
Basic Instructions
Addressing Modes

COE 205
Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 2

Presentation Outline

Operand Types

Data Transfer Instructions

Addition and Subtraction

Addressing Modes

Jump and Loop Instructions

Copying a String

Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 3

Three Basic Types of Operands
Immediate

Constant integer (8, 16, or 32 bits)

Constant value is stored within the instruction

Register
Name of a register is specified

Register number is encoded within the instruction

Memory
Reference to a location in memory

Memory address is encoded within the instruction, or

Register holds the address of a memory location

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 4

8-, 16-, or 32-bit memory operandmem

32-bit operand which can be a 32-bit general register or memory doublewordr/m32

16-bit operand which can be a 16-bit general-purpose register or memory wordr/m16

8-bit operand which can be an 8-bit general-purpose register or memory byter/m8

32-bit immediate doubleword valueimm32

16-bit immediate word valueimm16

8-bit immediate byte valueimm8

8-, 16-, or 32-bit immediate valueimm

16-bit segment register: CS, DS, SS, ES, FS, GSsreg

Any general-purpose registerreg

32-bit general-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBPr32

16-bit general-purpose register: AX, BX, CX, DX, SI, DI, SP, BPr16

8-bit general-purpose register: AH, AL, BH, BL, CH, CL, DH, DLr8
DescriptionOperand

Instruction Operand Notation

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 5

Next . . .

Operand Types

Data Transfer Instructions

Addition and Subtraction

Addressing Modes

Jump and Loop Instructions

Copying a String

Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 6

Move source operand to destination
mov destination, source

Source and destination operands can vary
mov reg, reg
mov mem, reg
mov reg, mem
mov mem, imm
mov reg, imm
mov r/m16, sreg
mov sreg, r/m16

Rules
• Both operands must be of same size

• No memory to memory moves

• No immediate to segment moves

• No segment to segment moves

• Destination cannot be CS

MOV Instruction

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 7

.DATA
count BYTE 100
bVal BYTE 20
wVal WORD 2
dVal DWORD 5

.CODE
mov bl, count ; bl = count = 100
mov ax, wVal ; ax = wVal = 2
mov count,al ; count = al = 2
mov eax, dval ; eax = dval = 5

; Assembler will not accept the following moves – why?

mov ds, 45
mov esi, wVal
mov eip, dVal
mov 25, bVal
mov bVal,count

MOV Examples

; immediate move to DS not permitted

; size mismatch

; EIP cannot be the destination
; immediate value cannot be destination
; memory-to-memory move not permitted

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 8

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination0 0 0 0 0 0 0 0

0

MOVZX Instruction
Fills (extends) the upper part of the destination with zeros

Used to copy a small source into a larger destination

Destination must be a register
movzx r32, r/m8

movzx r32, r/m16

movzx r16, r/m8

mov bl, 8Fh

movzx ax, bl

Zero Extension

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 9

MOVSX Instruction
Fills (extends) the upper part of the destination register with a
copy of the source operand's sign bit

Used to copy a small source into a larger destination
movsx r32, r/m8

movsx r32, r/m16

movsx r16, r/m8

mov bl, 8Fh

movsx ax, bl

Sign Extension

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination1 1 1 1 1 1 1 1

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 10

XCHG exchanges the values of two operands
xchg reg, reg
xchg reg, mem
xchg mem, reg

XCHG Instruction

.DATA
var1 DWORD 10000000h
var2 DWORD 20000000h
.CODE
xchg ah, al ; exchange 8-bit regs
xchg ax, bx ; exchange 16-bit regs
xchg eax, ebx ; exchange 32-bit regs
xchg var1,ebx ; exchange mem, reg
xchg var1,var2 ; error: two memory operands

Rules
• Operands must be of the same size
• At least one operand must be a register
• No immediate operands are permitted

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 11

Direct Memory Operands
Variable names are references to locations in memory

Direct Memory Operand:

Named reference to a memory location

Assembler computes address (offset) of named variable

.DATA

var1 BYTE 10h

.CODE

mov al, var1 ; AL = var1 = 10h

mov al,[var1] ; AL = var1 = 10h

Direct Memory Operand

Alternate Format

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 12

Direct-Offset Operands

.DATA
arrayB BYTE 10h,20h,30h,40h
.CODE
mov al, arrayB+1 ; AL = 20h
mov al,[arrayB+1] ; alternative notation
mov al, arrayB[1] ; yet another notation

Q: Why doesn't arrayB+1 produce 11h?

