
Basic Concepts

COE 205

Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 2

Outline

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 3

Welcome to COE 205

 Assembly language programming

 Basics of computer organization

 CPU design

 Software Tools

 Microsoft Macro Assembler (MASM) version 6.15

 Link Libraries provided by Author (Irvine32.lib and Irivine16.lib)

 Microsoft Windows debugger

 ConTEXT Editor

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 4

Textbook

 Kip Irvine: Assembly Language for Intel-Based

Computers

 4th edition (2003)

 5th edition (2007)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 5

Course Objectives
After successfully completing the course, students will be able to:

 Describe the basic components of a computer system, its instruction

set architecture and its basic fetch-execute cycle operation.

 Describe how data is represented in a computer and recognize

when overflow occurs.

 Recognize the basics of assembly language programming including

addressing modes.

 Analyze, design, implement, and test assembly language programs.

 Recognize, analyze, and design the basic components of a simple

CPU including datapath and control unit design alternatives.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 6

Course Learning Outcomes

 Ability to analyze, design, implement, and test assembly

language programs.

 Ability to use tools and skills in analyzing and debugging

assembly language programs.

 Ability to design the datapath and control unit of a simple

CPU.

 Ability to demonstrate self-learning capability.

 Ability to work in a team.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 7

Required Background

 The student should already be able to program

confidently in at least one high-level programming

language, such as Java or C.

 Prerequisite

 COE 202: Fundamentals of computer engineering

 ICS 102: Introduction to computing

 Only students with computer engineering major should

be registered in this course.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 8

Grading Policy
 Discussions & Reflections 5%

 Programming Assignments 10%

 Quizzes 10%

 Exam I 15% (Sun. March 28, 2010)

 Exam II 20% (Th. May 20, 2010)

 Laboratory 20%

 Final 20%

 Attendance will be taken regularly.

 Excuses for officially authorized absences must be presented no later
than one week following resumption of class attendance.

 Late assignments will be accepted but you will be penalized 10% per
each late day.

 A student caught cheating in any of the assignments will get 0 out of
10%.

 No makeup will be made for missing Quizzes or Exams.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 9

Course Topics
 Introduction and Information Representation: 7 lectures

Introduction to computer organization. Instruction Set Architecture.

Computer Components. Fetch-Execute cycle. Signed number

representation ranges. Overflow.

 Assembly Language Concepts: 7 lectures

Assembly language format. Directives vs. instructions. Constants

and variables. I/O. INT 21H. Addressing modes.

 8086 Assembly Language Programming: 19 lectures

Register set. Memory segmentation. MOV instructions. Arithmetic

instructions and flags (ADD, ADC, SUB, SBB, INC, DEC, MUL,

IMUL, DIV, IDIV). Compare, Jump and loop (CMP, JMP, Cond.

jumps, LOOP). Logic, shift and rotate. Stack operations.

Subprograms. Macros. I/O (IN, OUT). String instructions. Interrupts

and interrupt processing, INT and IRET.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 10

Course Topics
 CPU Design: 12 lectures

Register transfer. Data-path design. 1-bus, 2-bus and 3-bus CPU

organization. Fetch and execute phases of instruction processing.

Performance consideration. Control steps. CPU-Memory interface

circuit. Hardwired control unit design. Microprogramming.

Horizontal and Vertical microprogramming. Microprogrammed

control unit design.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 11

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 12

Some Important Questions to Ask

What is Assembly Language?

Why Learn Assembly Language?

What is Machine Language?

 How is Assembly related to Machine Language?

What is an Assembler?

 How is Assembly related to High-Level Language?

 Is Assembly Language portable?

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 13

A Hierarchy of Languages

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 14

Assembly and Machine Language
 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 A programming language that uses symbolic names to represent

operations, registers and memory locations.

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

 Either directly, or

 Indirectly via an assembler

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 15

Compiler and Assembler

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 16

Instructions and Machine Language

 Each command of a program is called an instruction (it

instructs the computer what to do).

 Computers only deal with binary data, hence the

instructions must be in binary format (0s and 1s) .

 The set of all instructions (in binary form) makes up the

computer's machine language. This is also referred to as

the instruction set.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 17

Instruction Fields

Machine language instructions usually are made up of

several fields. Each field specifies different information

for the computer. The major two fields are:

 Opcode field which stands for operation code and it

specifies the particular operation that is to be performed.

