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Intel Microprocessors

» Intel introduced the 8086 microprocessor in 1979

*» 8086, 8087, 8088, and 80186 processors

<> 16-bit processors with 16-bit registers

< 16-bit data bus and 20-bit address bus
= Physical address space = 220 bytes = 1 MB

<> 8087 Floating-Point co-processor

< Uses segmentation and real-address mode to address memory

= Each segment can address 216 bytes = 64 KB

<> 8088 is a less expensive version of 8086

= Uses an 8-bit data bus

< 80186 is a faster version of 8086
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Intel 80286 and 80386 Processors

*» 80286 was introduced in 1982
< 24-bit address bus = 224 bytes = 16 MB address space

< Introduced protected mode

= Segmentation in protected mode is different from the real mode

% 80386 was introduced in 1985
< First 32-bit processor with 32-bit general-purpose registers
<> First processor to define the IA-32 architecture
< 32-bit data bus and 32-bit address bus
< 2%2pytes = 4 GB address space

< Introduced paging, virtual memory, and the flat memory model
= Segmentation can be turned off
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Intel 80486 and Pentium Processors

+» 80486 was introduced 1989

< Improved version of Intel 80386
<> On-chip Floating-Point unit (DX versions)
<> On-chip unified Instruction/Data Cache (8 KB)

< Uses Pipelining: can execute up to 1 instruction per clock cycle

“ Pentium (80586) was introduced in 1993

<> Wider 64-bit data bus, but address bus is still 32 bits

<> Two execution pipelines: U-pipe and V-pipe
= Superscalar performance: can execute 2 instructions per clock cycle
<> Separate 8 KB instruction and 8 KB data caches

< MMX instructions (later models) for multimedia applications
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Intel P6 Processor Family

“* P6 Processor Family: Pentium Pro, Pentium Il and I

“ Pentium Pro was introduced in 1995
< Three-way superscalar: can execute 3 instructions per clock cycle
<> 36-bit address bus = up to 64 GB of physical address space

< Introduced dynamic execution

= Qut-of-order and speculative execution

< Integrates a 256 KB second level L2 cache on-chip

“ Pentium Il was introduced in 1997
< Added MMX instructions (already introduced on Pentium MMX)

“ Pentium [l was introduced in 1999
<> Added SSE instructions and eight new 128-bit XMM registers
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Pentium 4 and Xeon Family

** Pentium 4 is a seventh-generation x86 architecture
< Introduced in 2000
<> New micro-architecture design called Intel Netburst
< Very deep instruction pipeline, scaling to very high frequencies

< Introduced the SSEZ2 instruction set (extension to SSE)
» Tuned for multimedia and operating on the 128-bit XMM registers
*» In 2002, Intel introduced Hyper-Threading technology

< Allowed 2 programs to run simultaneously, sharing resources

* Xeon is Intel's name for its server-class microprocessors
<> Xeon chips generally have more cache

< Support larger multiprocessor configurations
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Pentium-M and EM64T

“ Pentium M (Mobile) was introduced in 2003
< Designed for low-power laptop computers
<> Modified version of Pentium Ill, optimized for power efficiency
< Large second-level cache (2 MB on later models)
< Runs at lower clock than Pentium 4, but with better performance

s Extended Memory 64-bit Technology (EM64T)
< Introduced in 2004
< 64-bit superset of the 1A-32 processor architecture
< 64-bit general-purpose registers and integer support
<> Number of general-purpose registers increased from 8 to 16
< 64-bit pointers and flat virtual address space
<> Large physical address space: up to 24° = 1 Terabytes
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Intel MicroArchitecture History

Architecture
Instruction set definition
and compatibility

Microarchitecture
Hardware implementation
maintaining instruction
set compatibility with
high-level architecture

Processors
Praductized implementation
of microarchitecture

1A-32 Architecture

examples:

EPIC' (Itanium") |A-32 IXA? (Intel XScale®)
W
h%
v
P5 PG Intel NetBurst® Mobile
v v v v
v v v v
W W W LY
Intel* Pentium® Intel* Pentium® Pro Intel® Pentium® 4 Intel* Pentium® M
Intel® Pentium® 1711l Intel* Pentium® D
Intel® Xeon®
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Intel Core MicroArchitecture

** 64-bit cores

“* Wide dynamic execution (execute four instructions
simultaneously)

 Intelligent power capability (power gating)

“ Advanced smart cache (shares L2 cache between cores)
“* Smart memory access (memory disambiguation)

* Advanced digital media boost

See the demo at
http://www.intel.com/technoloqgy/architecture/coremicro/d
emo/demo.htm?iid=tech core+demo
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CISC and RISC

* CISC — Complex Instruction Set Computer
< Large and complex instruction set
< Variable width instructions

<> Requires microcode interpreter

= Each instruction is decoded into a sequence of micro-operations

< Example: Intel x86 family
** RISC — Reduced Instruction Set Computer

< Small and simple instruction set

< All instructions have the same width

< Simpler instruction formats and addressing modes
<> Decoded and executed directly by hardware

< Examples: ARM, MIPS, PowerPC, SPARC, etc.
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Next ...