Direct-Offset Operand: Constant offset is added to a
named memory location to produce an effective address

Assembler computes the effective address

Lets you access memory locations that have no name

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 13

.DATA
arrayW WORD 1020h, 3040h, 5060h
arrayD DWORD 1, 2, 3, 4
.CODE
mov ax, arrayW+2
mov ax, arrayW[4]
mov eax,[arrayD+4]
mov eax,[arrayD-3]
mov ax, [arrayW+9]
mov ax, [arrayD+3]
mov ax, [arrayW-2]
mov eax,[arrayD+16]

1020 3040 5060 1 2 3 4

; AX = 3040h
; AX = 5060h
; EAX = 00000002h
; EAX = 01506030h
; AX = 0200h
; Error: Operands are not same size
; AX = ? Out-of-range address
; EAX = ? MASM does not detect error

Direct-Offset Operands - Examples

20 10 40 30 60 50 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00

arrayW
+1 +2 +3 +4 +5

arrayD
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 14

Your Turn . . .
Given the following definition of arrayD

.DATA
arrayD DWORD 1,2,3

Rearrange the three values in the array as: 3, 1, 2

Solution:
; Copy first array value into EAX
mov eax, arrayD ; EAX = 1
; Exchange EAX with second array element
xchg eax, arrayD[4] ; EAX = 2, arrayD = 1,1,3
; Exchange EAX with third array element
xchg eax, arrayD[8] ; EAX = 3, arrayD = 1,1,2
; Copy value in EAX to first array element
mov arrayD, eax ; arrayD = 3,1,2

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 15

Next . . .

Operand Types

Data Transfer Instructions

Addition and Subtraction

Addressing Modes

Jump and Loop Instructions

Copying a String

Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 16

ADD and SUB Instructions
ADD destination, source

destination = destination + source

SUB destination, source

destination = destination – source

Destination can be a register or a memory location

Source can be a register, memory location, or a constant

Destination and source must be of the same size

Memory-to-memory arithmetic is not allowed

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 17

Evaluate this . . .
Write a program that adds the following three words:
.DATA
array WORD 890Fh,1276h,0AF5Bh

Solution: Accumulate the sum in the AX register
mov ax, array
add ax,[array+2]
add ax,[array+4] ; what if sum cannot fit in AX?

Solution 2: Accumulate the sum in the EAX register
movzx eax, array ; error to say: mov eax,array
movzx ebx, array[2] ; use movsx for signed integers
add eax, ebx ; error to say: add eax,array[2]
movzx ebx, array[4]
add eax, ebx

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 18

Flags Affected

ADD and SUB affect all the six status flags:

1. Carry Flag: Set when unsigned arithmetic result is out of range

2. Overflow Flag: Set when signed arithmetic result is out of range

3. Sign Flag: Copy of sign bit, set when result is negative

4. Zero Flag: Set when result is zero

5. Auxiliary Carry Flag: Set when there is a carry from bit 3 to bit 4

6. Parity Flag: Set when parity in least-significant byte is even

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 19

More on Carry and Overflow
Addition: A + B

The Carry flag is the carry out of the most significant bit

The Overflow flag is only set when . . .
Two positive operands are added and their sum is negative

Two negative operands are added and their sum is positive

Overflow cannot occur when adding operands of opposite signs

Subtraction: A – B
For Subtraction, the carry flag becomes the borrow flag

Carry flag is set when A has a smaller unsigned value than B

The Overflow flag is only set when . . .
A and B have different signs and sign of result ≠ sign of A

Overflow cannot occur when subtracting operands of the same sign

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 20

CPU cannot distinguish signed from unsigned integers
YOU, the programmer, give a meaning to binary numbers

How the ADD instruction modifies OF and CF:
CF = (carry out of the MSB)

OF = (carry out of the MSB) XOR (carry into the MSB)

Hardware does SUB by …
ADDing destination to the 2's complement of the source operand

How the SUB instruction modifies OF and CF:
Negate (2's complement) the source and ADD it to destination

