Lab Manual for
COE 203: Digital Design Lab

Table of Contents

1. Prototyping of Logic Circuits using Discrete Components.............ccceeeu.... 3
2. Prototyping of Logic Circuits using EEPROMSccccccviieviiiceeniennienn 9
3. Introduction to FPGA DeSigN FIOWcoocvviiiriiiiiieieeeese e 13
4. Traffic Light CONIOIErcocveeeeiee e 16
5. Verilog Based Design of Ripple Carry Adder.........cccoeeevevceeciieecieeeeen. 22
6. RTL Verilog Based Design of an Arithmetic Logic Unitcccc........ 26
7. Finite State Machine Design in Verilog........cocovvvieeninsiieeseese e 29
8. Designing a Programmable Digital LOCK..........ccccoeviriieiieniieeee e 33

1. Prototyping of Logic Circuits using Discrete Components

Objectives
e Introduction to ICs, logic families, 74xx, 54xx
e Learn how to read Data sheets, | C diagrams etc.
e Partial familiarization with FPGA board, pins, switches, LEDs and power supply
connections.
e Implementation of a simple combinational circuit using ICs

Material
e |Cs—7400, 7432, 7408 etc
o Wire Stripper

e Prototyping board with power and ground connections

Logic Gates and Integrated Circuits

In COE 203, you are required to work on digital circuits. Digita circuits are hardware
components that are implemented using transistors and interconnections in complex
semiconductor devices called integrated-circuits. Digital circuits work in binary logic
domain which uses two discrete values, TRUE (High) and FAL SE (L ow). We can aso
refer to these values as 1(High) and O (L ow).

Logic-Gates are basic building blocks of digital circuits. Using these building blocks,
complex functions or larger digital circuits can be built. Examples of the basic logic gates
are AND, OR, NOT, NAND and NOR. A complex gate such as an XOR gate can be
built out of these basic gates. Each logic gate is actually implemented in part of an
integrated circuit (1C), with each gate made using several transistors. For the most part
we do not need to concern ourselves with the actua circuitry inside each gate, only the
interconnections between individual gates. Usually each IC package contains several
individual gates. The 7408 chip implements 4 two input AND gates and is commonly
referred to as a “Quad two input AND” chip. Similarly the 7432 chip is a*Quad 2 input
OR” chip while the 7404 chip isa“Hex Inverter” since it contains 6 inverters. The IEEE
standard logic symbols for each of these devices are shown in Figure 1.

7408 7432
A (1) a (1
1A \h & (3) I 14 (L) | 51 A v
1B 2) | e | (3)
24 -G | (6) 7y 248 (6) 7404
2B () | oL 2y 25 (5) | © 2y |, @] TR gy
;-'-\. (9) 34 (2) 24 [3:1 {-‘I:J 1Y
?B_(ml -(8) 3y E.B (10) L &) 3y 34.0)] © 3y
T. 12 Cm 44 () -~ (8) 4y
by (13) | (1D gy e (13 (A0 4y 54 (11)] L (10) sy
e 4813 6a(13) b (12) gy
Y=A.B Y=A+B Y=A'

Figure 1: Standard Logic Symbols

Each of the chipsin Figure 1 is available in 14 pin Dual-In-Line packages or DIPs. In a
popular logic family caled TTL (Transistor-Transistor Logic), the low logic level is
assigned to OV and the high logic level is assigned to 5V. Each IC or chip has an ID
number that can be referenced in IC Data Book. From the book, you can get the pin
configuration of that chip. The pin numbers assigned to each logic signa are shown
inside brackets in the figure. The pins are numbered as shown in Figure 2. Pin 1 is
usually identified as the pin to the left of an indentation or cutout in one end of the chip
that is visible when the chip is viewed from the top. Occasionally, it is also identified by
aprinted or indented dot placed just next to it.

de Y hH14
C 013
O 12
O 711
O 010
[no
[1 8

L I o L O T N N e R

Figure 2: Identifying Pin 1

Dual-In-Line Package
veg B4 A4 Ya B3 A3 Y3

I14 13 12 1 10 9 8

1 I 2 3 4 5 6 |7
A1 B1 Y1 A2 82 Y2 GND

Figure 3: A Quad 2-input AND gate chip

Figure 3, shows an IC which contains four 2-input AND gates. Y ou will notice that pins 7
and 14 show no connections. In 14 pin DIP packages, pin 7 is usually connected to
ground (Gnd), and pin 14 is usualy connected to the power supply (Vdd). These
connections must be made or the chip will not work. Take care not to connect pin 7 to
power and pin 14 to ground, or to connect the outputs of two or more gates together. In
complex |Cs more than one pin can be dedicated for power (VDD) as well as ground. In

the simpler gates that we will be using in this experiment, the I Cs require only one pin for
power (VDD) and another for ground (GND). The power supply (VDD) voltage is
typically +5Volts, 3.3 Voltsor 2.5 Volts. The ground is typically connected to 0 Volts.

The Prototyping Board

The circuit is constructed on the breadboard section of the prototyping board. A
breadboard is used to rapidly create an experimental or prototype circuit. It consists of an
array of holes in which wires or component leads can easily be inserted. Rows of five or
six holes are electronically connected to form a single node as shown in Figure 4. When a
component lead is inserted into one of the holes, anything inserted into any of the
remaining four holes will be connected to that lead. Nodes can be connected to each other
using wires with 1/4” of insulation stripped from both ends. The holes are spaced 100
mms(.1 inch) apart, which is the standard spacing of the pins on a DIP package. The
breadboard has a groove down the center separating one side from the other. When
inserting a chip into the breadboard, make sure it fits into the central groove as shown in
the figure; otherwise the pins on opposite sides of the chip will be connected. Press the
chip down until it touches the surface of the breadboard. Devices inserted on the
breadboard can be connected to components on the prototyping board by using wires
between the device and the J1 connector.

/

Each row of 5 holes
forms one node, i.e.

the five holes are
electrically connected

Figure 4: Placing DIP devices
on a breadboard

Design Specifications

Y ou will construct a 1-bit full adder circuit. The full adder isacommon circuit used in
many designs both small and large (including processors). The function of the full adder
is quite ssmple — add two, one-bit numbers. This may seem like a simple process, but the
full adder is designed to be cascaded to compute addition on (arbitrarily) larger numbers.
Your circuit must have threeinputs, A, B, and Cin. It will have two outputs, Sum and
Cout. A block diagram is shown in Figure 5.