** Intel Microprocessors
** I1A-32 Reqisters
 Instruction Execution Cycle

** I1A-32 Memory Management
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Basic Program Execution Registers

** Registers are high speed memory inside the CPU
< Eight 32-bit general-purpose registers

< Six 16-bit segment registers
<> Processor Status Flags (EFLAGS) and Instruction Pointer (EIP)

32-bit General-Purpose Registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-bit Segment Registers

EFLAGS cs ES
SS FS
EIP DS GS
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General-Purpose Registers

“ Used primarily for arithmetic and data movement
< mov eax, 10 move constant 10 into register eax

** Specialized uses of Registers
< EAX — Accumulator register
= Automatically used by multiplication and division instructions
< ECX — Counter register
= Automatically used by LOOP instructions
< ESP — Stack Pointer register
» Used by PUSH and POP instructions, points to top of stack
< ESI and EDI — Source Index and Destination Index register
» Used by string instructions
<> EBP — Base Pointer register
» Used to reference parameters and local variables on the stack
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Accessing Parts of Registers
» EAX, EBX, ECX, and EDX are 32-bit Extended registers

<> Programmers can access their 16-bit and 8-bit parts
< Lower 16-bit of EAX is named AX

< AX is further divided into
= AL = |ower 8 hits | |
= AH = upper 8 bits AX 16 bits

* ESI, EDI, EBP, ESP have only

AH AL 8 bits + 8 bits

EAX 32 bits

16-bit names for lower half
32-bit 16-bit 8-bit (high) 8-bit (low) 32-bit 16-bit
EAX AX AH AL ESI S1
EBX BX BH BL EDI DI
ECX CX CH CL EBP BP
EDX DX DH DL ESP SP
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Accessing Parts of Registers

(zeneral purpose
[A32 nami
naming Al
RO EAX
31
Rl ECX
31
R2 EDX
31
R3 EBX

1A-32 Architecture

5 87
[ (AL
; A
AX
3
LCHLCL
=
!
CX
5 87
| DH | DL
—
DX
5 87
| BH | BL
t LY
!
BX
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naming

Data
Registers

(reneral purpose
IA3) nami
naming .
M ESP
3l
RS EBP
3l
R ESI
3l
RT  EDI

DI

Old X86

naming

Pomnter

* Registers

Index
Registers
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Special-Purpose & Segment Registers

» EIP = Extended Instruction Pointer
<> Contains address of next instruction to be executed

“ EFLAGS = Extended Flags Regist e * Gl Dsction

Pointer

< Contains status and control flags o

_ _ _ _ EFLAGS ILS FLAGS gtat}‘;
< Each flag is a single binary bit =
“ SixX 16-bit Segment Registers . sumae cs Sl
< Support segmented memory Stack Segment. §5 O
< Six segments accessible at a time fog B0
< Segments contain distinct contents JrE— o et
u COde Data
Segments FS IS———————0
» Data éNEWIiata
egmen
[ StaCk kGS = 0/, registers

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 17



EFLAGS Register

FLAGS

3 2 22111 1111 1 11
1 2 10 9 87 6 54 3 2 10987 6543 210

LIYVIVIA|IV R N| 10 |O|D|1I |T|S|Z A P C
o|o|o|ofjo|lofo|o|O Dl ElcM|FlO9|T| PL |F|F|F|F|F|F|Q|F|O| || F

o
EFLAGS

Status flags Control flags System flags
CF = Carry flag DF = Direction flag TF = Trap flag

PF = Parity flag
AF = Auxiliary carry flag
ZF = Zero flag
SF = Sign flag
OF = Overflow flag
% Status Flags

< Status of arithmetic and logical operations

% Control and System flags
< Control the CPU operation

IF = Interrupt flag

TIOPL. = 1/0O privilege level

NT = Nested task

RF = Resume flag

VM = Virtnal 8086 mode

AC = Alignment check

WVIF = Virtual interrupt flag
VIP = Virtual interrupt pending
ID = ID flag

% Programs can set and clear individual bits in the EFLAGS register
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Status Flags

