TA-32 Architecture

COE 205

Computer Organization and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]



Outline

¢ Intel Microprocessors
** |A-32 Registers
 Instruction Execution Cycle

** I1A-32 Memory Management

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 2



Intel Microprocessors

» Intel introduced the 8086 microprocessor in 1979

*» 8086, 8087, 8088, and 80186 processors

<> 16-bit processors with 16-bit registers

< 16-bit data bus and 20-bit address bus
= Physical address space = 220 bytes = 1 MB

<> 8087 Floating-Point co-processor

< Uses segmentation and real-address mode to address memory

= Each segment can address 216 bytes = 64 KB

<> 8088 is a less expensive version of 8086

= Uses an 8-bit data bus

< 80186 is a faster version of 8086

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 3



Intel 80286 and 80386 Processors

*» 80286 was introduced in 1982
< 24-bit address bus = 224 bytes = 16 MB address space

< Introduced protected mode

= Segmentation in protected mode is different from the real mode

% 80386 was introduced in 1985
< First 32-bit processor with 32-bit general-purpose registers
<> First processor to define the IA-32 architecture
< 32-bit data bus and 32-bit address bus
< 2%2pytes = 4 GB address space

< Introduced paging, virtual memory, and the flat memory model
= Segmentation can be turned off

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 4



Intel 80486 and Pentium Processors

+» 80486 was introduced 1989

< Improved version of Intel 80386
<> On-chip Floating-Point unit (DX versions)
<> On-chip unified Instruction/Data Cache (8 KB)

< Uses Pipelining: can execute up to 1 instruction per clock cycle

“ Pentium (80586) was introduced in 1993

<> Wider 64-bit data bus, but address bus is still 32 bits

<> Two execution pipelines: U-pipe and V-pipe
= Superscalar performance: can execute 2 instructions per clock cycle
<> Separate 8 KB instruction and 8 KB data caches

< MMX instructions (later models) for multimedia applications

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 5



Intel P6 Processor Family

“* P6 Processor Family: Pentium Pro, Pentium Il and I

“ Pentium Pro was introduced in 1995
< Three-way superscalar: can execute 3 instructions per clock cycle
<> 36-bit address bus = up to 64 GB of physical address space

< Introduced dynamic execution

= Qut-of-order and speculative execution

< Integrates a 256 KB second level L2 cache on-chip

“ Pentium Il was introduced in 1997
< Added MMX instructions (already introduced on Pentium MMX)

“ Pentium [l was introduced in 1999
<> Added SSE instructions and eight new 128-bit XMM registers

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 6



Pentium 4 and Xeon Family

** Pentium 4 is a seventh-generation x86 architecture
< Introduced in 2000
<> New micro-architecture design called Intel Netburst
< Very deep instruction pipeline, scaling to very high frequencies

< Introduced the SSEZ2 instruction set (extension to SSE)
» Tuned for multimedia and operating on the 128-bit XMM registers
*» In 2002, Intel introduced Hyper-Threading technology

< Allowed 2 programs to run simultaneously, sharing resources

* Xeon is Intel's name for its server-class microprocessors
<> Xeon chips generally have more cache

< Support larger multiprocessor configurations

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 7



Pentium-M and EM64T

“ Pentium M (Mobile) was introduced in 2003
< Designed for low-power laptop computers
<> Modified version of Pentium Ill, optimized for power efficiency
< Large second-level cache (2 MB on later models)
< Runs at lower clock than Pentium 4, but with better performance

s Extended Memory 64-bit Technology (EM64T)
< Introduced in 2004
< 64-bit superset of the 1A-32 processor architecture
< 64-bit general-purpose registers and integer support
<> Number of general-purpose registers increased from 8 to 16
< 64-bit pointers and flat virtual address space
<> Large physical address space: up to 24° = 1 Terabytes

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 8



Intel MicroArchitecture History

Architecture
Instruction set definition
and compatibility

Microarchitecture
Hardware implementation
maintaining instruction
set compatibility with
high-level architecture