A Full | o
B | Adder
Cout
Cin

Figure5: A block
diagram of the circuit

Pre-Lab
1. Fill inthetruth table given below.
2. Useany circuit minimization scheme (K-Maps, Boolean Algebra etc) and find out
the equations for each output. Mention al your steps clearly.
3. Draw thecircuit using gates

Show it to your instructor for approval prior to beginning to construct thecircuit in
the lab.

Truth Table:
A B Cin Sum Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

In-Lab

RBOO~NOUOAWDNE

0.
11.
12.
13.

14.

Find out which chips do you need in order to construct your circuit
Check the datasheet in the lab and find out the number of the chips

Pick the chips from the shelf and test them using the I C tester.

Place the chips on the bread board of the FPGA board carefully.

Connect awire from the VDD pin on the J1 connector to the bread board.
Connect the Vcc pins of the chipsto the VDD on the board.

Connect awire from the GND pin on the J1 connector to the bread board.
Connect the GND pins of the chip to the GND on the board.

Build your logic diagram by making appropriate connections.

Use SW1, SW2, SW3input pins on the J1 connector as your inputs to
the 1-bit full adder.

Connect the two outputsto LD1 and LD2 on the J1 connector.

Use the switches on the board to verify your circuit.

Print a copy of the Grading sheet and get it signed by the instructor before you
leave the | ab.

Complete the lab report and submit it before the next lab

Lab Report

Y ou are responsible for documenting your work and your report must include (at a
minimum) the following:

1
2.
3
4.

5
6.
7

. Cover sheet (showing your name, ID and Title of the experiment)

Introduction - what you did

. Description of the design - how you did it (Y ou can show the Boolean Equations

and write down the steps which you took to reach those equations. List any design
aids (such as Logic Works) and how you used them

Features of final result —the final design isworking properly or not. If not, where
do you think the errorslie.

. Problems Faced

Conclusion - Any comments on the experiment itself are most appreciated.

. Answer the post-lab questions.

Submit it to the instructor befor e the next lab session. Attach the grading sheet with your
lab report at the time of submission.

Post-L ab Questions

1

2.

How many chips and wires will you need if you are asked to implement a 4-bit, 8-
bit and 16-bit adder.

Bonus: If the probability of making awiring mistake is p/wire, what is the
probability of making awiring mistake for the above adders.

Grading Sheet

There are 100 points awarded for this|aboratory as follows:

Points Possible

Points Awarded

Topics Addressed

20

120

Pre-Lab

Truth Table(4)

Logic Minimization (8)
Boolean Equations (2)
Circuit Diagram (5)
Organization, Clarity (1)

60

/60

Lab Work

Correct Wiring (30)

Handling of Components (10)
Verifying on the board (20)

20

/120

Lab Report
Contents (10)
Spelling, Grammar, and Style (10)

100

/100

Total

2. Prototyping of Logic Circuits using EEPROMs
Objectives
¢ Introduction to EEPROMs
e Learn how to use EEPROM Programmers
¢ Implementation of asimple sequential circuit using EEPROMs

Material
e Chips— 7474 or 74195, AT28C64
Wire Stripper

[
e Prototyping board with power and ground connections
e EEPROM Programmer

Designing circuits using EEPROMs

A Read-Only Memory (ROM) is a combinational circuit with n inputs and b outputs.
The inputs are called address inputs and the outputs are called data outputs. A 2"x b
ROM stores the truth table of an n-input, b-output logic function. ROM is a non-volatile
memory. Its contents are preserved even if no power is applied

In a Programmable ROM (PROM), the user may store data values (i.e. program the
PROM) in just a few minutes using a PROM programmer. The ROM which we will be
using in this lab is an Electrically Erasable PROM (EEPROM). In these ROMs, the
contents can be erased electrically. We will need an EEPROM Programmer to ater the
contents of the ROM.

There are certain distinct advantages of a ROM based circuit. A ROM-based circuit is
usually faster than a circuit using multiple SSI/MSI devices and PLDs. The program that
generates the ROM contents can easily be structured to handle unusual or undefined
cases. A ROM function is easily modified just by changing the stored pattern, without
changing any external connections. On the negative side, for small circuits, a ROM-based
solution will consume more power as compared to implementing the circuit with MSI
components.

Design Specifications

You are required to construct a sequence recognizer circuit for the sequence 0010. The
seguence recognizer is a common circuit used in many applications. The circuit should
have a single-bit serial input and a single-bit output. As soon as the last four bits become
0010, the output should become 1; otherwise the output remains 0. You will need flip-
flops to ‘remember’ the previous inputs. The circuit should be implemented using an
EEPROM and flip-flops. A block diagram isgiven in Figure 1.

As 1/0s
» EEPROM

T o
A

Qs Ds

Figure 1: A block diagram of the circuit

Pre-Lab
1. Construct a state diagram having 4 states, for a circuit which recognizes the
sequence 0010. Use the procedure mentioned in your textbook of COE 202
2. Suppose the input to your circuit is In and the output is Out. Fill in the state table
given below.
3. Study the datasheet of the EEPROM and D-Flip Flop from the lab guide. Find out
what should the control signals be connected to.
Show your work to your instructor for approval prior to beginning to construct the
circuit in thelab.
State Table:

R|lo|r|o|r|olr|lo|5

A+ | B+ | Out

RRRRolOOC|O>
Rl |o|lokr|lklo|lolm

In-Lab
1. Start the software for the EEPROM Programmer
2. Insert an EEPROM chip in the socket and verify that it is empty.
3. Press Edit and enter the values from your state table at successive addresses
starting from address 0. (Suppose for input 000, your state table has the value 110;
enter 06 for address 0).
4. Leavetheunused addresses asit is.

10

RBPBOo~NO O

13.

14.
15.
16.
17.

18.

Press Program and the values will be stored on your EEPROM.

Place the EEPROM and D-Flip Flop chips on the bread board carefully.
Connect awire from the VDD pin on the J1 connector to the bread board.
Connect the Vcc pins of the chipsto the VDD on the board.

Connect awire from the GND pin on the J1 connector to the bread board.

. Connect the GND pins of the chip to the GND on the board.
. Refer to the datasheets of D-flip flop and EEPROM and complete your circuit by

making appropriate connections.

. Use SW1 on the J1 connector as your input In. This should be connected to AO

pin of the EEPROM.