 Carry Flag

< Set when unsigned arithmetic result is out of range
*» Overflow Flag

< Set when signed arithmetic result is out of range
“ Sign Flag

<> Copy of sign bit, set when result is negative
*» Zero Flag

< Set when result is zero
» Auxiliary Carry Flag

< Set when there is a carry from bit 3 to bit 4
» Parity Flag

< Set when parity is even

<> Least-significant byte in result contains even number of 1s
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Floating-Point, MMX, XMM Registers

¢ Floating-point unit performs high speed FP operations

» Eight 80-Dbit floating-point data registers

< ST(0), ST(2), ..., ST(7) ST(0)
< Arranged as a stack ST(1)
: . . . ST(2)

< Used for floating-point arithmetic
ST(3)
< Eight 64-bit MMX registers ST(4)
<~ Used with MMX instructions ST(S)
: : : T(6
% Eight 128-bit XMM registers ST(6)
ST(7)

< Used with SSE instructions
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Registers in Intel Core Microarchitecture

63 31

==y in x86

=y Added by x86-64 “AH | AL |

MmMmMmwwemMmww

Program
Counter

1A-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 21



Next ...

** Intel Microprocessors
** |A-32 Registers
¢ Instruction Execution Cycle

** I1A-32 Memory Management
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Fetch-Execute Cycle

*» Each machine language instruction is first fetched from
the memory and stored in an Instruction Register (IR).

¢ The address of the instruction to be fetched is stored in a
register called Program Counter or simply PC. In some
computers this register is called the Instruction Pointer
or IP.

< After the instruction is fetched, the PC (or IP) is L]

Flash Movie

incremented to point to the address of the next
LI B | ] LI B | LI | PVII I LW LTI AU W W CI N T INv/\L

Instruction.

“* The fetched instruction is decoded (to determine what
needs to be done) and executed by the CPU. []

Flash Movie
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Instruction Execute Cycle

¥

/nstruction
Fetch

|

/nstruction
Decode

¥

Operand
Fetch

¥

Infinite Cycle

Execute

¥

Writeback
Result

1A-32 Architecture

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value and status

Deposit results in storage for later use
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Instruction Execution Cycle - cont'd

. program
*» Instruction Fetch ML [12 [13 [ 14 ]
fetch
. memory
¢ Instruction Decode op1 —<ad ]
op2
registers ist
‘:’ Operand FetCh o Y__ instruction
A s | | register
\J
s* Execute o
(9]

: | S

< Result Writeback £ £ Lok
flags - ALU [¢—
i}execute
= Execution cycle >
[F ID OF IE WB
Instruction | Instruction | Operand - {Instruction |~ Result" | Instruction | Instruction | “Operand | Instruction|  Result |
fetch decode fetch execute | write back | fetch decode fetch execute | write back
/

1A-32 Architecture

Instruction execution phase
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Pipelined Execution

 Instruction execution can be divided into stages

“* Pipelining makes it possible to start an instruction before
completing the execution of previous one

Stages
S1 | s2]|sS3|s4|ss5] se
1 | 11
2 -1
3 M I-1
4 17244 I-1
o | 5 W 10g,, -1
Q@ AR 7
o | 6 Q Sy -1
S 7 [ " S
8 -2 "N A “Uy
9 -2 117
10 -2 >
11 -2
12 -2

1A-32 Architecture

For kA stages and 77 instructions, the
number of required cycles is: A+ n—1

Stages

1 | I-1

2 | -2 | I
o | 8 2 | 11
S 4 - -2 | I-1
O | 5 | Pipelined | 112 | I

S | Execution 2 | I
! [-2
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Wasted Cycles (pipelined)

“* When one of the stages requires two or more clock
cycles to complete, clock cycles are again wasted

< Assume that stage S4 is the Stages
execute stage exe

s1|s2]s3[s4]s5] s6
< Assume also that S4 requires 1| -
2 clock cycles to complete i :2 :; —
< As more instructions enter the & | 2 I3 | 12 | M
ineli d | Q1 5 -3 | I-1
pipeline, wasted cycles occur & [ TEEE
7 [-2 -1
< For kstages, where one 8 TRRE
stage requires 2 cycles, n 9 I3 12
Instructions require A+ 2n-1 10 -3
cycles 11 -3
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Superscalar Architecture

¢ A superscalar processor has multiple execution pipelines

¢ The Pentium processor has two execution pipelines

< Called U and V pipes

** In the following, stage
S4 has 2 pipelines

<> Each pipeline still
requires 2 cycles

<> Second pipeline
eliminates wasted cycles

<> For kstages and n
Instructions, number of
cycles=k+n

Stages

—S4—
S1 S2 S3 u v S5 S6
-1
[-2 I-1
[-3 -2 I-1
-4 | 1-3 | 12 | I-1
-4 -3 I-1 -2
-4 -3 -2 -1
-3 | 1-4 | 1.2 | I-1
I-4 [-3 [-2
-4 -3
-4

Cycles
OO(INO|OPA WIN|—

—
o
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Next ...

