Basic Concepts

COE 205

Computer Organization and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Outline

“* Welcome to COE 205

“ Assembly-, Machine-, and High-Level Languages
* Assembly Language Programming Tools

“* Programmer’s View of a Computer System

s+ Basic Computer Organization

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 2

Welcome to COE 205

“ Assembly language programming
¢ Basics of computer organization
“ CPU design
¢ Software Tools
< Microsoft Macro Assembler (MASM) version 6.15
< Link Libraries provided by Author (Irvine32.lib and Irivinel6.lib)

< Microsoft Windows debugger
< ConTEXT Editor

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 3

Textbook

** Kip Irvine: Assembly Language for Intel-Based
Computers

< 4th edition (2003)
< 5th edition (2007)

ASSEMBLY ASSEMBLY LANGUAGE
LANGUAGE FOR FOR INTEL-BASED COMPUTERS

INTEL-BASED FIFTH EDITION
COMPUTERS

&7
Kip R IRV!NE‘_,;,;/ KIP R. IRVINE

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 4

Course Objectives

After successfully completing the course, students will be able to:

% Describe the basic components of a computer system, its instruction
set architecture and its basic fetch-execute cycle operation.

“ Describe how data is represented in a computer and recognize
when overflow occurs.

% Recognize the basics of assembly language programming including
addressing modes.

* Analyze, design, implement, and test assembly language programs.

*» Recognize, analyze, and design the basic components of a simple
CPU including datapath and control unit design alternatives.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 5

Course Learning Outcomes
*» Ability to analyze, design, implement, and test assembly
language programs.

¢ Ability to use tools and skills in analyzing and debugging
assembly language programs.

“* Ability to design the datapath and control unit of a simple
CPU.

» Ability to demonstrate self-learning capability.

¢ Ability to work in a team.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 6

Required Background

¢+ The student should already be able to program
confidently in at least one high-level programming
language, such as Java or C.

“* Prerequisite
< COE 202: Fundamentals of computer engineering
< ICS 102: Introduction to computing

¢ Only students with computer engineering major should
be registered in this course.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 7

Grading Policy

*» Discussions & Reflections 5%

* Programming Assignments 10%

* Quizzes 10%

s Exam | 15% (Sun. March 28, 2010)
s Exam Il 20% (Th. May 20, 2010)

* Laboratory 20%

s Final 20%

< Attendance will be taken regularly.

< Excuses for officially authorized absences must be presented no later
than one week following resumption of class attendance.

< Late assignments will be accepted but you will be penalized 10% per
each late day.

<> A student caught cheating in any of the assignments will get O out of
10%.

<> No makeup will be made for missing Quizzes or Exams.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 8

Course Topics

» Introduction and Information Representation. 7 lectures
Introduction to computer organization. Instruction Set Architecture.
Computer Components. Fetch-Execute cycle. Signed number
representation ranges. Overflow.

» Assembly Language Conceplts. 7 lectures
Assembly language format. Directives vs. instructions. Constants
and variables. I/O. INT 21H. Addressing modes.

s 8086 Assembly Language Programming. 19 lectures
Register set. Memory segmentation. MOV instructions. Arithmetic
Instructions and flags (ADD, ADC, SUB, SBB, INC, DEC, MUL,
IMUL, DIV, IDIV). Compare, Jump and loop (CMP, JMP, Cond.
jumps, LOOP). Logic, shift and rotate. Stack operations.
Subprograms. Macros. /O (IN, OUT). String instructions. Interrupts
and interrupt processing, INT and IRET.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 9

Course Topics

s CPU Design: 12 lectures
Register transfer. Data-path design. 1-bus, 2-bus and 3-bus CPU

organization. Fetch and execute phases of instruction processing.
Performance consideration. Control steps. CPU-Memory interface
circuit. Hardwired control unit design. Microprogramming.
Horizontal and Vertical microprogramming. Microprogrammed
control unit design.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 10

Next ...