Use LD1 on the J1 connector as your output Out. This should be connected to
[/Og pin of your EEPROM.

Connect the unused address pins of the EEPROM to GND.

Connect the Clock of the Flip flop chip to SW2

Use the switches on the board to verify your circuit.

Print a copy of the Grading sheet and get it signed by the instructor before you
leave the | ab.

Complete the lab report and submit it before the next lab

Lab Report
Y ou are responsible for documenting your work and your report must include (at a
minimum) the following:

1
2.
3
4,

5
6.
7

. Cover sheet (showing your name, ID and Title of the experiment)

Introduction - what you did

. Description of the design - how you did it. List any design aids (such asLogic

Works) and how you used them
Features of final result —the final design isworking properly or not. If not, where
do you think the errorslie.

. Problems Faced

Conclusion - Any comments on the experiment itself are most appreciated.

. Answer the post-lab questions.

Submit it to the instructor befor e the next lab session. Attach the grading sheet with your
lab report at the time of submission.

Post-Lab Questions

1
2.

How many states are needed if you have to detect an 8-bit sequence.
What is the largest sequence which can be detected using this EEPROM

11

Grading Sheet

There are 100 points awarded for this|aboratory as follows:

Points Possible

Points Awarded

Topics Addressed

10

/10

Pre-Lab

State Diagram(5)

State Table(4)
Organization, Clarity (1)

70

/70

Lab Work

Correct Wiring (30)

Handling of Components (10)
Verifying on the board (30)

20

/120

Lab Report
Contents (10)
Spelling, Grammar, and Style (10)

100

/100

Total

12

3. Introduction to FPGA Design Flow

Objectives
e Learn to usethe Xilinx software to simulate the logic from Lab 1 using schematic
capture.
e Learn how to program your Digital Logic Board.
e Verify your truth tables from Lab 1.

Materials
o Xilinx ISE 7.1 software (installed on the lab computers)
e Digital Logic Board — Digilent Inc.
e Programming cable

Overview

7400 series logic chips, used in Experiment 1, were the most common digital logic
devices around for many years. In more recent time however, most digital logic
implementations have moved towards either programmable logic devices (PLDs) or field
programmable gate arrays (FPGAS). The Spartan-3 starter board is made by Digilent, and
contains the Spartan-3 FPGA combined with some simple interface electronics like
switches, LEDs and seven-segment displays etc. You can find more information about
this board in the Lab Guide. To show a comparison of 7400 series logic implementations,
and more modern systems, you will be implementing the logic of the full adder from
Experiment 1 on your Digilent board.

Y ou will construct a ssimple full adder using schematic editor. The full adder is a common
circuit used in many designs both small and large (including processors). The function of
the full adder is quite simple — add two, one-bit numbers. This may seem like an inane
process, but the full adder is designed to be cascaded to compute addition on (arbitrarily)
larger numbers.

Design Specifications

Your circuit must have threeinputs, A, B, and Cin. It will have two outputs, Sum and
Cout. Theinputs‘A’ and ‘B’ are two, 1-bit numbers that the addition will be preformed
on. The output islocated at the output labeled * Sum’. There are also two other 1/0 pins,
‘Cin’ and ‘Cout’. These are called “Carry In” and “Carry Out”, respectively. They are
used for cascading adders together.

A Full | — o
g — Adder
Cout
Cin

Figure 3: A Block Diagram of the circuit

13

Pre-Lab

1
2.

Fill in the truth table given below.
Use any circuit minimization scheme (K-Maps, Boolean Algebra etc) and find out
the equations for each output. Mention al your steps clearly.

Show it to your instructor for approval prior to beginning to construct thecircuit in

thelab.

Truth Table:
A B Cin Sum Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

In-Lab

1

Follow the tutorial given in the Lab Guide for designing circuits using schematic
editor

The following three steps must be shown to the instructor during the lab
e Complete Schematic

e Functiona simulation of the circuit using ModelSim

e Vaerification on the board

Print a copy of the Grading sheet and get it signed by the instructor before you
leave the lab.

Lab Report

A Lab Report will be required for this and every laboratory assignment for the entire
semester. You are responsible for documenting your work and your report must include
(at aminimum) the following:

1. Cover sheet (showing your name, ID and Title of the experiment)
2.
3. Description of the design - how you did it (Y ou can show the Boolean Equations

Introduction - what you did

and write down the steps which you took to reach those equations. List any design
aids (such as Logic Works) and how you used them

Implementation of design —which pin numbers you assigned to the inputs and
outputs

14

6.
7. Conclusion - Was it agood/bad design/ implementation? Why? What would you
do differently next time? Any comments on the lab itself are most appreciated.

8.

0.

11. Performance metrics - a screen shot of your timing info from the "Post-L ayout

Features of final result —the final design isworking properly or not. If not, where
do you think the errorslie.

Problems Faced

Include the following in the appendix
Schematics — print out the schematic diagram from your xilinx software
10. Simulations - show functional simulation using ModelSim

Timing Report" for which you will have to implement as well as synthesize your
design. Find out the maximum clock speed and the longest logic delay.

Lab reports must be typed and must include enough information to recreate your design.
Submit it to the instructor befor e the next lab session. Attach the grading sheet with your
lab report at the time of submission.

Grading Sheet
There are 100 points awarded for this|aboratory as follows:

Points Possible | Points Awarded | Topics Addressed
15 /15 | Pre-Lab
Truth Table(4)
Logic Minimization (8)
Boolean Equations (2)
Organization, Clarity (1)
60 /60 | Lab Work
Complete Schematic (10)
Functional Simulation (10)
Bit-file Generation (25)
Verifying on the board (15)
25 /25 | Lab Report
Contents (10)
Appendices (10)
Spelling, Grammar, and Style (5)
100 /100 | Total

15

4. Traffic Light Controller

Objectives
e Practice on the design of clocked sequential circuits.
® Introducing practical aspects of logic implementation (switch debouncing, timing
constraints etc.).

Overview

In thislab you are going to develop a Finite State Machine (FSM) for atraffic light
controller that will control the operation of traffic lights similar to the one at the
KFUPM main gate. The crossing is shown in Figure 1.

Road 2

® ®

Road 3

Road 1

Main Gate

Figure 1: The Three Traffic Light Signals

Design Specifications

There are three traffic light signals (S1, &, and S3), each alternating between two
states, RED and GREEN. These signals control the traffic flow on the three roads,
roadl, road2, road3 in four possible states as follows.

e In STATE O: no traffic so give priority to the main gate’ sroad. (SL = GREEN,

S =RED, S3=RED)

e In STATE 1, traffic coming through roadl. (SL = GREEN, & = RED, S3 = RED)
e In STATE 2, traffic coming through road2. (SL = RED, 2 = GREEN, S3 = RED)
e In STATE 3, traffic coming through road3. (SL = RED, & = RED, S3 = GREEN)

The last three states are shown in Figure 2 below.

16

Road 2 Road 2

—® \ o— —o /) o—

Road 3 Road d

Road 1 Road 1

{a) State1l b} State 2

Road 2

—& E—

Road 3

-
>

Reoad !

[e} State 3

Figure 2: The Three States

The operation of the three light signals (S1, S2, and S3) is controlled through an
arrangement of traffic sensors and traffic light controller circuit as shown in
Figure 3. There are three traffic sensors x1, x2, and x3, which sense the presence of
traffic on the three roads as illustrated in Table 1. The controller operationis
determined by the output of these three sensors as enumerated in Table 2.

X1
4 > §1

TRAEFIC X2 | TRAFFIC LIGHT
SENSOR * CONTROLLER > 52
X3 —* 33

Figure 3: Traffic Sensor and Traffic Light
Controller circuit

17

Indication
No traffic for all roads
Traffic for Roadionly
Traffic for Roadzonly
No traffic for Roads
Traffic for Roadsonly
No traffic for Roadz
No traffic for Roadh
Traffic present on all
roads

&

AN ==l =]=]
R(r|o|o|[r|r|o|lo|k
Rlolr|olr|olr|ofX

Table 1: Traffic Sensor Signals

Indication

&

Stay at STATEO

Stay at STATE 1

Stay at STATE 2

Alternate between STATE 1 and STATE 2

Stay at STATE 3

Alternate between STATE 1 and STATE 3

Alternate between STATE 2 and STATE 3

Normal operation: STATE 1, STATE 2, STATE 3, STATE 1...

AR =l =]l=]=]
Rr|o|o|[r|r|o|lo|k
R|lo|r|o|kr|o|r|ofX

Table 2: Traffic Sensors and Controller
operation

The design of the traffic controller module requires using D-Flip-Flops with
asynchronous clear (FDC). Assume that the controller has three inputs: x3, x2, and x1
coming from the traffic sensor, and three outputs: S1, &, and S3, which control the
operation of the three traffic light signals (logic 1 represents a GREEN signal and logic 0
represents a RED signal).

18

Pre-Lab

1
2.
3.

Read the section on switch debouncing from the lab guide.
Find a state diagram for this circuit.
Obtain a state table for the circuit (use the table below), whenever you have the

choice to salect between two states follow the order STATEL, STATE2, STATES,

then STATEL and so on.
Derive the Flip-Flop input equations from the state table.
Derive output equations for the traffic signals.

No [Xa | Xa | Xa | A B |Da|[De| S St
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1

10 0 1 0 1 0

11 0 1 0 1 1

12 0 1 1 0 0

13 0 1 1 0 1

14 0 1 1 1 0

15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1

20 1 0 1 0 0

21 1 0 1 0 1

22 1 0 1 1 0

23 1 0 1 1 1

24 1 1 0 0 0

25 1 1 0 0 1

26 1 1 0 1 0

27 1 1 0 1 1

28 1 1 1 0 0

29 1 1 1 0 1

30 1 1 1 1 0

31 1 1 1 1 1

19

Show it to your instructor for approval prior to beginning to construct the circuit in
thelab
In-Lab
1. Follow thetutorial given in the Lab Guide for designing circuits using schematic
editor
2. Use D-Hip-Flopswith Asynchronous Clear from the library.
. Incaseyour design istoo large to fit on one schematic, you can transfer the
combinational logic to another schematic as a macro. Refer to the section on
Creating Macros in the lab guide.
Constrain the inputs of your circuit (x3, x2, and x1) to 3 of the level switches
(SWO0, SW1, and SW2) respectively.
Constrain Flip-Flop outputs to LEDs (LD6 and LD7) where LD7 is the output
of the least significant Flip-Flop. These will show the current state.
Constrain Flip-Flop inputs to LEDs (LD4 and LD5) where LD5 is the input of
the least significant Flip-Flop. These will show the next state.
10 Constrain the three signal outputs (S3, &, and Sl) to three LEDs (LDO, LD1, and
11. LD2) respectively.
12. Use two Buttons, one to provide aclock signal (BTNO) -Beware of switch
debouncing problems, and the other as an asynchronous clear (BTN1). Connect
13. these inputs to the respective inputs of the Flip-Flops.
14. Implement your design.
15. Perform the timing (post-place-and-route) simulation.
16. Download your design.
17. Verify its functionality by applying different input combinations and compare
18. it with your state table.
19. The following three steps must be shown to the instructor during the lab
20. Complete Schematic
21. Timing ssimulation of the circuit
22. Verification on the board
23. Print acopy of the Grading sheet and get it signed by the instructor before you
leave the | ab.
24. Complete the lab report and submit it before the next lab

© N UM

Post-Lab Questions
1. Thecircuit which you have designed is a Moore machine or aMealy machine?
Why?

20

Grading Sheet

There are 100 points awarded for this|aboratory as follows:

Points Possible | Points Awarded | Topics Addressed
15 /15 | Pre-Lab
State Table(4)
Logic Minimization (5)
Boolean Equations (5)
Organization, Clarity (1)
60 /60 | Lab Work
Complete Schematic (10)
Timing Simulation (10)
Bit-file Generation (25)
Verifying on the board (15)
25 /25 | Lab Report
Contents (10)
Appendices (10)
Spelling, Grammar, and Style (5)
100 /100 | Total

21

5. Verilog Based Design of Ripple Carry Adder

Objectives

e Familiarize with HDL based design entry, using Verilog.
e Learnto use Structural design method in Verilog, and understand its basics, by:

o Constructing an 8-bit Ripple Carry Adder using the ‘HalfAdd’ module
given in the Lab Guide Chapter on Verilog, Section 3.2, and synthesizing
it.

o Modifying the Design by implementing the Boolean equations for Sum
and Carry for aFull Adder, then re synthesizing the 8-bit RCA, using the
new Full Adder circuit.

e Familiarize with the basics of Top-down design methodology.