** Intel Microprocessors
** |A-32 Registers
 Instruction Execution Cycle

* 1A-32 Memory Management
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Modes of Operation

*+ Real-Address mode (original mode provided by 8086)
< Only 1 MB of memory can be addressed, from 0 to FFFFF (hex)
<> Programs can access any part of main memory
< MS-DOS runs in real-address mode

“* Protected mode
< Each program can address a maximum of 4 GB of memory
<> The operating system assigns memory to each running program
< Programs are prevented from accessing each other's memory
< Native mode used by Windows NT, 2000, XP, and Linux

*** Virtual 8086 mode

<> Processor runs in protected mode, and creates a virtual 8086
machine with 1 MB of address space for each running program
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Memory Segmentation

Memory segmentation is necessary since the 20-bits memory
addresses cannot fit in the 16-bits CPU registers

Since x86 registers are 16-bits wide, a memory segment is made of
216 consecutive words (i.e. 64K words)

Each segment has a number identifier that is also a 16-bit number
(i.e. we have segments numbered from O to 64K)

A memory location within a memory segment is referenced by
specifying its offset from the start of the segment. Hence the first
word in a segment has an offset of O while the last one has an offset
of FFFFh

To reference a memory location its logical address has to be
specified. The logical address is written as:

< Segment number:offset

For example, A43F:3487h means offset 3487h within segment
A43Fnh.
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Program Segments

* Machine language programs usually have 3 different parts stored in
different memory segments:

< Instructions: This is the code part and is stored in the code segment

<~ Data: This is the data part which is manipulated by the code and is
stored in the data segment

< Stack: The stack is a special memory buffer organized as Last-In-First-
Out (LIFO) structure used by the CPU to implement procedure calls
and as a temporary holding area for addresses and data. This data
structure is stored in the stack segment

% The segment numbers for the code segment, the data segment, and
the stack segment are stored in the segment registers CS, DS, and
SS, respectively.

s Program segments do not need to occupy the whole 64K locations
In a segment
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Real Address Mode

< A program can access up to six segments

at any time CODE
< Code segment
< Stack segment STACK
< Data segment -
< Extra segments (up to 3) SS DATA
< Each segment is 64 KB > o
% Logical address gz
< Segment = 16 bits DATA
< Offset = 16 bits
DATA

¢ Linear (physical) address = 20 bits
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Logical to Linear Address Translation

Linear address = Segment x 10 (hex) + Offset

Example ‘19 Segment register 4‘6;] 00 OU|
_ \ —
segment = A1FO (hex) e s 0

[0 000 { Offset value

offset = 04CO0 (hex)
logical address = A1F0:04CO0 (hex)

what is the linear address? N/

ADDER |

Solution:

A1FOO (add O to segment in hex) ﬁ#J Lﬁ
+ O4CO (Offset |n heX) -|Ig 20-bit physical memory address Ol
A23CO (20-bit linear address in hex)
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Segment Overlap

% There is a lot of Over|apping End of Segment 1 | 1000F
between segments in the main =
memaory. 10000

End of 2egment 0 OFFFF

“ A new segment starts every OFFFE
10h locations (i.e. every 16
locations). 00021

_ Start of Segment 2 00020

 Starting address of a segment 0001F
always has a Oh LSD

J ' 00011

RR | . Start of Segment 1 000710

» Due to segments overlapping 2000F
logical addresses are not

. Q0003
unique . (0005
00001

Start of Segment 0 00000
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Your turn. ..

What linear address corresponds to logical address
028F:00307?