OF = (carry out of the MSB) XOR (carry into the MSB)

CF = INVERT (carry out of the MSB)

Hardware Viewpoint

MSB = Most Significant Bit

XOR = eXclusive-OR operation

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 21

ADD and SUB Examples

mov al,0FFh ; AL=-1
add al,1 ; AL= CF= OF= SF= ZF= AF= PF=
sub al,1 ; AL= CF= OF= SF= ZF= AF= PF=
mov al,+127 ; AL=7Fh
add al,1 ; AL= CF= OF= SF= ZF= AF= PF=
mov al,26h
sub al,95h ; AL= CF= OF= SF= ZF= AF= PF=

For each of the following marked entries, show the values
of the destination operand and the six status flags:

00h 1 0 0 1 1 1
FFh 1 0 1 0 1 1

80h 0 1 1 0 1 0

91h 1 1 1 0 0 0

1 0 0 1 0 1 0 1

0 0 1 0 0 1 1 0
–

1 0 0 1 0 0 0 1

0

26h (38)

95h (-107)

91h (-111)

0 101001

0 1 1 0 1 0 1 1

0 0 1 0 0 1 1 0
+

1 0 0 1 0 0 0 1

1

26h (38)

6Bh (107)

91h (-111)

1 010110

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 22

INC destination
destination = destination + 1

More compact (uses less space) than: ADD destination, 1

DEC destination
destination = destination – 1

More compact (uses less space) than: SUB destination, 1

NEG destination
destination = 2's complement of destination

Destination can be 8-, 16-, or 32-bit operand
In memory or a register

NO immediate operand

INC, DEC, and NEG Instructions

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 23

Affected Flags
INC and DEC affect five status flags

Overflow, Sign, Zero, Auxiliary Carry, and Parity

Carry flag is NOT modified

NEG affects all the six status flags
Any nonzero operand causes the carry flag to be set

.DATA
B SBYTE -1 ; 0FFh
C SBYTE 127 ; 7Fh

.CODE
inc B ; B= OF= SF= ZF= AF= PF=
dec B ; B= OF= SF= ZF= AF= PF=
inc C ; C= OF= SF= ZF= AF= PF=
neg C ; C= CF= OF= SF= ZF= AF= PF=

0 0 0 1 1 1
-1=FFh 0 1 0 1 1
-128=80h 1 1 0 1 0
-128 1 1 1 0 0 0

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 24

ADC and SBB Instruction
ADC Instruction: Addition with Carry
ADC destination, source

destination = destination + source + CF

SBB Instruction: Subtract with Borrow
SBB destination, source

destination = destination - source – CF

Destination can be a register or a memory location

Source can be a register, memory location, or a constant

Destination and source must be of the same size

Memory-to-memory arithmetic is not allowed

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 25

Extended Arithmetic
ADC and SBB are useful for extended arithmetic

Example: 64-bit addition
Assume first 64-bit integer operand is stored in EBX:EAX

Second 64-bit integer operand is stored in EDX:ECX

Solution:

add eax, ecx ;add lower 32 bits

adc ebx, edx ;add upper 32 bits + carry

64-bit result is in EBX:EAX

STC and CLC Instructions
Used to Set and Clear the Carry Flag

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 26

Next . . .

Operand Types

Data Transfer Instructions

Addition and Subtraction

Addressing Modes

Jump and Loop Instructions

Copying a String

Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 27

Addressing Modes
Two Basic Questions

Where are the operands?

How memory addresses are computed?

Intel IA-32 supports 3 fundamental addressing modes
Register addressing: operand is in a register

Immediate addressing: operand is stored in the instruction itself

Memory addressing: operand is in memory

Memory Addressing
Variety of addressing modes

Direct and indirect addressing

Support high-level language constructs and data structures

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 28

Register and Immediate Addressing
Register Addressing

Most efficient way of specifying an operand: no memory access

Shorter Instructions: fewer bits are needed to specify register

Compilers use registers to optimize code

Immediate Addressing
Used to specify a constant

Immediate constant is part of the instruction

Efficient: no separate operand fetch is needed

Examples
mov eax, ebx ; register-to-register move

add eax, 5 ; 5 is an immediate constant

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 29

Direct Memory Addressing
Used to address simple variables in memory

Variables are defined in the data section of the program

We use the variable name (label) to address memory directly

Assembler computes the offset of a variable

The variable offset is specified directly as part of the instruction

Example
.data

var1 DWORD 100
var2 DWORD 200
sum DWORD ?