Overview

In thislab, you are going to be constructing a simple 8 bit Ripple Carry Adder using
Verilog HDL design entry. The Diagram for which is given below:

3 i i e A s N
A B Cip A B Ci A B Cip A B Cp
Cout S Cot S Cot S Cot S

Cu | & : : L

Figure 1: Block Diagram of an 8-bit Ripple Carry Adder

Pre-Lab

1
2.

3.

Read Section 3.2 on Structura Verilog Design entry from the Lab Guide.

Practice how to implement Boolean equationsin Verilog, using the declared wires
and the ‘assign’ statement.

Using any simple Text editor, create the file ‘HalfAdd.v' . The contents of thisfile
will be the code for the Verilog module HalfAdd as given in the lab guide Figure
3.6. Bring thisfileto the Lab.

In-Lab Part 1:

1
2.
3.

4.

Create aNew Project in your Xilinx Project manager, Titled Experiment #.

Select Verilog HDL asthe Type for the Top Level Module Type field.

Using asimple text editor, create afile named ‘RCA_8hit.v' asthetop level filein
the project.

Add the ‘HalfAdd.v' Verilog file to your project.

22

In the RCA 8bit.v file, declare the top level module of the 4-bit RCA, listing and
declaring properly al the input and output wires. There should be 9 input wires (8
input + 1 Carry-in) and 5 output wires (4 sum and 1 Carry-out). This module will
implement the functionality described by Figure 1.

After the Signal Declarations are out of the way, make four dummy instantiations
of amodule named ‘ FullAdd’, with the instance names being Adderl to Adder 4.
This module, although not yet defined, will be used to implement asingle Full
adder; thus it will have 3 inputs and 2 outputs. This module will implement the
functionality of any one of the 4 blocks shown in Figure 1. (For help with this,
refer to Lab Guide, Verilog Chapter, Section 3.2)

Make sure to connect the input and output wires of al the Full Add module
instantiations properly, as shown in Figure 1.

Oncethe ‘RCA _8bit.v' module is completely implemented, close this and open a
new file ‘FullAdd.v’ that will contain the HDL code for the as yet unimplemented
Full Add module.

Using the HalfAdd module given in the Lab Guide, implement the Full Add
module by instantiating 2 HalfAdd modules, and connecting them as shown in
Figure 2. Use the assign statement to generate the Cy: Signa by performing a
bitwise OR of the two half-adder carry signals. At this point the designis
complete.

Cin A S S
HalfAdd
A— A s B c
HalfAdd

Figure 2: A Full Adder Circuit using 2 Half Adders

10. Implement your design.

11. Perform the timing (post-place-and-route) simulation.

12. Download your design.

13. Veify its functionality by applying different input combinations, and checking

the result.

14. The following three steps must be shown to the instructor during the lab

a. Complete Verilog Structural Code.
b. Timing ssmulation of the circuit
c. Verification on the board, using the given truth table.

23

In-lab Part 2:

15. Now open the ‘FullAdd.v' file.

16. Remove the instantiations of the ‘HalfAdd’ module in the ‘ Full Add.v' file,

17. Using the Boolean equations for a Full Adder, and assign statements, generate the
output Sum and Carry signals for the FullAdd module (for help, refer to Lab
Guide, Verilog Chapter, Section 3.2). The logic diagram for a Full Adder is given
in Figure 3 for reference. Save and Close the file.

18. Remove the ‘HalfAdd.v' file from the project.

19. Implement your design.

20. Perform the timing (post-place-and-route) simulation.

21. Download your design.

22. Verify itsfunctionality by applying different input combinations, and checking
the result.

23. The following three steps must be shown to the instructor during the lab

a. Complete Verilog Structural Code.
b. Timing ssimulation of the circuit.
c. Veification on the board.
24. Complete the lab report and submit it before the next lab.

(A
| B> > Sum

Carry In

Carrg Qut >

J
v

AND2

ANDZ

Figure 3: Logic Diagram of a Half Adder

Post Lab Questions
1. Explain what you understand from Top-down design methodology. Describe how
it was used in this experiment.
2. Why wasit possible to completely change the HalfAdd module, and still get a
functioning circuit without changing anything else?

24

Grading Scheme

Points Possible

Points Awar ded

Topics Addressed

55

/55

In-lab Part 1
HalfAdd.v (5)
Full Add.v(20)
RCA 8bhit.v (30)

20

/120

In-Lab Part 2

Boolean equations of Full
Adder (5)

New version of FullAdd.v
(15)

25

125

Lab Report

Contents (10)

Post-Lab Questions (10)
Spelling, Grammar and
Style (5)

100

/100

Total (100)

25

6. RTL Verilog Based Design of an Arithmetic Logic Unit
Objectives

e Familiarize with the RTL level design methodology in Verilog, by:
0 Under taking procedural design of an Arithmetic Logic Unit using ‘ case’
statements.
0 Using select ling(s) to multiplex between two input busses at one of the
inputs of both units, using an ‘if’ statement.
e Attain an introductory understanding of how to combine different design
methodol ogies, such as structural and RTL Verilog.

Overview
In this lab, you are going to be constructing a basic 4-bit Arithmetic-Logic Unit (ALU)

using Verilog HDL design entry. The truth table for this ALU isgivenin Figure 1. Y, A
and B are all unsigned 4-bit values.

$ S S | S Output | Comments
Arithmetic Operations

0/0]0]O0 Y <=A Transfer A
0/]0]0]1 Y<=A+1 Increment A
0/]0]1]0 Y<=A+B Add A and B
0|01 |1 Y<=A+B+1 Add with Carry
0[1/0]0 Y<=A+-B A plus 1's complement of B
0/]1]0]1 Y<=A+~B+1 A-B
0O[1/1]0 Y<=A-1 Decrement A
0O]1]1]|1 Y <=B Transfer B

L ogic and Shift Operations
1/0/0]0 Y<=A&B Bitwise AND of A and B
110|012 Y<=A|B Bitwise OR of A and B
1/0]1]0 Y<=A"B Bitwise XOR of A and B
1/0]1|1 Y <=~A Bitwise NOT of A (1's complement)
111,00 Y<=A~&B Bitwise NAND of A and B
111/0 |1 Y<=A~|B Bitwise NOR of A and B
1/1]1|0 Y<=A<<l1 Left Shift A once
1111 Y<=A>>1 Right Shift A once

Figure 1: Truth Table for an 8-bit Arithmetic-Logic-Shift Unit
The diagram for the circuit to be implemented is given below in Figure 2. The design has

3 4-bit input busses and 1 4-bit output bus. 2 of the input busses pass through a 4-bit 2-1
multiplexer, before being connected to the B input bus of the ALU. One of these busses

26

will be selected based on the value of a fifth select bit — S;. The ALU module will be
implemented by expanding upon the code provided in the Lab guide Verilog chapter,
Figure 3.13b.