Processors
Praductized implementation
of microarchitecture

1A-32 Architecture

examples:

EPIC' (Itanium") |A-32 IXA? (Intel XScale®)
W
h%
v
P5 PG Intel NetBurst® Mobile
v v v v
v v v v
W W W LY
Intel* Pentium® Intel* Pentium® Pro Intel® Pentium® 4 Intel* Pentium® M
Intel® Pentium® 1711l Intel* Pentium® D
Intel® Xeon®

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 9



Intel Core MicroArchitecture

** 64-bit cores

“* Wide dynamic execution (execute four instructions
simultaneously)

 Intelligent power capability (power gating)

“ Advanced smart cache (shares L2 cache between cores)
“* Smart memory access (memory disambiguation)

* Advanced digital media boost

See the demo at
http://www.intel.com/technoloqgy/architecture/coremicro/d
emo/demo.htm?iid=tech core+demo

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 10



CISC and RISC

* CISC — Complex Instruction Set Computer
< Large and complex instruction set
< Variable width instructions

<> Requires microcode interpreter

= Each instruction is decoded into a sequence of micro-operations

< Example: Intel x86 family
** RISC — Reduced Instruction Set Computer

< Small and simple instruction set

< All instructions have the same width

< Simpler instruction formats and addressing modes
<> Decoded and executed directly by hardware

< Examples: ARM, MIPS, PowerPC, SPARC, etc.

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 11



Next ...

** Intel Microprocessors
** I1A-32 Reqisters
 Instruction Execution Cycle

** I1A-32 Memory Management

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 12



Basic Program Execution Registers

** Registers are high speed memory inside the CPU
< Eight 32-bit general-purpose registers

< Six 16-bit segment registers
<> Processor Status Flags (EFLAGS) and Instruction Pointer (EIP)

32-bit General-Purpose Registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-bit Segment Registers

EFLAGS cs ES
SS FS
EIP DS GS

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 13



General-Purpose Registers

“ Used primarily for arithmetic and data movement
< mov eax, 10 move constant 10 into register eax

** Specialized uses of Registers
< EAX — Accumulator register
= Automatically used by multiplication and division instructions
< ECX — Counter register
= Automatically used by LOOP instructions
< ESP — Stack Pointer register
» Used by PUSH and POP instructions, points to top of stack
< ESI and EDI — Source Index and Destination Index register
» Used by string instructions
<> EBP — Base Pointer register
» Used to reference parameters and local variables on the stack

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 14



Accessing Parts of Registers
» EAX, EBX, ECX, and EDX are 32-bit Extended registers

<> Programmers can access their 16-bit and 8-bit parts
< Lower 16-bit of EAX is named AX

< AX is further divided into
= AL = |ower 8 hits | |
= AH = upper 8 bits AX 16 bits

* ESI, EDI, EBP, ESP have only

AH AL 8 bits + 8 bits

EAX 32 bits

16-bit names for lower half
32-bit 16-bit 8-bit (high) 8-bit (low) 32-bit 16-bit
EAX AX AH AL ESI S1
EBX BX BH BL EDI DI
ECX CX CH CL EBP BP
EDX DX DH DL ESP SP

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 15



Accessing Parts of Registers

(zeneral purpose
[A32 nami
naming Al
RO EAX
31
Rl ECX
31
R2 EDX
31
R3 EBX

1A-32 Architecture

5 87
[ (AL
; A
AX
3
LCHLCL
=
!
CX
5 87
| DH | DL
—
DX
5 87
| BH | BL
t LY
!
BX

COE 205 — Computer Organization and Assembly Language — KFUPM

0Old X86

naming

Data
Registers

(reneral purpose
IA3) nami
naming .
M ESP
3l
RS EBP
3l
R ESI
3l
RT  EDI

DI

Old X86

naming

Pomnter

* Registers

Index
Registers

slide 16



Special-Purpose & Segment Registers

» EIP = Extended Instruction Pointer
<> Contains address of next instruction to be executed