“* Welcome to COE 205

* Assembly-, Machine-, and High-Level Languages
“ Assembly Language Programming Tools

“* Programmer’s View of a Computer System

s+ Basic Computer Organization

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 11

Some Important Questions to Ask

** What is Assembly Language?

“* Why Learn Assembly Language?

“* What is Machine Language?

“* How is Assembly related to Machine Language?
“* What is an Assembler?

“* How is Assembly related to High-Level Language®?

* Is Assembly Language portable?

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 12

A Hierarchy of Languages

Application programs

High-level languages
Machine-independent High-level languages

Machine-specific Low-level languages
Assembly language

Machine language

Microprogram control

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 13

Assembly and Machine Language

Machine language

L)

*

<> Native to a processor: executed directly by hardware
< Instructions consist of binary code: 1s and Os

L)

>

Assembly language

L)

< A programming language that uses symbolic names to represent
operations, registers and memory locations.

< Slightly higher-level language
<> Readability of instructions is better than machine language

< One-to-one correspondence with machine language instructions

)

*

Assemblers translate assembly to machine code

L)

)

*

Compilers translate high-level programs to machine code
< Either directly, or

L)

< Indirectly via an assembler

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 14

Compiler and Assembler

High-level languages

@ Assembly language

Machine language

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 15

Instructions and Machine Language
“ Each command of a program is called an instruction (it
Instructs the computer what to do).

s Computers only deal with binary data, hence the
Instructions must be in binary format (0Os and 1) .

¢ The set of all instructions (in binary form) makes up the
computer's machine language. This is also referred to as
the instruction set.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 16

Instruction Fields

“* Machine language instructions usually are made up of
several fields. Each field specifies different information
for the computer. The major two fields are:

“* Opcode field which stands for operation code and it
specifies the particular operation that is to be performed.
<> Each operation has its unique opcode.
“ Operands fields which specify where to get the source

and destination operands for the operation specified by
the opcode.

<> The source/destination of operands can be a constant, the
memory or one of the general-purpose registers.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 17

Basic Concepts

Assembly vs. Machine Code

Instruction Address |Machine Code | Assembly Instruction
MACH A

MO A,
MO A,
MO A,
MOY B,
MO 0,
MO D,
A ALK
A AR
MACH A

0005
000s
OO0E
Oo0E
0077
00174
0017
00TA,
iyle
00 1E
Q0020
0023
0026
00238
002 A
O0Z2E
0031
0033

Es 0001
Es 0002
Es 0003
Bz 0004
EE 0001
B9 0001
EA 0007
SE C3
SE C1
SB C2
83 C0 01
83 C0 02
03 C3
03 1

03 06 0000

83 B8 01
2B C3
05 1234

1

— s = I o

EX
CH
B

ADD AT
ADD A 2
ADD AX BX
ADD A, CH

ADD A

SUE A T
SUE AX, BX
ADD A, 12340

COE 205 — Computer Organization and Assembly Language — KFUPM

Hash Movie

slide 18

Translating Languages

English: D is assigned the sum of A times B plus 10.

v

High-Level Language: D =A*B + 10

A statement in a high-level language is translated
typically into several machine-level instructions

Intel Assembly Language:

mov eax, A
mul B
add eax, 10

mov D, eax

Basic Concepts

N

Intel Machine Language:
Al 00404000

F7 25 00404004

83 CO OA

A3 00404008

COE 205 — Computer Organization and Assembly Language — KFUPM slide 19

Mapping Between Assembly Language
and HLL

¢ Translating HLL programs to machine language
programs is not a one-to-one mapping

¢ A HLL instruction (usually called a statement) will be
translated to one or more machine language instructions

Mapping between some C instructions and 8086 assembly language

Instruction Class _ Assembly Language

Data Moverment a =25 MO a3, 5

WO ax a
Anthmetic/Logic bh=a+ 5 ADD ax, o

WO b, &
Contral Floey goto LEL |JMF LEL

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 20

Advantages of High-Level Languages

“* Program development is faster

< High-level statements: fewer instructions to code

“* Program maintenance is easier

< For the same above reasons

“* Programs are portable

< Contain few machine-dependent details

= Can be used with little or no maodifications on different machines
< Compiler translates to the target machine language

< However, Assembly language programs are not portable

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 21

Why Learn Assembly Language?

Accessibility to system hardware
< Assembly Language is useful for implementing system software

< Also useful for small embedded system applications

Space and Time efficiency
< Understanding sources of program inefficiency
< Tuning program performance

< Writing compact code

Writing assembly programs gives the computer designer the needed
deep understanding of the instruction set and how to design one

To be able to write compilers for HLLs, we need to be expert with
the machine language. Assembly programming provides this
experience

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 22

Assembly vs. High-Level Languages

*Some representative types of applications:

Type of Application

High-Level Languages

Assembly Language

Business application soft-
ware, written for single
platform, medium to large

size.

Formal structures make it easy to
organize and maintain large sec-

tions of code.

Minimal formal structure, so one
must be imposed by program-
mers who have varying levels of
experience. This leads to difficul-
ties maintaining existing code.

Hardware device driver.

Language may not provide for
direct hardware access. Even if it
does, awkward coding techniques
must often be used. resulting in
maintenance difficulties.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and

well documented.

Business application written
for multiple platforms (dif-

ferent operating svstems).

Usuvally very portable. The source
code can be recompiled on each
target operating system with mini-
mal changes.

Must be recoded separately for
each platform. often using an
assembler with a different syn-
tax. Difficult to maintain.

Embedded systems and
computer games requiring

direct hardware access.

Produces too much executable
code, and may not run efficiently.

[deal. because the executable

code 1s small and runs quickly.

Basic Concepts

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 23

Next ...

“* Welcome to COE 205

“ Assembly-, Machine-, and High-Level Languages
* Assembly Language Programming Tools

“* Programmer’s View of a Computer System

s+ Basic Computer Organization

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 24

Assembler

*» Software tools are needed for editing, assembling,
linking, and debugging assembly language programs

“ An assembler is a program that converts source-code
programs written in assembly language into object files
In machine language

** Popular assemblers have emerged over the years for the
Intel family of processors. These include ...

< TASM (Turbo Assembler from Borland)
< NASM (Netwide Assembler for both Windows and Linux), and

< GNU assembler distributed by the free software foundation

“* We will use MASM (Macro Assembler from Microsoft)

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 25

Linker and Link Libraries

¢ You need a linker program to produce executable files

¢ It combines your program's object file created by the
assembler with other object files and link libraries, and
produces a single executable program

“* LINK32.EXE is the linker program provided with the
MASM distribution for linking 32-bit programs

** We will also use a link library for input and output

¢ Called Irvine32.lib developed by Kip Irvine

<> Works in WIin32 console mode under MS-Windows

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 26

Assemble and Link Process

/L

Source

File
%

/L

Source

Y

Assembler

/L
Object

File
%

/L

Source

Y

Assembler

File
%

/L
Object

File

%

A project may consist of multiple source files

A 4

Assembler

File
%

/L
Object

File

/L

\ 4

Executable

Linker File

A

Link
Libraries

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

Basic Concepts

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 27

*» Allows you to trace the execution of a program

Debugger

¢ Allows you to view code, memory, registers, etc.

“* We will use the 32-bit Windows debugger

C:',Documents and SettingsMuhamed Mudav=} | |

Registers - Dperators.exe [| |

INCLUDE JIrvine3Z2.inc | customize. ..

.data Reg | Value

bytel EYTE 10,20,30,40 al 1

arrayl WoORD 30 DUOP(2),0,0 hl o

array: WORD 5 DUF (3 DUR(?]) o1 1o

aFr§y3 DWORD 01234567h, 2,3, 4 dl =k Memory - stack.exe - WinDbg:6.5.0003.7 =]

digicdte BYTE 112345678 .0 aX 1 Wirtual: |12££94 Previous

myirray EYTE 10h,Z0h,30h,40h, 50 o =000 '