 Each operation has its unique opcode.

 Operands fields which specify where to get the source

and destination operands for the operation specified by

the opcode.

 The source/destination of operands can be a constant, the

memory or one of the general-purpose registers.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 18

Assembly vs. Machine Code

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 19

Translating Languages

English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:

mov eax, A

mul B

add eax, 10

mov D, eax

Intel Machine Language:

A1 00404000

F7 25 00404004

83 C0 0A

A3 00404008

A statement in a high-level language is translated

typically into several machine-level instructions

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 20

Mapping Between Assembly Language
and HLL

 Translating HLL programs to machine language

programs is not a one-to-one mapping

 A HLL instruction (usually called a statement) will be

translated to one or more machine language instructions

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 21

Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 22

Why Learn Assembly Language?
 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Space and Time efficiency

 Understanding sources of program inefficiency

 Tuning program performance

 Writing compact code

 Writing assembly programs gives the computer designer the needed

deep understanding of the instruction set and how to design one

 To be able to write compilers for HLLs, we need to be expert with

the machine language. Assembly programming provides this

experience

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 23

Assembly vs. High-Level Languages

Some representative types of applications:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 24

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 25

Assembler

 Software tools are needed for editing, assembling,

linking, and debugging assembly language programs

 An assembler is a program that converts source-code

programs written in assembly language into object files

in machine language

 Popular assemblers have emerged over the years for the

Intel family of processors. These include …

 TASM (Turbo Assembler from Borland)

 NASM (Netwide Assembler for both Windows and Linux), and

 GNU assembler distributed by the free software foundation

We will use MASM (Macro Assembler from Microsoft)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 26

Linker and Link Libraries

 You need a linker program to produce executable files

 It combines your program's object file created by the

assembler with other object files and link libraries, and

produces a single executable program

 LINK32.EXE is the linker program provided with the

MASM distribution for linking 32-bit programs

We will also use a link library for input and output

 Called Irvine32.lib developed by Kip Irvine

 Works in Win32 console mode under MS-Windows

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 27

Assemble and Link Process

Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 28

Debugger

 Allows you to trace the execution of a program

 Allows you to view code, memory, registers, etc.

We will use the 32-bit Windows debugger

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 29

Editor

 Allows you to create assembly language source files

 Some editors provide syntax highlighting features and

can be customized as a programming environment

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 30

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 31

Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Digital Logic
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Increased level

of abstraction

Each level

hides the

details of the

level below it

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 32

Programmer's View – 2

 Application Programs (Level 5)

 Written in high-level programming languages

 Such as Java, C++, Pascal, Visual Basic . . .

 Programs compile into assembly language level (Level 4)

 Assembly Language (Level 4)

 Instruction mnemonics are used

 Have one-to-one correspondence to machine language

 Calls functions written at the operating system level (Level 3)

 Programs are translated into machine language (Level 2)

 Operating System (Level 3)

 Provides services to level 4 and 5 programs

 Translated to run at the machine instruction level (Level 2)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 33

Programmer's View – 3

 Instruction Set Architecture (Level 2)

 Specifies how a processor functions

 Machine instructions, registers, and memory are exposed

 Machine language is executed by Level 1 (microarchitecture)

Microarchitecture (Level 1)

 Controls the execution of machine instructions (Level 2)

 Implemented by digital logic (Level 0)

 Digital Logic (Level 0)

 Implements the microarchitecture

 Uses digital logic gates

 Logic gates are implemented using transistors

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 34

Instruction Set Architecture (ISA)

 Collection of assembly/machine instruction set of the

machine

Machine resources that can be managed with these

instructions

 Memory

 Programmer-accessible registers.