“ EFLAGS = Extended Flags Regist e * Gl Dsction

Pointer

< Contains status and control flags o

_ _ _ _ EFLAGS ILS FLAGS gtat}‘;
< Each flag is a single binary bit =
“ SixX 16-bit Segment Registers . sumae cs Sl
< Support segmented memory Stack Segment. §5 O
< Six segments accessible at a time fog B0
< Segments contain distinct contents JrE— o et
u COde Data
Segments FS IS———————0
» Data éNEWIiata
egmen
[ StaCk kGS = 0/, registers

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 17



EFLAGS Register

FLAGS

3 2 22111 1111 1 11
1 2 10 9 87 6 54 3 2 10987 6543 210

LIYVIVIA|IV R N| 10 |O|D|1I |T|S|Z A P C
o|o|o|ofjo|lofo|o|O Dl ElcM|FlO9|T| PL |F|F|F|F|F|F|Q|F|O| || F

o
EFLAGS

Status flags Control flags System flags
CF = Carry flag DF = Direction flag TF = Trap flag

PF = Parity flag
AF = Auxiliary carry flag
ZF = Zero flag
SF = Sign flag
OF = Overflow flag
% Status Flags

< Status of arithmetic and logical operations

% Control and System flags
< Control the CPU operation

IF = Interrupt flag

TIOPL. = 1/0O privilege level

NT = Nested task

RF = Resume flag

VM = Virtnal 8086 mode

AC = Alignment check

WVIF = Virtual interrupt flag
VIP = Virtual interrupt pending
ID = ID flag

% Programs can set and clear individual bits in the EFLAGS register

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 18



Status Flags

 Carry Flag

< Set when unsigned arithmetic result is out of range
*» Overflow Flag

< Set when signed arithmetic result is out of range
“ Sign Flag

<> Copy of sign bit, set when result is negative
*» Zero Flag

< Set when result is zero
» Auxiliary Carry Flag

< Set when there is a carry from bit 3 to bit 4
» Parity Flag

< Set when parity is even

<> Least-significant byte in result contains even number of 1s

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM

slide 19



Floating-Point, MMX, XMM Registers

¢ Floating-point unit performs high speed FP operations

» Eight 80-Dbit floating-point data registers

< ST(0), ST(2), ..., ST(7) ST(0)
< Arranged as a stack ST(1)
: . . . ST(2)

< Used for floating-point arithmetic
ST(3)
< Eight 64-bit MMX registers ST(4)
<~ Used with MMX instructions ST(S)
: : : T(6
% Eight 128-bit XMM registers ST(6)
ST(7)

< Used with SSE instructions

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 20



Registers in Intel Core Microarchitecture

63 31

==y in x86

=y Added by x86-64 “AH | AL |

MmMmMmwwemMmww

Program
Counter

1A-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 21



Next ...

** Intel Microprocessors
** |A-32 Registers
¢ Instruction Execution Cycle

** I1A-32 Memory Management

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 22



Fetch-Execute Cycle

*» Each machine language instruction is first fetched from
the memory and stored in an Instruction Register (IR).

¢ The address of the instruction to be fetched is stored in a
register called Program Counter or simply PC. In some
computers this register is called the Instruction Pointer
or IP.

< After the instruction is fetched, the PC (or IP) is L]

Flash Movie

incremented to point to the address of the next
LI B | ] LI B | LI | PVII I LW LTI AU W W CI N T INv/\L

Instruction.