Sel[4:0]

ALU

Sel(3:0) Y(3:0) [m———a—Y[3:0]

A[3:0]

I

Al3:0)

B[3:0] =———w————i_1 el

C[3 :ﬂ] R e

4-bit 2-1 Mux

Figure 2: Block Diagram of an 4-bit Arithmetic-Logic Unit with a multiplexed input.

Pre-Lab

1. Read Section 3.3 0on RTL level Verilog Design entry from the Lab Guide.

2. Practice how to implement Boolean equations in Verilog, but instead of using
continuous assignment (assign) statements, use ‘always blocks and procedura
assignment statements.

3. Using any simple Text editor, create thefile*ALU.V . The contents of this file will
be the code for the Verilog module Logic, as given in the lab guide Figure 3.13b.
Bring thisfile to the Lab.

In-Lab Part 1.

1. Create aNew Project in your Xilinx Project manager, Titled Experiment 6.

2. Select Verilog HDL asthe Type for the Top Level Module Type field.

3. Using asimpletext editor, create afile named ‘ALU_4bit.v' asthetop level filein
the project.

4. Addthe‘ALU.v' Verilog fileto your project.

5. Since the code given in Figure 3.13b of the lab guide does not include Arithmetic
and Shift functionality, modify the code by expanding the case variable ‘ Sel’ to 4-
bits instead of 3-bits, and add more ‘case’ statements to incorporate the un-
implemented rows of the truth-table above. The ‘ALU’ module should now have
2 4-hit input ports, one 4-bit Select input port, and 1 4-bit output port.

6. Refer to Section 3.1 of the lab guide Verilog chapter for help with the shift and
arithmetic operators.

7. Inthe ALU_4bit.v file, declare the top level module of the 4-bit ALU: ALU_4bit,
listing and declaring properly all the input and output ports. There should be 3 4-
bit wide input ports of type ‘wire’ (for A, B and C), one 4-bit wide output port of
type ‘reg’, (for Y), and one 5-bit input port (for the select lines S, through).
This module will implement the functionality described by Figure 2.

27

8. Declare an additiona reg type 4-bit variable in the ALU_8bit module:
Secondary_Input. This will serve as an intermediate bus that connects the output
of the 8-bit 2-1 multiplexer to the B-input of the ALU module that will produce
the final 8-bit output Y.

9. Instantiate the ‘ALU’ module in the ALU_4bit module. The 4-bit output port of
the ALU module should be connected to the Y output bus, and the B input port
should be connected to the Secondary Input bus.

10. Using an ‘if’ statement and procedural assignments (all within an always block, of
course), assign the B and C inputs of the ‘ALU_4bit’" module to the 4-bit
Secondary Input bus in the top-level block, based on the value of the S, select
line.

11. Implement your design.

12. Perform the timing (post-place-and-route) simulation.

13. Download your design.

a. Set the inputs B and C to fixed 4-bit vaues by creating a new top level
modul e that instantiates your design, as given below.

nmodul e | ab6t op(A, Sel , Y);
i nput [3:0] A
i nput [4:0] Sel;
output [3:0] Y,
wire [3:0] GH;

0010;

assign G
H 1001;

=4'b
assign =4'Db

ALU 4BI T al ul(Sel ,A GHY);

endrodul e

b. Constrain the input 4-bit A input to the first 4 switches.
c. Constrain the select inputs Sz through S to the remaining switches, and S,
to the first push button.
14. Veify its functionality by applying different input combinations, and checking
the result.
15. The following three steps must be shown to the instructor during the lab
a. Complete Verilog RTL Code for both modules.
b. Timing ssmulation of the circuit.
c. Verification on the board, using the given truth table.

Post Lab Questions
1 Explain what you understand from RTL design methodol ogy.
2. Describe in detail how the always statement is used in Verilog based Design.

28

Grading Scheme

Points Possible Points Awarded Topics Addressed
5 /5 | Pre-Lab

ALU.v (5)
70 /70 | In-Lab

ALU.v modification to include shift
functionality (15)

ALU.v modification to include arithmetic
functionality (20)
ALU_4bit.vimplementation (35)

25 /25 | Lab Report

Contents (10)

Post-L ab Questions (10)
Spelling, Grammar and Style (5)

100 /100 | Total (100)

29

7. Finite Sate M achine Design in Verilog

Objectives

e Familiarize with the design and implementation of Finite State Machines using
Verilog.

e Acquiring an understanding of best practices for safe implementation of State
Machines, including the use of Resets.

Overview

In this lab, you are going to be designing the Finite State Machine for the Traffic Light
Controller that was developed in Experiment 4, this time using Verilog HDL instead of
Schematic Design Entry.

Road 2

@@

Road 3

ak:n

Main Gate

Figure 1. The Three Traffic Light Signals
Design Specifications

There are three traffic light signals (S, 2, and S3), each alternating between two states,
RED and GREEN. These signals control the traffic flow on the three roads, roadl, road2,
road3 in four possible states as follows.

e In STATE 0: no traffic so give priority to the main gate's road. (SL = GREEN,
S =RED, S3=RED)

e In STATE 1, traffic coming through roadl. (SL = GREEN, & = RED, S3 = RED)

e In STATE 2, traffic coming through road2. (SL = RED, 2 = GREEN, S3 = RED)

e In STATE 3, traffic coming through road3. (SL = RED, 2 = RED, S3 = GREEN)

The operation of the three light signals (S1, S2, and S3) is controlled through an

arrangement of traffic sensors and traffic light controller circuit as shown in Figure 2.
There are three traffic sensors x1, x2, and x3, which sense the presence of traffic on the

30

three roads as illustrated in Table 1. The controller operation is determined by the output
of these three sensors as enumerated in Table 2.

