
- **#**Segmentation and reassembly
- **#**Connection control
- **#**Ordered delivery
- **#**Flow control
- **#**Error control
- **#**Addressing
- **#**Multiplexing
- **#**Transmission services

Segmentation (Fragmentation)

Data blocks are of bounded size
Application layer messages may be large
Network packets may be smaller
Splitting larger blocks into smaller ones is segmentation (or fragmentation in TCP/IP)
ATM blocks (cells) are 53 octets (bytes) long
Ethernet blocks (frames) are up to 1526 octets long

Advantages & Disadvantages of Segmentation

Advantages

More efficient error control

More equitable access to network facilities with shorter delays

Smaller buffers needed

☐ More efficient for checkpoints and restart/recovery

Disadvantages

Overheads

☐ Increased interrupts at receiver

More processing time

Virtual Circuit

- % Preplanned route established before any packets sent
- Call request and call accept packets establish connection (handshake)
- #Each packet contains a virtual circuit identifier instead of destination address
- **#**No routing decisions required for each packet
- **#**Clear request to drop circuit
- **#**Not a dedicated path

- #PDUs may traverse different paths through
 network
- **#**PDUs may arrive out of order
- **#**Sequentially number PDUs to allow for ordering
- # Problem if sequence numbers repeat after
 overflow
- **#** Have maximum sequence number to be twice maximum number of outstanding PDUs

- Hone by receiving entity
- #Limit amount or rate of data
- **#**Stop and wait: each PDU must be acknowledged before the next can be sent
- Credit systems: allow a number of PDUs to be sent without acknowledgment
 Sliding window
- **#**Flow control is implemented in several protocols

Error Control

#Guard against data loss or damage

#Error detection

- Sender inserts error detecting code
- Receiver checks this code
- ☐ If OK, acknowledge
- ☐ If error, discard packet
- **#**Retransmission
 - ☐ If no acknowledge in given time, re-transmit
- **#**Performed at various levels

Addressing Issues

- **#**Addressing level
- **#**Addressing scope
- **#**Connection identifiers
- **#**Addressing mode

IP Addresses - Class B

Start 10
Network address 14 bits
Host address 16 bits
2¹⁴ = 16,384 class B addresses
Range 128.x.x.x to 191.x.x.x
All allocated

IP Addresses - Class C

Start 110
Network address 21 bits
Host address 8 bits
2²¹ = 2,097,152 class C addresses
Range 192.x.x.x to 223.x.x.x
Nearly all allocated
See IPv6

- **#**Supporting multiple connections on one machine
- #Mapping of multiple connections at one level to a single connection at another
 - Carrying a number of connections on one fiber optic cable

Aggregating or bonding ISDN lines to gain bandwidth

Multiplexing

HUpward Multiplexing

Multiple higher-level connections are multiplexed on a single lower-level connection

Connecting your PC to ISP for multiple applications, including web, email, ftp, telnet

Downward Multiplexing

Split a single higher-level connection over a number of lower-level connections

☐Useful for reliability, performance, or efficiency

OSI as Framework for Standardization

- **#** Defines functions at each layer and facilitates standards-making process.
- **#** Standards at each layer can be developed independently and simultaneously.
- Changes in standards in one layer need not affect other layers
 - ⊠Well defined boundaries (interface) between layers

Service Primitives

Figure 2.9 Time Sequence Diagrams for Service Primitives

TCP/IP Protocol Suite

Dominant commercial protocol architecture

Specified and extensively used before OSI

Developed by research funded US Department of Defense

#Used by the Internet

TCP/IP Approach

#Modular and hierarchical like the OSI model

- Descriptive in nature compared to prescriptive nature of OSI
 - ○OSI dictates that protocols in a layer perform certain functions
 - In TCP/IP, it is possible to have two protocols in same layer with different functionality

Does not require strict use of all layers

Application level protocols may directly run on top of IP

LAN Protocol Architecture

Lower layers of OSI model # IEEE 802 reference model

<mark>೫</mark> Physical

₭ Logical link control (LLC)

Hedia access control (MAC)

Simple Mail Transfer Protocol (SMTP)

#Basic email utility

- **#**Mechanism to transfer messages across hosts
- **#**Features include mailing lists, return receipts, and forwarding
- **#** Does not specify message creation; just transfer of message using TCP