.code
mov eax, var1
add eax, var2
mov sum, eax

var1, var2, and sum are
direct memory operands

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 30

Register Indirect Addressing
Problem with Direct Memory Addressing

Causes problems in addressing arrays and data structures
Does not facilitate using a loop to traverse an array

Indirect memory addressing solves this problem

Register Indirect Addressing
The memory address is stored in a register
Brackets [] used to surround the register holding the address
For 32-bit addressing, any 32-bit register can be used

Example
mov ebx, OFFSET array ; ebx contains the address
mov eax, [ebx] ; [ebx] used to access memory

EBX contains the address of the operand, not the operand itself

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 31

.data
array DWORD 10000h,20000h,30000h

.code
mov esi, OFFSET array ; esi = array address
mov eax,[esi] ; eax = [array] = 10000h
add esi,4 ; why 4?
add eax,[esi] ; eax = eax + [array+4]
add esi,4 ; why 4?
add eax,[esi] ; eax = eax + [array+8]

Array Sum Example
Indirect addressing is ideal for traversing an array

Note that ESI register is used as a pointer to array
ESI must be incremented by 4 to access the next array element

Because each array element is 4 bytes (DWORD) in memory

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 32

Ambiguous Indirect Operands
Consider the following instructions:
mov [EBX], 100

add [ESI], 20

inc [EDI]

Where EBX, ESI, and EDI contain memory addresses

The size of the memory operand is not clear to the assembler
EBX, ESI, and EDI can be pointers to BYTE, WORD, or DWORD

Solution: use PTR operator to clarify the operand size
mov BYTE PTR [EBX], 100 ; BYTE operand in memory

add WORD PTR [ESI], 20 ; WORD operand in memory

inc DWORD PTR [EDI] ; DWORD operand in memory

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 33

Indexed Addressing

.data
array DWORD 10000h,20000h,30000h

.code
mov esi, 0 ; esi = array index
mov eax,array[esi] ; eax = array[0] = 10000h
add esi,4
add eax,array[esi] ; eax = eax + array[4]
add esi,4
add eax,[array+esi] ; eax = eax + array[8]

Combines a displacement (name±constant) with an
index register

Assembler converts displacement into a constant offset

Constant offset is added to register to form an effective address

Syntax: [disp + index] or disp [index]

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 34

Useful to index array elements of size 2, 4, and 8 bytes
Syntax: [disp + index * scale] or disp [index * scale]

Effective address is computed as follows:
Disp.'s offset + Index register * Scale factor

Index Scaling

.DATA
arrayB BYTE 10h,20h,30h,40h
arrayW WORD 100h,200h,300h,400h
arrayD DWORD 10000h,20000h,30000h,40000h

.CODE
mov esi, 2
mov al, arrayB[esi] ; AL = 30h
mov ax, arrayW[esi*2] ; AX = 300h
mov eax, arrayD[esi*4] ; EAX = 30000h

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 35

Based Addressing
Syntax: [Base + disp.]

Effective Address = Base register + Constant Offset

Useful to access fields of a structure or an object
Base Register → points to the base address of the structure

Constant Offset → relative offset within the structure

.DATA
mystruct WORD 12

DWORD 1985
BYTE 'M'

.CODE
mov ebx, OFFSET mystruct
mov eax, [ebx+2] ; EAX = 1985
mov al, [ebx+6] ; AL = 'M'

mystruct is a structure
consisting of 3 fields:

a word, a double
word, and a byte

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 36

Based-Indexed Addressing
Syntax: [Base + (Index * Scale) + disp.]