“* The fetched instruction is decoded (to determine what
needs to be done) and executed by the CPU. []

Flash Movie

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 23



Instruction Execute Cycle

¥

/nstruction
Fetch

|

/nstruction
Decode

¥

Operand
Fetch

¥

Infinite Cycle

Execute

¥

Writeback
Result

1A-32 Architecture

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value and status

Deposit results in storage for later use

COE 205 — Computer Organization and Assembly Language — KFUPM slide 24



Instruction Execution Cycle - cont'd

. program
*» Instruction Fetch ML [12 [13 [ 14 ]
fetch
. memory
¢ Instruction Decode op1 —<ad ]
op2
registers ist
‘:’ Operand FetCh o Y__ instruction
A s | | register
\J
s* Execute o
(9]

: | S

< Result Writeback £ £ Lok
flags - ALU [¢—
i}execute
= Execution cycle >
[F ID OF IE WB
Instruction | Instruction | Operand - {Instruction |~ Result" | Instruction | Instruction | “Operand | Instruction|  Result |
fetch decode fetch execute | write back | fetch decode fetch execute | write back
/

1A-32 Architecture

Instruction execution phase

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 25



Pipelined Execution

 Instruction execution can be divided into stages

“* Pipelining makes it possible to start an instruction before
completing the execution of previous one

Stages
S1 | s2]|sS3|s4|ss5] se
1 | 11
2 -1
3 M I-1
4 17244 I-1
o | 5 W 10g,, -1
Q@ AR 7
o | 6 Q Sy -1
S 7 [ " S
8 -2 "N A “Uy
9 -2 117
10 -2 >
11 -2
12 -2

1A-32 Architecture

For kA stages and 77 instructions, the
number of required cycles is: A+ n—1

Stages

1 | I-1

2 | -2 | I
o | 8 2 | 11
S 4 - -2 | I-1
O | 5 | Pipelined | 112 | I

S | Execution 2 | I
! [-2

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 26



Wasted Cycles (pipelined)

“* When one of the stages requires two or more clock
cycles to complete, clock cycles are again wasted

< Assume that stage S4 is the Stages
execute stage exe

s1|s2]s3[s4]s5] s6
< Assume also that S4 requires 1| -
2 clock cycles to complete i :2 :; —
< As more instructions enter the & | 2 I3 | 12 | M
ineli d | Q1 5 -3 | I-1
pipeline, wasted cycles occur & [ TEEE
7 [-2 -1
< For kstages, where one 8 TRRE
stage requires 2 cycles, n 9 I3 12
Instructions require A+ 2n-1 10 -3
cycles 11 -3

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 27



Superscalar Architecture

¢ A superscalar processor has multiple execution pipelines

¢ The Pentium processor has two execution pipelines

< Called U and V pipes

** In the following, stage
S4 has 2 pipelines

<> Each pipeline still
requires 2 cycles

<> Second pipeline
eliminates wasted cycles

<> For kstages and n
Instructions, number of
cycles=k+n

Stages

—S4—
S1 S2 S3 u v S5 S6
-1
[-2 I-1
[-3 -2 I-1
-4 | 1-3 | 12 | I-1
-4 -3 I-1 -2
-4 -3 -2 -1
-3 | 1-4 | 1.2 | I-1
I-4 [-3 [-2
-4 -3
-4

Cycles
OO(INO|OPA WIN|—

—
o

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 28



Next ...

** Intel Microprocessors
** |A-32 Registers
 Instruction Execution Cycle

* 1A-32 Memory Management

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 29



Modes of Operation

*+ Real-Address mode (original mode provided by 8086)
< Only 1 MB of memory can be addressed, from 0 to FFFFF (hex)
<> Programs can access any part of main memory
< MS-DOS runs in real-address mode

“* Protected mode
< Each program can address a maximum of 4 GB of memory
<> The operating system assigns memory to each running program
< Programs are prevented from accessing each other's memory
< Native mode used by Windows NT, 2000, XP, and Linux

*** Virtual 8086 mode

<> Processor runs in protected mode, and creates a virtual 8086
machine with 1 MB of address space for each running program

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 30



Memory Segmentation

Memory segmentation is necessary since the 20-bits memory
addresses cannot fit in the 16-bits CPU registers

Since x86 registers are 16-bits wide, a memory segment is made of
216 consecutive words (i.e. 64K words)

Each segment has a number identifier that is also a 16-bit number
(i.e. we have segments numbered from O to 64K)

A memory location within a memory segment is referenced by
specifying its offset from the start of the segment. Hence the first
word in a segment has an offset of O while the last one has an offset
of FFFFh

To reference a memory location its logical address has to be
specified. The logical address is written as:

< Segment number:offset

For example, A43F:3487h means offset 3487h within segment
A43Fnh.