cx EFfRO Display format: |§L|:|ng Hex j Mest

r.n:DiiEPRDC dx eh94q o0iz2££94 Q0000000 00000£fhO Qo0ooooil oooooooil
; Demonstrating TYPE operator eax i O0iz2ff=4 00000006 =1143d04 S5055324fd 7e90eode
mov al, TYPE byted ehx 2££dennn O01zffh4 ToSlefdd fffffffe 00000009 O01Z£ffS
e hl‘ TYPE arrayl J— 1z ££h0 001z2ffcd 7FoSi6fd? 00080000 00fofafc TE£48000
mow o1 TYPE arrey3 e dx ~e00eho4 001zffd4 50542935 0012ffcd 595463f0 ffffffff
- dl; TYPE digitStr = egi fofaon 00il2ffed V7c839aal 7oSloefed Q0000000 OOQOOOOOO

< ! > < ooiz£££f4 Q0O00O00O0 00401005 Q0000000 78746341

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 28

Editor

¢ Allows you to create assembly language source files

“* Some editors provide syntax highlighting features and
can be customized as a programming environment

€ ConTEXT - [C:\Documents and Settings\Muhamed Mudawar\My Documents\COE 205\Lab\01-Toals\welc. .. g@

C File Edit “iew Format Project Tools Options Window Help -8 X
- " [- 1 i i i L 7
*HO TG i) Jo B N 8 B B By MasH

f; welcome.asm *

14 welcomws BYTE fWeloomwms to COE 2057, CR,LF S
1&5 BYTE fComwmputer Organization and Assewbly Language™, CR,LF

1& BYTE "Enjov thiz course and its lab™, CR,LF,0O

17

18 .code

12 main PROC
20 @ Clear the =screen

Z1 call Clrsor » Call procedure Clraor

22

22 @ Write a null-terminated string to standard output

z4 lea edx, welocomes } load effective address of welcomwe into edx
2E call Write3tring P write string whose address iz in edx

ZE exXit

27 main EHDP
z2 EHD main

Ln 25, Col B3 [nzert Sel: Marmal b odified 0os File size: BEY

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 29

Next ...

“* Welcome to COE 205

“ Assembly-, Machine-, and High-Level Languages
“ Assembly Language Programming Tools

“* Programmer’s View of a Computer System

s+ Basic Computer Organization

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 30

Programmer’s View of a Computer System

Increased level
of abstraction

A

Basic Concepts

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic

COE 205 — Computer Organization and Assembly Language — KFUPM

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

\4

Each level
hides the
details of the
level below it

slide 31

Programmer's View - 2

» Application Programs (Level 5)
< Written in high-level programming languages
< Such as Java, C++, Pascal, Visual Basic . . .
<> Programs compile into assembly language level (Level 4)

s Assembly Language (Level 4)
< Instruction mnemonics are used
<> Have one-to-one correspondence to machine language
< Calls functions written at the operating system level (Level 3)
< Programs are translated into machine language (Level 2)

¢ Operating System (Level 3)
<> Provides services to level 4 and 5 programs
< Translated to run at the machine instruction level (Level 2)

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 32

Programmer's View - 3

¢ Instruction Set Architecture (Level 2)
<> Specifies how a processor functions
<> Machine instructions, registers, and memory are exposed
<> Machine language is executed by Level 1 (microarchitecture)

¢ Microarchitecture (Level 1)
< Controls the execution of machine instructions (Level 2)
< Implemented by digital logic (Level 0)

¢ Digital Logic (Level 0)
< Implements the microarchitecture

< Uses digital logic gates
< Logic gates are implemented using transistors

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 33

Instruction Set Architecture (ISA)

¢ Collection of assembly/machine instruction set of the
machine

¢ Machine resources that can be managed with these
Instructions

< Memory
< Programmer-accessible registers.