 Provides a hardware/software interface

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 35

Instruction Set Architecture (ISA)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 36

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 37

Basic Computer Organization

 Since the 1940's, computers have 3 classic components:

 Processor, called also the CPU (Central Processing Unit)

 Memory and Storage Devices

 I/O Devices

 Interconnected with one or more buses

 Bus consists of

 Data Bus

 Address Bus

 Control Bus

Processor

(CPU)
Memory

registers

ALU clock

I/O

Device

#1

I/O

Device

#2

data bus

control bus

address bus

CU

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 38

 Processor consists of

 Datapath

 ALU

 Registers

 Control unit

 ALU

 Performs arithmetic

and logic instructions

 Control unit (CU)

 Generates the control signals required to execute instructions

 Implementation varies from one processor to another

Processor (CPU)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 39

 Synchronizes Processor and Bus operations

 Clock cycle = Clock period = 1 / Clock rate

 Clock rate = Clock frequency = Cycles per second

 1 Hz = 1 cycle/sec 1 KHz = 103 cycles/sec

 1 MHz = 106 cycles/sec 1 GHz = 109 cycles/sec

 2 GHz clock has a cycle time = 1/(2×109) = 0.5 nanosecond (ns)

 Clock cycles measure the execution of instructions

Clock

Cycle 1 Cycle 2 Cycle 3

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 40

Memory

 Ordered sequence of bytes

 The sequence number is called the memory address

 Byte addressable memory

 Each byte has a unique address

 Supported by almost all processors

 Physical address space

 Determined by the address bus width

 Pentium has a 32-bit address bus

 Physical address space = 4GB = 232 bytes

 Itanium with a 64-bit address bus can support

 Up to 264 bytes of physical address space

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 41

Address Space

Address Space is

the set of memory

locations (bytes) that

can be addressed

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 42

CPU Memory Interface
 Address Bus

 Memory address is put on address bus

 If memory address = m bits then 2
m

locations are addressed

 Data Bus: b-bit bi-directional bus

 Data can be transferred in both directions on the data bus

 Note that b is not necessary equal to w or s. So data transfers
might take more than a single cycle (if w > b) .

 Control Bus

 Signals control

transfer of data

 Read request

 Write request

 Complete transfer

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 43

Memory Devices
 Random-Access Memory (RAM)

 Usually called the main memory

 It can be read and written to

 It does not store information permanently (Volatile , when it is powered
off, the stored information are gone)

 Information stored in it can be accessed in any order at equal time
periods (hence the name random access)

 Information is accessed by an address that specifies the exact location
of the piece of information in the RAM.

 DRAM = Dynamic RAM

 1-Transistor cell + trench capacitor

 Dense but slow, must be refreshed

 Typical choice for main memory

 SRAM: Static RAM

 6-Transistor cell, faster but less dense than DRAM

 Typical choice for cache memory

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 44

Memory Devices

 ROM (Read-Only-Memory)

 A read-only-memory, non-volatile i.e. stores information

permanently

 Has random access of stored information

 Used to store the information required to startup the computer

 Many types: ROM, EPROM, EEPROM, and FLASH

 FLASH memory can be erased electrically in blocks

 Cache

 A very fast type of RAM that is used to store information that is

most frequently or recently used by the computer

 Recent computers have 2-levels of cache; the first level is faster

but smaller in size (usually called internal cache), and the

second level is slower but larger in size (external cache).

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 45

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9
8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory

Performance Gap:

(grows 50% per year)

P
e
rf

o
rm

a
n
c
e

“Moore’s Law”

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 46

The Need for a Memory Hierarchy

Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 Additional memory accesses for instructions involving memory

data access

Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 47

Typical Memory Hierarchy

 Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)

 Access time: 0.5 – 1 ns

 L2 Cache (512KB – 8MB)

 Access time: 2 – 10 ns

Main Memory (1 – 2 GB)

 Access time: 50 – 70 ns

 Disk Storage (> 200 GB)

 Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

F
a
s
te

r

B
ig

g
e
r

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 48

Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of

rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time =

Seek Time +

Rotation Latency +

Transfer Time

Seek Time: head movement to the

desired track (milliseconds)

Rotation Latency: disk rotation until

desired sector arrives under the head

Transfer Time: to transfer data

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 49

Example on Disk Access Time

 Given a magnetic disk with the following properties

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

 Calculate

 Time of one rotation (in milliseconds)

 Average time to access a block of 32 consecutive sectors

 Answer

 Rotations per second

 Rotation time in milliseconds

 Average rotational latency

 Time to transfer 32 sectors

 Average access time

= 7200/60 = 120 RPS

= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms

= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms