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 31



Program Segments

* Machine language programs usually have 3 different parts stored in
different memory segments:

< Instructions: This is the code part and is stored in the code segment

<~ Data: This is the data part which is manipulated by the code and is
stored in the data segment

< Stack: The stack is a special memory buffer organized as Last-In-First-
Out (LIFO) structure used by the CPU to implement procedure calls
and as a temporary holding area for addresses and data. This data
structure is stored in the stack segment

% The segment numbers for the code segment, the data segment, and
the stack segment are stored in the segment registers CS, DS, and
SS, respectively.

s Program segments do not need to occupy the whole 64K locations
In a segment

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 32



Real Address Mode

< A program can access up to six segments

at any time CODE
< Code segment
< Stack segment STACK
< Data segment -
< Extra segments (up to 3) SS DATA
< Each segment is 64 KB > o
% Logical address gz
< Segment = 16 bits DATA
< Offset = 16 bits
DATA

¢ Linear (physical) address = 20 bits

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM

slide 33




Logical to Linear Address Translation

Linear address = Segment x 10 (hex) + Offset

Example ‘19 Segment register 4‘6;] 00 OU|
_ \ —
segment = A1FO (hex) e s 0

[0 000 { Offset value

offset = 04CO0 (hex)
logical address = A1F0:04CO0 (hex)

what is the linear address? N/

ADDER |

Solution:

A1FOO (add O to segment in hex) ﬁ#J Lﬁ
+ O4CO (Offset |n heX) -|Ig 20-bit physical memory address Ol
A23CO (20-bit linear address in hex)

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 34



Segment Overlap

% There is a lot of Over|apping End of Segment 1 | 1000F
between segments in the main =
memaory. 10000

End of 2egment 0 OFFFF

“ A new segment starts every OFFFE
10h locations (i.e. every 16
locations). 00021

_ Start of Segment 2 00020

 Starting address of a segment 0001F
always has a Oh LSD

J ' 00011

RR | . Start of Segment 1 000710

» Due to segments overlapping 2000F
logical addresses are not

. Q0003
unique . (0005
00001

Start of Segment 0 00000

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM

slide 35



Your turn. ..

What linear address corresponds to logical address
028F:00307?

Solution: 028F0 + 0030 = 02920 (hex)

Always use hexadecimal notation for addresses

What logical address corresponds to the linear address

Many different segment:offset (logical) addresses can
produce the same linear address 28F30h. Examples:

28F3:0000, 28F2:0010, 28F0:0030, 28B0:0430, . . .

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 36




Flat Memory Model

“* Modern operating systems turn segmentation off

“+ Each program uses one 32-bit linear address space
< Up to 232 = 4 GB of memory can be addressed
< Segment registers are defined by the operating system

< All segments are mapped to the same linear address space

“ In assembly language, we use .MODEL flat directive

< To indicate the Flat memory model

* A linear address Is also called a virtual address
< Operating system maps virtual address onto physical addresses

< Using a technique called paging

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 37



Programmer View of Flat Memory

» Same base address for all segments | inear address space of
% All segments are mapped to the same @ program (up to 4 GB)

linear address space 32-bit address
. ESI
*» EIP Regqister =01 DATA
< Points at next instruction 32-bit address
_ EIP
* ESI| and EDI Registers CODE
. 32-bit address
< Contain data addresses =P | STACK
< Used also to index arrays ESP >
° : CS
*» ESP and EBP Registers = Unused
< ESP points at top of stack SS >
< EBP is used to address parameters and =S b;se ddress = 0
Varlables On the StaCk for all Segmen_ts