*» Provides a hardware/software interface

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 34

Instruction Set Architecture (ISA)

&1 GBI I EilsE WA il 71] |
(introduced 1975) (imtrodoced 19749 (imtrodoced 1951) (imtrodweed 159493)
- - p i
i | ‘-.“{ - B o
15 R | Daw _|BX - | Ad-hit
b special | X regisiers O |12 penerul__ foating point
purpose | SP | 0% | purpose | R1I | regisbers |
registers P regisers AT | 31
sdzitus o] ik 1l
|— ; | Address | SP :E 1)
‘ £
| amd _[BF | 32 32bit —
T COne | P —
| 2hytes | U — rogistors] B
of i L E::IT‘_::‘:
ey ~ S e L i
[CHPACIIY T | s | L | = |
| = Memory | g i) 11
— sepgment — I
| rednisders | 55 | 1"'I:l:.-[',:-_-.] L |
foweer ES of mali — Pelloe han 50
thien 1400 — memory | | F2-hit special |
(IPE W TR ITRTIES e, — urpose
I "'IP".:"'I':' i | L regisbers i
status I
T Mllcrre than 30 I
. [
| 2®bytes |0 iiksbrctions B PRk
| ofmain | of mzin
IMEITHIEY " memery
— cagacily] 5m 1 - capacily q
1 - | 2%
Morz than 120 Muore than 250
inireclicns inslriclions

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 35

Next ...

“* Welcome to COE 205

“ Assembly-, Machine-, and High-Level Languages
“ Assembly Language Programming Tools

“* Programmer’s View of a Computer System

*» Basic Computer Organization

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 36

Basic Computer Organization

¢ Since the 1940's, computers have 3 classic components:

<> Processor, called also the CPU (Central Processing Unit)

< Memory and Storage Devices
< 1/O Devices

*+» Interconnected with one or more buses

“» Bus consists of data bus
< Data Bus g]
< Address Bus . 0 o
rocessor Memory Device Device

(CPU) 1

< Control Bus

| ALu | cu | clock |

#2

control bus

address bus

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 37

Processor (CPU)

» Processor consists of CPU
{- Datapath] p— E EIIE
Hash Movie — |
= ALU =
= Registers T Control Unit|
<> Control unit S —
= Foreee
s« ALU Rash Movie [Rosers
< Performs _arlthme_tlc — |-=m~| e
and logic instructions o j
«» Control unit (CU) =

< Generates the control signals required to execute instructions

“* Implementation varies from one processor to another

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 38

Clock

¢ Synchronizes Processor and Bus operations

¢ Clock cycle = Clock period = 1 / Clock rate
I L

k— Cyclel —>— Cycle2 —>— Cycle3 —>

¢ Clock rate = Clock frequency = Cycles per second
<1 Hz =1 cycle/sec 1 KHz = 103 cycles/sec
<1 MHz = 106° cycles/sec 1 GHz = 10° cycles/sec
<> 2 GHz clock has a cycle time = 1/(2x10°) = 0.5 nanosecond (ns)

¢ Clock cycles measure the execution of instructions

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 39

Memory

¢ Ordered sequence of bytes

< The sequence number is called the memory address

*+ Byte addressable memory
< Each byte has a unique address

<> Supported by almost all processors

*» Physical address space
<> Determined by the address bus width
< Pentium has a 32-bit address bus
= Physical address space = 4GB = 23?bytes

< Itanium with a 64-bit address bus can support

= Up to 254 bytes of physical address space

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 40

Address Space

Address Address
(in decimal) (in hex)
221 FFFFFFFF
FFFFFFFE
FFFFFFFD
. Address Space Is
. the set of memory
locations (bytes) that
° can be addressed
2 00000002
1 00000001
0 00000000

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 41

CPU Memory Interface

«» Address Bus

< Memory address is put on address bus

<~ If memory address = m bits then 2" locations are addressed

+»» Data Bus: b-bit bi-directional bus

<> Data can be transferred in both directions on the data bus

<> Note that b is not necessary equal to w or s. So data transfers
might take more than a single cycle (if w > b) .

s+ Control Bus

< Signals control
transfer of data

< Read request
< Write request
< Complete transfer

Basic Concepts

CPU

m

MAR

.