Scale factor is optional and can be 1, 2, 4, or 8

Useful in accessing two-dimensional arrays
Offset: array address => we can refer to the array by name

Base register: holds row address => relative to start of array

Index register: selects an element of the row => column index

Scaling factor: when array element size is 2, 4, or 8 bytes

Useful in accessing arrays of structures (or objects)
Base register: holds the address of the array

Index register: holds the element address relative to the base

Offset: represents the offset of a field within a structure

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 37

.data
matrix DWORD 0, 1, 2, 3, 4 ; 4 rows, 5 cols

DWORD 10,11,12,13,14
DWORD 20,21,22,23,24
DWORD 30,31,32,33,34

ROWSIZE EQU SIZEOF matrix ; 20 bytes per row

.code
mov ebx, 2*ROWSIZE ; row index = 2
mov esi, 3 ; col index = 3
mov eax, matrix[ebx+esi*4] ; EAX = matrix[2][3]

mov ebx, 3*ROWSIZE ; row index = 3
mov esi, 1 ; col index = 1
mov eax, matrix[ebx+esi*4] ; EAX = matrix[3][1]

Based-Indexed Examples

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 38

LEA Instruction
LEA = Load Effective Address
LEA r32, mem (Flat-Memory)

LEA r16, mem (Real-Address Mode)

Calculate and load the effective address of a memory operand

Flat memory uses 32-bit effective addresses

Real-address mode uses 16-bit effective addresses

LEA is similar to MOV … OFFSET, except that:
OFFSET operator is executed by the assembler

Used with named variables: address is known to the assembler

LEA instruction computes effective address at runtime
Used with indirect operands: effective address is known at runtime

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 39

LEA Examples
.data

array WORD 1000 DUP(?)

.code ; Equivalent to . . .
lea eax, array ; mov eax, OFFSET array

lea eax, array[esi] ; mov eax, esi
; add eax, OFFSET array

lea eax, array[esi*2] ; mov eax, esi
; add eax, eax
; add eax, OFFSET array

lea eax, [ebx+esi*2] ; mov eax, esi
; add eax, eax
; add eax, ebx

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 40

Summary of Addressing Modes
Assembler converts a variable name into a
constant offset (called also a displacement)

For indirect addressing, a base/index
register contains an address/index

CPU computes the effective
address of a memory operand

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 41

32-bit addressing modes use the following 32-bit registers

Base + (Index * Scale) + displacement
EAX EAX 1 no displacement

EBX EBX 2 8-bit displacement

ECX ECX 4 32-bit displacement

EDX EDX 8

ESI ESI

EDI EDI

EBP EBP

ESP

Registers Used in 32-Bit Addressing

ESP can be used as a base
register, but not as an index

Only the index register can
have a scale factor

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 42

16-bit Memory Addressing
Used with real-address mode

Only 16-bit registers are used

Only BX or BP can be the base register

Only SI or DI can be the index register

Displacement can be 0, 8, or 16 bits

No Scale Factor

Old 16-bit
addressing

mode

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 43

Default Segments
When 32-bit register indirect addressing is used …

Address in EAX, EBX, ECX, EDX, ESI, and EDI is relative to DS
Address in EBP and ESP is relative to SS
In flat-memory model, DS and SS are the same segment

Therefore, no need to worry about the default segment

When 16-bit register indirect addressing is used …
Address in BX, SI, or DI is relative to the data segment DS
Address in BP is relative to the stack segment SS
In real-address mode, DS and SS can be different segments

We can override the default segment using segment prefix
mov ax, ss:[bx] ; address in bx is relative to stack segment
mov ax, ds:[bp] ; address in bp is relative to data segment

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 44

Next . . .

Operand Types

Data Transfer Instructions

Addition and Subtraction

Addressing Modes

Jump and Loop Instructions

Copying a String

Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 45

JMP Instruction
JMP is an unconditional jump to a destination instruction
Syntax: JMP destination

JMP causes the modification of the EIP register

EIP ← destination address

A label is used to identify the destination address

Example:

JMP provides an easy way to create a loop
Loop will continue endlessly unless we find a way to terminate it

top:
. . .

jmp top

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 46

LOOP Instruction
The LOOP instruction creates a counting loop
Syntax: LOOP destination

Logic: ECX ← ECX – 1
if ECX != 0, jump to destination label

ECX register is used as a counter to count the iterations

Example: calculate the sum of integers from 1 to 100

mov eax, 0 ; sum = eax
mov ecx, 100 ; count = ecx

L1:
add eax, ecx ; accumulate sum in eax
loop L1 ; decrement ecx until 0

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 47

Your turn . . .