Solution: 028F0 + 0030 = 02920 (hex)

Always use hexadecimal notation for addresses

What logical address corresponds to the linear address

Many different segment:offset (logical) addresses can
produce the same linear address 28F30h. Examples:

28F3:0000, 28F2:0010, 28F0:0030, 28B0:0430, . . .
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Flat Memory Model

“* Modern operating systems turn segmentation off

“+ Each program uses one 32-bit linear address space
< Up to 232 = 4 GB of memory can be addressed
< Segment registers are defined by the operating system

< All segments are mapped to the same linear address space

“ In assembly language, we use .MODEL flat directive

< To indicate the Flat memory model

* A linear address Is also called a virtual address
< Operating system maps virtual address onto physical addresses

< Using a technique called paging
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Programmer View of Flat Memory

» Same base address for all segments | inear address space of
% All segments are mapped to the same @ program (up to 4 GB)

linear address space 32-bit address
. ESI
*» EIP Regqister =01 DATA
< Points at next instruction 32-bit address
_ EIP
* ESI| and EDI Registers CODE
. 32-bit address
< Contain data addresses =P | STACK
< Used also to index arrays ESP >
° : CS
*» ESP and EBP Registers = Unused
< ESP points at top of stack SS >
< EBP is used to address parameters and =S b;se ddress = 0
Varlables On the StaCk for all Segmen_ts
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Protected Mode Architecture

** Logical address consists of
< 16-bit segment selector (CS, SS, DS, ES, FS, GS)
< 32-bit offset (EIP, ESP, EBP, ESI ,EDI, EAX, EBX, ECX, EDX)

“* Segment unit translates logical address to linear address

< Using a segment descriptor table

< Linear address is 32 bits (called also a virtual address)

“* Paging unit translates linear address to physical address

<> Using a page directory and a page table

Logical
address

1A-32 Architecture

S

Segment
translation

32-bit

—

linear
address

Page
translation

32-bit
— physical
address
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Logical to Linear Address Translation

SEGMENT SELECTOR
15 3210
INDEX TI| RPL

K_J

Upper 13 bits of

DESCRIPTOR TABLE

segment selector
are used to index
the descriptor table

OFFSET
31

N

e

N ACCESS RIGHTS
Segment
descriptor LIMIT
BASE ADDRESS

Tl = Table Indicator

Select the descriptor table
0 = Global Descriptor Table

1 = Local Descriptor Table

1A-32 Architecture

A

GDTR, LDTR

"
32-bit base address

31

LINEAR ADDRESS
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Segment Descriptor Tables

¢ Global descriptor table (GDT)
< Only one GDT table is provided by the operating system

< GDT table contains segment descriptors for all programs

< Also used by the operating system itself

< Table is initialized during boot up

< GDT table address is stored in the GDTR register

<> Modern operating systems (Windows-XP) use one GDT table

¢ Local descriptor table (LDT)
<> Another choice is to have a unique LDT table for each program
< LDT table contains segment descriptors for only one program
< LDT table address is stored in the LDTR register
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Segment Descriptor Details

+» Base Address

< 32-bit number that defines the starting location of the segment
< 32-bit Base Address + 32-bit Offset = 32-bit Linear Address

% Segment Limit
< 20-bit number that specifies the size of the segment

< The size is specified either in bytes or multiple of 4 KB pages

<> Using 4 KB pages, segment size can range from 4 KB to 4 GB
* Access Rights

< Whether the segment contains code or data
< Whether the data can be read-only or read & written

< Privilege level of the segment to protect its access
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Segment Visible and Invisible Parts

** Visible part = 16-bit Segment Register
< CS, SS, DS, ES, FS, and GS are visible to the programmer
¢ Invisible Part = Segment Descriptor (64 bits)

< Automatically loaded from the descriptor table

Visible part Invisible part
Segment selector CS
Segment selector SS
Segment selector DS
Segment selector ES
Segment selector ES
Segment selector GS
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Paging

*» Paging divides the linear address space into ...
< Fixed-sized blocks called pages, Intel IA-32 uses 4 KB pages

¢ Operating system allocates main memory for pages
< Pages can be spread all over main memory
< Pages in main memory can belong to different programs
< If main memory is full then pages are stored on the hard disk

* OS has a Virtual Memory Manager (VMM)

< Uses page tables to map the pages of each running program
< Manages the loading and unloading of pages

¢ As a program is running, CPU does address translation

*» Page fault: issued by CPU when page is not in memory
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Paging - cont'd

Main Memory

The operating

systemuses | #- | Page m . Page n | &%
page tablesto | 5 & S
map the pages | S & cg

in the linear | g+« [ _P3982 Page2 123
virtual address | = g | Pagel Pagel | =g

space onto g § Page 0 Page O é’ g
main memory /

: The operating
Each running Pages that cannot | [\y system swaps
program has fit In main memory Y/ pages between
its own page are stored on the / memory and the
table hard disk hard disk

N

As a program is running, the processor translates the linear virtual addresses
onto real memory (called also physical) addresses
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