MDR

El

Address Bus

>

Control Signals

Register

File

>

>
>

Main Memory

5
e

R/W

Request

Complete

address

L]
1

3
4

2m _ 1

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 42

Memory Devices

% Random-Access Memory (RAM)

$ e e

Basic Concepts

Usually called the main memory
It can be read and written to

It does not store information permanently (Volatile , when it is powered
off, the stored information are gone)

Information stored in it can be accessed in any order at equal time
periods (hence the name random access)

Information is accessed by an address that specifies the exact location
of the piece of information in the RAM.

DRAM = Dynamic RAM
= 1-Transistor cell + trench capacitor
= Dense but slow, must be refreshed
» Typical choice for main memory
SRAM: Static RAM
= 6-Transistor cell, faster but less dense than DRAM
= Typical choice for cache memory

COE 205 — Computer Organization and Assembly Language — KFUPM slide 43

Memory Devices

<* ROM (Read-Only-Memory)

< A read-only-memory, non-volatile i.e. stores information

permanently V
< Has random access of stored information NG]

<> Used to store the information required to startup the computer
< Many types: ROM, EPROM, EEPROM, and FLASH

< FLASH memory can be erased electrically in blocks
% Cache

< A very fast type of RAM that is used to store information that is
most frequently or recently used by the computer

< Recent computers have 2-levels of cache; the first level is faster
but smaller in size (usually called internal cache), and the
second level is slower but larger in size (external cache).

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 44

Processor-Memory Performance Gap

1000

100

Performance
|_\
o

o
o0
(0]
—

CPU: 55% per year

“Moore’s Law”

Processor-Memory
Performance Gap:
(grows 50% per year)

DRAM: 7% per year

1981 |
1982 |
1983
1984 |
1985 |
1986 |
1987 |
1988 |
1989 |
1990 |
1991 |

1992 |
1993 |
1994 |
1995 |
1996
1997 |
1998
1999
2000

* 1980 — No cache in microprocessor

*» 1995 — Two-level cache on microprocessor

Basic Concepts

COE 205 — Computer Organization and Assembly Language — KFUPM slide 45

The Need for a Memory Hierarchy

“* Widening speed gap between CPU and main memory
<> Processor operation takes less than 1 ns

< Main memory requires more than 50 ns to access

¢ Each instruction involves at least one memory access
< One memory access to fetch the instruction

< Additional memory accesses for instructions involving memory
data access

“* Memory bandwidth limits the instruction execution rate
% Cache memory can help bridge the CPU-memory gap

% Cache memory is small in size but fast

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 46

Typical Memory Hierarchy

“* Registers are at the top of the hierarchy
< Typical size <1 KB
< Access time < 0.5 ns

*» Level 1 Cache (8 — 064 KB) Microprocessor
<> Accesstime: 0.5-1ns Registers
% L2 Cache (512KB — 8MB) L1 Cache
< Accesstime: 2-10ns _ L2 Cache _
[} N " e}
“ Main Memory (1-2GB) & Memory Bus §
< Access time: 50 — 70 ns Memory
¢ Disk Storage (> 200 GB) /O Bus

< Access time: milliseconds Disk, Tape, etc

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 47

Magnetic Disk Storage

: H \ Disk Access Time =
. . Q 3 Seek Time +

Rotation Latency +

% Transfer Time

Read/write head

Seek Time: head movement to the
desired track (milliseconds)

Rotation Latency: disk rotation until

desired sector arrives under the head Direction of Platter
rotation

Transfer Time: to transfer data Spindle

—

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 48

Example on Disk Access Time

*» Given a magnetic disk with the following properties
< Rotation speed = 7200 RPM (rotations per minute)
< Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

s Calculate
<> Time of one rotation (in milliseconds)
< Average time to access a block of 32 consecutive sectors

s Answer
< Rotations per second = 7200/60 = 120 RPS
< Rotation time in milliseconds = 1000/120 = 8.33 ms

< Average rotational latency = time of half rotation = 4.17 ms
< Time to transfer 32 sectors = (32/200) * 8.33 = 1.33 ms

< Average accesstime =8+ 4,17+ 1.33=13.5ms

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 49