X1

- L §1

TRAFFIC X2 | TRAFFIC LIGHT 52
SENSOR CONTROLLER [~

X3 ——— §3

Figure 2: Traffic Sensor and Traffic Light Controller Circuit

v Indication
0 | No traffic for all roads
1 | Traffic for Roadionly
0 | Traffic for Roadzonly
1 | No traffic for Roads
0
1
0
1

et
L
-t
b

Traffic for Roadsonly
No traffic for Road:
No traffic for Road
No traffic for all roads

e |olo|o|o|i

el e =1 =1 L k=2 k=]

Table 1: Traffic Sensor Signals

Indication

#
[

Stay at STATE O

Stay at STATE 1

Stay at STATE 2

Alternate between STATE 1 and STATE 2

Stay at STATE 3

Alternate between STATE 1 and STATE 3

Alternate between STATE 2 and STATE 3

Normal operation: STATE 1. STATE 2. STATE 3. STATE 1...

el el el e =0 el e) o)
—lo|~|lo|~lo|~|o|2

Table 2: Traffic Sensor and Controller Operation

Based on the above specifications, the state diagram of this Finite State Machine has been
provided in Figure 3 below. Your objective in this experiment is to implement the
functionality described by this state diagram using Verilog HDL.

Pre-Lab
1. Read Section 3.5 on Modeling Finite State Machines using Verilog from the Lab
Guide.

2. Verify the functionality of the State Diagram Provided Above.

31

x3=0
x2=0
x1=1

x3=0
x2=1
x1=0

Figure 3: State Diagram for Traffic Light FSM
(X represents Don’'t Care conditions)

In-Lab:

1. CreateaNew Project in your Xilinx Project manager, Titled Experiment #.

2. Select Verilog HDL asthe Type for the Top Level Module Type field.

3. Using a simple text editor, create a file named ‘ Traffic_Controller.v' as the top
level filein the project.

4. In the Traffic_Controller.v file, implement a module named Traffic_Controller
which will implement the functionality specified by the state diagram of Figure 3.

5. Declare the Traffic_Controller module, with al its inputs and outputs — it should
have:

a. Three 1-bit inputs from the Traffic Sensors: x3, X2, and x1.

b. Three 1-bit outputs, the signals S1, &, and S3 (a ‘1" output should
represent a GREEN signal, while a ‘O’ output should represent a RED
signal).

c. One 2-bit output identifying the Current State of the FSM,

d. One 2-hit output indicating the Next State of the FSM.

6. The Verilog code for this module should contain 3 always blocks:

e. One for the Next State Logic, which generates the Next state value based
on the Current State and the Traffic Sensor inputs

f. Another for the Output Logic, which generates the signals S1, &, and S3
based on the Current State only (see Figure 3 above).

32

g. The Third for the Current State Registers, which implements the Current
State Registers, aswell as the Asynchronous Reset.
For help with the concepts, refer to Section 3.5 of the Verilog Chapter in the Lab
guide, in particular to the example given in Figure 3.14.
7. Constrain the inputs of your circuit (x3, x2, and x1) to 3 of the level switches
(SWO0, SW1, and SW2) respectively.
8. Constrain the 2-bit Current state output to LEDs LD6 and LD7 where LD7 is the
output of the LSB. These will show the current state.
9. Constrain the 2-bit Next-state output to LEDs LD4 and LD5 where LD5 is the
input of the LSB. These will show the next state.
10. Constrain the three signal outputs S3, 2, and Sl to three LEDs LDO, LD1, and
LD2 respectively.
11. Use two Buttons, one to provide a clock signal (BTNO) and the other for the
asynchronous reset signal (BTN1). - Beware of switch debouncing problems.
12. Implement your design.
13. Perform the timing (post-place-and-route) simulation.
14. Download your design.
15. Verify its functionality by applying different input combinations, and checking
the result.
16. The following three steps must be shown to the instructor during the lab
h. Complete Verilog Code.
i. Timing ssimulation of the circuit
j. Verification on the board, using the given state diagram.
17. Complete the lab report and submit it before the next lab.

Post Lab Questions
1. What is the difference between a Mealy machine and a Moore machine? The
State machine designed in this lab is of which kind?
2. Attempt to merge the two combinatorial always blocks — the one for the output
logic and the next state logic. Test and verify your new code. Present your code to
the instructor as part of the post lab report.

Grading Scheme

Points Possible | Points Awarded | Topics Addressed

80 /80 | In-lab

Traffic_Controller module declaration (10)
always block for next state logic (40)

always block for output logic (15)

always block for Current State and asynchronous
reset (15)

20 /20 | Lab Report

Contents (5)

Post-Lab Questions (15)
Spelling, Grammar and Style (5)

33

8. Designing a Programmable Digital L ock

Objectives

e Learning how to partition a system into data-path and control unit.
® |ntegrating Schematics and Verilog code together

Overview

In this lab you will design a Digital Lock. We will begin by partitioning the system into
two blocks: a data-path unit and a control unit. The data-path contains blocks that only
deal with data. They do not provide control to any other blocks and they themselves need
to be controlled by the Control Unit. These blocks can be viewed as workers that can
perform certain tasks (on the data) but need o be managed by someone. The manager in
this case is the Control Unit that tells every worker what to do. Examples of data-path
blocks include registers, counters, comparators, multiplexers, adders etc. Each of these
blocks have control signals like load, count, enable, clear etc. which have to be controlled
through the control unit. The genera structure of adigital systemisshownin Figure 1.

Signals

DP Status f======s=sssssssmsssssesmmm

T

-

Control Unit

(CU)

AR EEE DP (Dlltlt)l fEEEEEENEEEEEEIENEENEEENEEE
Signals

Data Path

(DP)

Figure 1: Genera Structure of aDigital System

sindngy

sindug

BIE(]

[LLNETRNG |

BIB(]

[LIREIRNG|

External Control Sgnals specify the task required from the whole circuit (e.g. calculate

the average of some integers).

External Status Sgnals indicate the status of the whole circuit (finished processing,

overflow, error etc.)

External Data I nputs/Outputs contain the data going into or coming out of the circuit (for
e.g. integers o be averaged and the result of the average)

34

DP Control Sgnals are generated by the Control Unit to control different blocksin the
data-path (for e.g. enable inputsin counters, shift inputsin registers)

DP Satus Sgnalsindicate the status of some blocks in the data-path (e.g. when a counter
reaches its maximum value or adder generates an overflow)

Design Specifications

You are asked to design a programmable digital lock circuit. The circuit receives serial
input combinations. If the input combination matches a 4-BCD digit stored pattern, the
lock is opened. The user should be able to store a new pattern that is, he should be able to
re-program the lock. If 3 wrong 4-BCD digit combinations are entered, the lock jams and
needs to be reset. The Lock has 3 inputs; Program, Open and 4-bit serial input. It has two
outputs Red and Green. If the lock is opened Green is ON. If it isclosed Red is ON. If it
is locked both Red and Green are ON.

Design Steps:

The block diagram is shown in Figure 2. The 4-bit SERIAL input provided by the user is
given to the Data-path unit. The data-path generates three status signals, MATCH, LOCK
and COUNTDONE. The inputs PROG and OPEN are given to the Control Unit. Based
on these inputs, it generates six control signals for the data-path. These are SHIFT-A,
SHIFT-B, ENABLE3, CLR3, ENABLE2 and CLR2. The primary outputs, RED and
GREEN are a'so generated by the Control Unit.

PROG

\ 4

CONTROL UNIT ~ED

v

OPEN

A 4

L——» GREEN

VVVVYVY

4 DATA-PATH
SERIAL /

~
A 4

Figure 2: A Block Diagram of the Circuit

The data path consists of several registers, a counter and a magnitude comparator. The
required components include:

A-Register: A set of four 4-bit registers which hold the serial input given by the user
B-Register: Another set of four 4-bit registers which hold the password. A schematic for
the shift registersis shown in Figure 3.

35

Comparator: This can be designed using XOR gates or the standard magnitude
comparator given in the library. Its function is to compare the magnitudes of A-Register
and B-Register. The XOR tree should be constructed as follows. The contents of each 4-
bit register in Register-A should be compared with the contents of the corresponding 4-
bit register in Register-B by using XOR gates. The outputs of the four XOR gates should
be connected by afifth XOR gate and the resultant output be named as MATCH.
Counter 3: A 3-hit counter used to count the number of BCD digits entered. It generates
an output COUNTDONE which isequal to 1, when the count reaches 4.

Counter2: A 2-bit counter used to count the number of times a wrong combination is
entered. It generates an output LOCK, which becomes equal to 1 when three wrong
combinations are entered.

SRACE
—
. —
== -
= F I
SRACE
—
1
I
SRACE
st —] 4
—]
b
N |
SRACE
- N
—

Figure 3: The Shift Registers

A block diagram of the data-path is shown in Figure 4.

36

CLR2 I
ENABLE2 » 2-BIT &
COUNTER —>
FOUR 4-BIT SHIFT REG OUNTZ
R
SERIAL > 7
4
/) 4
X
/ 0
SHIFT-A > 4 R MATCR >
REGISTER-A /
FOUR 4-BIT SHIFT REG T
) 4,1 R
d /
4 E 3BIT Q2
COUNTER
/
SHIFT-B > 4 = o
> / Qo
4
REGISTER-B /
ENABLE3 poUNT
CLR3

Figure4: A Block Diagram of the Data-path

Controllersin general need status information to decide on the next proper actions. In this
circuit, the controller uses the signal COUNT4 to determine when to do the magnitude
comparison. A Block diagram of the Control Unit isgivenin Figure5.

PROG

OoP

COUNT2

MATCH

COUNT4

CLK

RESET

—> CONTROL

—> UNIT

Figure5: A Block Diagram of the Control Unit

37

The state diagram of the controller is shown in Figure 6. The controller FSM has 5 states
(STATEQ, STATEL, STATE2, STATE3, STATE4 and STATES). The RESET signal
resets the system to the first state SO and clears all the components.

If the Prog input is 1, the FSM moves to the second state S1, and the B-Register is |oaded

with the Serial input provided by the user.
If the Open input is 1, the FSM moves to the third state S2, and the A-Register is loaded

with the Seria input provided by the user. Counter3 isincremented by 1.

PROG='0' AND OP='0"

RESET

PROG='1" AND OP='0'

PROG='0' AND OP="1'

CLR3="1"; CLR2='1'
COUNT4="0

ENABLE3="1;SHIFTA="1'

4:'0'

ENABLE3='1 SHIFTB="1'

COUNT4="1"AND
MATCH="T'

GREEN='1'

COUNT2='0'
CLR3="1'

COUNT4="1"AND
MATCH='0'

ENABLE2="T'

COUNT2="1'

RED="1";GREEN="1'

Figure 6: The State Diagram for Control Unit

38

Pre-L

NougksrwbhpE

©

| dentify the following signals:

External Control Signals

Externa Status Signals

Data Input/Output Signals

Data-path Control Signals

Data-path Status Signals

Use the State Diagram Editor to create a CONTROL.DIA file. Generate a Verilog
fileusing STATECAD.

Design the data-path using either the schematic editor or Verilog.

Show the design to your instructor for approval prior to beginning to construct the
circuit in the lab

In-Lab

14.
15.
16.
17.
18.

19.

Follow the tutorial given in the Lab Guide for using the State Diagram Editor
Create a Schematic Symbol of the Control Unit from the Project Manager.
Import it as a symbol in your top-level schematic.

Perform functional simulation of the Control Unit.

Import your data-path design in the top-level schematic as well.

Constrain the Prog and Op signals to SWO0 and SW1.

The outputs RED and GREEN should be constrained to LDO and LD1.

The clock should be constrained to a push button.

Constrain the Reset signal to a push botton as well.

. Implement your design.

. Perform the timing (post-place-and-route) simulation.

. Download your design.

. Verify its functionality by applying different input combinations and compare it

with your state table.

The following three steps must be shown to the instructor during the lab
Complete Design

Timing ssimulation of the circuit

Verification on the board

Print a copy of the Grading sheet and get it signed by the instructor before you
leave the lab.

Complete the lab report and submit it before the next lab

Post-Lab Questions

1

Instead of using the state diagram editor, design your control unit using Verilog.
Refer to the Verilog Cookbook. Do you need to change the top-level module if
you re-design the control unit using Verilog.

39

Grading Sheet

There are 100 points awarded for this |aboratory as follows:

Points Possible

Points Awarded

Topics Addressed

15

/15

Pre-Lab

| dentifying the signals(5)
State Diagram (5)
Data-path design (5)

60

/60

Lab Work

Integrating the design (20)
Timing Simulation (10)
Bit-file Generation (15)
Verifying on the board (15)

25

125

Lab Report

Contents (10)

Appendices (10)

Spelling, Grammar, and Style (5)

100

/100

Total

40