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 38



Protected Mode Architecture

** Logical address consists of
< 16-bit segment selector (CS, SS, DS, ES, FS, GS)
< 32-bit offset (EIP, ESP, EBP, ESI ,EDI, EAX, EBX, ECX, EDX)

“* Segment unit translates logical address to linear address

< Using a segment descriptor table

< Linear address is 32 bits (called also a virtual address)

“* Paging unit translates linear address to physical address

<> Using a page directory and a page table

Logical
address

1A-32 Architecture

S

Segment
translation

32-bit

—

linear
address

Page
translation

32-bit
— physical
address

COE 205 — Computer Organization and Assembly Language — KFUPM slide 39



Logical to Linear Address Translation

SEGMENT SELECTOR
15 3210
INDEX TI| RPL

K_J

Upper 13 bits of

DESCRIPTOR TABLE

segment selector
are used to index
the descriptor table

OFFSET
31

N

e

N ACCESS RIGHTS
Segment
descriptor LIMIT
BASE ADDRESS

Tl = Table Indicator

Select the descriptor table
0 = Global Descriptor Table

1 = Local Descriptor Table

1A-32 Architecture

A

GDTR, LDTR

"
32-bit base address

31

LINEAR ADDRESS

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 40



Segment Descriptor Tables

¢ Global descriptor table (GDT)
< Only one GDT table is provided by the operating system

< GDT table contains segment descriptors for all programs

< Also used by the operating system itself

< Table is initialized during boot up

< GDT table address is stored in the GDTR register

<> Modern operating systems (Windows-XP) use one GDT table

¢ Local descriptor table (LDT)
<> Another choice is to have a unique LDT table for each program
< LDT table contains segment descriptors for only one program
< LDT table address is stored in the LDTR register

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 41



Segment Descriptor Details

+» Base Address

< 32-bit number that defines the starting location of the segment
< 32-bit Base Address + 32-bit Offset = 32-bit Linear Address

% Segment Limit
< 20-bit number that specifies the size of the segment

< The size is specified either in bytes or multiple of 4 KB pages

<> Using 4 KB pages, segment size can range from 4 KB to 4 GB
* Access Rights

< Whether the segment contains code or data
< Whether the data can be read-only or read & written

< Privilege level of the segment to protect its access

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 42



Segment Visible and Invisible Parts

** Visible part = 16-bit Segment Register
< CS, SS, DS, ES, FS, and GS are visible to the programmer
¢ Invisible Part = Segment Descriptor (64 bits)

< Automatically loaded from the descriptor table

Visible part Invisible part
Segment selector CS
Segment selector SS
Segment selector DS
Segment selector ES
Segment selector ES
Segment selector GS

1A-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 43



Paging

*» Paging divides the linear address space into ...
< Fixed-sized blocks called pages, Intel IA-32 uses 4 KB pages

¢ Operating system allocates main memory for pages
< Pages can be spread all over main memory
< Pages in main memory can belong to different programs
< If main memory is full then pages are stored on the hard disk

* OS has a Virtual Memory Manager (VMM)

< Uses page tables to map the pages of each running program
< Manages the loading and unloading of pages

¢ As a program is running, CPU does address translation

*» Page fault: issued by CPU when page is not in memory

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 44



Paging - cont'd

Main Memory

The operating

systemuses | #- | Page m . Page n | &%
page tablesto | 5 & S
map the pages | S & cg

in the linear | g+« [ _P3982 Page2 123
virtual address | = g | Pagel Pagel | =g

space onto g § Page 0 Page O é’ g
main memory /

: The operating
Each running Pages that cannot | [\y system swaps
program has fit In main memory Y/ pages between
its own page are stored on the / memory and the
table hard disk hard disk

N

As a program is running, the processor translates the linear virtual addresses
onto real memory (called also physical) addresses

IA-32 Architecture COE 205 — Computer Organization and Assembly Language — KFUPM slide 45