What will be the final value of EAX?
mov eax,6
mov ecx,4

L1:
inc eax
loop L1

How many times will the loop execute?
mov eax,1
mov ecx,0

L2:
dec eax
loop L2

Solution: 10

Solution: 232 = 4,294,967,296

What will be the final value of EAX?

Solution: same value 1

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 48

Nested Loop
If you need to code a loop within a loop, you must

save the outer loop counter's ECX value

.DATA
count DWORD ?

.CODE
mov ecx, 100 ; set outer loop count to 100

L1:
mov count, ecx ; save outer loop count
mov ecx, 20 ; set inner loop count to 20

L2: .
.

loop L2 ; repeat the inner loop
mov ecx, count ; restore outer loop count
loop L1 ; repeat the outer loop

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 49

Next . . .

Operand Types

Data Transfer Instructions

Addition and Subtraction

Addressing Modes

Jump and Loop Instructions

Copying a String

Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 50

Copying a String

.DATA
source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

.CODE
main PROC

mov esi,0 ; index register
mov ecx, SIZEOF source ; loop counter

L1:
mov al,source[esi] ; get char from source
mov target[esi],al ; store it in the target
inc esi ; increment index
loop L1 ; loop for entire string
exit

main ENDP
END main

The following code copies a string from source to target

Good use of SIZEOF

ESI is used to
index source &
target strings

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 51

Summing an Integer Array

.DATA
intarray WORD 100h,200h,300h,400h,500h,600h
.CODE
main PROC

mov esi, OFFSET intarray ; address of intarray
mov ecx, LENGTHOF intarray ; loop counter
mov ax, 0 ; zero the accumulator

L1:
add ax, [esi] ; accumulate sum in ax
add esi, 2 ; point to next integer
loop L1 ; repeat until ecx = 0
exit

main ENDP
END main

This program calculates the sum of an array of 16-bit integers

esi is used as a pointer
contains the address of an array element

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 52

Summing an Integer Array – cont'd

.DATA
intarray DWORD 10000h,20000h,30000h,40000h,50000h,60000h
.CODE
main PROC

mov esi, 0 ; index of intarray
mov ecx, LENGTHOF intarray ; loop counter
mov eax, 0 ; zero the accumulator

L1:
add eax, intarray[esi*4] ; accumulate sum in eax
inc esi ; increment index
loop L1 ; repeat until ecx = 0
exit

main ENDP
END main

This program calculates the sum of an array of 32-bit integers

esi is used as a scaled index

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 53

PC-Relative Addressing
The following loop calculates the sum: 1 to 1000

When LOOP is assembled, the label L1 in LOOP is translated as FC
which is equal to –4 (decimal). This causes the loop instruction to
jump 4 bytes backwards from the offset of the next instruction. Since
the offset of the next instruction = 0000000E, adding –4 (FCh) causes
a jump to location 0000000A. This jump is called PC-relative.

Offset Machine Code Source Code
00000000 B8 00000000 mov eax, 0
00000005 B9 000003E8 mov ecx, 1000
0000000A L1:
0000000A 03 C1 add eax, ecx
0000000C E2 FC loop L1
0000000E

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 54

Assembler:
Calculates the difference (in bytes), called PC-relative offset, between
the offset of the target label and the offset of the following instruction

Processor:
Adds the PC-relative offset to EIP when executing LOOP instruction

PC-Relative Addressing – cont'd

If the PC-relative offset is encoded in a single signed byte,

(a) what is the largest possible backward jump?

(b) what is the largest possible forward jump?

Answers: (a) –128 bytes and (b) +127 bytes

Basic Instructions & Addressing Modes COE 205 – KFUPM slide 55

Summary
Data Transfer

MOV, MOVSX, MOVZX, and XCHG instructions

Arithmetic
ADD, SUB, INC, DEC, NEG, ADC, SBB, STC, and CLC
Carry, Overflow, Sign, Zero, Auxiliary and Parity flags

Addressing Modes
Register, immediate, direct, indirect, indexed, based-indexed
Load Effective Address (LEA) instruction
32-bit and 16-bit addressing

JMP and LOOP Instructions
Traversing and summing arrays, copying strings
PC-relative addressing

